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den, aber ¢ ndchstliegenden Gitterpunkt des Zylinders Z. Unter den Hyperebenen (16)
einer Verteilung (2) gibt es also im vorliegenden Fall keine ¢ beliebig benachbarte
Hyperebene. Entsprechendes folgt fiir jede Hyperebene der Verteilung (2). Somit gilt:

Sind die Verhiltnisse der Logarithmen von | %, |, ..., | %, | rational, so besitzt die
Verteilung (2) (und damit auch jede ihrer unendlichen Teilverteilungen) keinen eigent-
lichen Hdufungspunkt.

b) Die Gleichung (17) von ¢ hat mindestens zwei Koeffizienten mit irrationalem
Verhiltnis. Es sei etwa lg | x, |/1g | x5 | irrational. Die Schnittgerade der Hyperebene
¢ mit der Koordinatenebene 4,7, hat somit die Gleichung

. Ig x| .
= g ] 1 (18)

Da die Irrationalzahl lg |, |/lg | x5 | beliebig genau rational approximiert werden
kann, liegt in der ¢;i,-Ebene in jedem um die Gerade (18) abgegrenzten Parallel-
streifen mindestens ein Gitterpunkt. In diesem Fall gibt es also in beliebiger Ndhe der
Hyperebene ¢ noch weitere Scharebenen, und Entsprechendes folgt fiir jede Hyper-
ebene der Verteilung (2). Somit gilt:

Ist mindestens ein Verhilinis der Logarithmen von | x4 |, ..., | %, | trrational, so ist
1eder eigentliche Punkt der Verteilung (2) Haufungspunkt. O. GIERING, Stuttgart
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Inequalities Concerning the Inradius and Circumradius
of a Triangle

The purpose of this paper is to establish in an elementary manner a number of new
inequalities between the inradius and circumradius of a triangle, its area and certain
functions of its sides.

These inequalities will be strong enough to permit us to deduce without difficulty
several well-known results, and to sharpen some inequalities due to other authors.

1. Some Identities

If T be any triangle and A4,, 4,, 4, its vertices, we shall denote by 4, the side
opposite vertex 4;, and by «, the angle at 4,. Further, let 7 be the inradius and R the
circumradius of 7', while A4 denotes its area and 2 s its perimeter. For simplicity, we
shall write

8 8
Za,. for Zai , Za,- a; for 2 a;a;, and Ua,- for Ha,..
i=1 i i=1

1< 1<i<j<3
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We begin by establishing several useful relations between », R and the sidesof T.
It can be shown without difficulty that in any triangle,

2) a;a;— Y ai=4r(4R+7). (1)
i<j
Forr = Als and 4 r R = a, a, a,/s, so that

4aya,

47y 4R+7) =

Since 42 = s (s — a;) (s — ay) (s — a,), we have
1
4r4R+7) =7;[8a1a2a3+ (a1 + ay — a3) (4 + a3 — a;) (a3 + a; — a,)]
1
3‘2‘;[2(41‘*‘“2‘*‘“3) (ay az + ag a3 + a3 a,)

— (ay + ay + a5) (af + a3 + a3)],

whence identity (1).
Combining this relation with the algebraic identity

23 a;a;+ D) ai = (3 a2, (2)

1<g
we obtain the relations
(Qlap=23ai+4r@R+7), (3)
and
4201,- a,=(Q a2 +4r(4R+7). (4)
i<j

2. Three Inequalities

Consider triangle HIO, where H, I, O denote the orthocenter, incenter, and
circumcenter of 7. HoBsoN [1]!) proved the following formula for the distance
between H and I (in our notation):

IH? = 27> — 4 R*I cosa,;. (5)
But

4 R*ITcose, = 3 (Y a)P — 2 R + 1)
(see [2] for a proof), and thus
1
IH? =37 +4r R+ 4 R2— (D a2, (6)
This establishes the inequality
(JJa)p<4(3r+4rR+4 R, (7)

with equality only in an equilateral triangle, for only then do points I and H coincide.

1) Numbers in brackets refer to references, page 131.
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Now let G be the centroid of 7. According to a well-known theorem of EULER,
G lies on OH, between O and H, and GO: GH = 1:2. Consequently, we have

6r=21001 12+ 2 0H2. (8)
It is readily shown that
2@?-—: 3ZGA?, (9)
and that for any point P in the plane of T,
Q) PA? =3 GA? + 3 PG2. (10)
If we choose for P the circumcenter O of T, we have, by (9):
1 2 2
3R%= 3’2“@' + 3 0G*,
whence, since OH = 3 0G:
OH® =9 R*— ) 'a. (11)

Finally, by EULER’s formula for the distance separating a triangle’s incenter and
circumcenter, we have

102=R*—-2rR. (12)

By substituting (6), (11) and (12) in formula (8), we obtain

1 2
GI2=7*— (2(1,-)2 + 526!? ,
which, by relation (3), is equivalent to
36 GI2=()]a,)2+ 207 — 647 R, (13)

whence
(J'a,)2>4r(16R—57), (14)

with equality only when the triangle is equilateral.
We have thus proved the following inequalities for a triangle with sides a,, a,, a,,
inradius 7, circumradius R and area A4:

First Inequality

47(I6R—57) < (J)a;?<4(372+47R+4R?. (15)
Second Inequality

127 2R—1 < Da} <4r2+8R2, (16)
Third Inequality

PA6R—-57)< 42 <r2(3r24+47rR+4R?. (17)

Indeed, the first inequality is given by (7) and (14), the second follows from the
first and from relation (3), while the third is deduced from the first by the identity
24 =r X a;. In all three, equality holds only when the triangle is equilateral.
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3. Two Applications
3.1. F. LEUENBERGER has proved [3] the following inequality:

18rR<}'a,a; <IR2.

1<
Using identity (1) and inequality (16), we obtain the stronger result
4r(SR—7r) <)'a,a;, <4 (r+ R)?. (18)
1<q

This can be combined with the identity

D)a;a;=2R Dk,

1<f
where &; (¢ = 1, 2, 3) are the altitudes of T, to obtain the inequality
27(5R —7) 2 (r+ R)®
b ngi <—5 - (19)

3.2. Another result due to the same author [4] is

R — a;, a, as 27"
Here it is possible, by applying (18), to sharpen the left side. For we have
PR A
“i Il a; ’

and by the inequality between arithmetic and geometric means,

whence

(I @)1 2;/55(2“,. aj)—3l2.

i<y

Multiplying both sides by 2 a; a;, we get

1<y

and it follows from (18) that

3)3
AV

+

1
ay
4. Corollaries

Our three inequalities can be used to obtain some well-known results. We shall
mention three such examples.
4.1. Inequality (16), together with the classical inequality 2 r < R, gives us KuBoTA’s
inequality [5]:
36r2g2a?39R2.
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4.2. We can write the right side of (17) as
8 1 1
A2 < r? [(4R2+37R+-—3~72)+§(4rR+872)].

Since 4 72 << 27 R < R2, the value of the second parenthesis never exceeds 4 R2, and
therefore

V34<r@R+7). (21)
But because of identity (3), this is equivalent to
4V§A < (a, + ay+ a3)? — 2 (a® + a3 + a?),
or
4V3 A < al + a; + a; — [(a, — ag)® + (ap — ag)® + (a5 — a,)%],
an inequality which was first proved by P. FINSLER and H. HADWIGER [6].
4.3. Finally, since

2a;a;
_ i<
1= 2 La; ’

we have by (18) and (20)

3\3 3 R\3
(—35—) . Z l a, < (r+ R)3< <—~§*A) ;
and therefore

_ 2135044 _1{__3—
4= iR =3

whence the chain of inequalities

(ay ay ag)®®,

V3 < (L) o000, < 0 + RY, (22

parts of which have already been pointed out by L. CArLITZ [7].

In concluding, we note that although (20) and (22) might lead one to suspect that
there exists an inequality between X' a; and 2 }/3 (» + R), this is not the case, as the
following example shows:

For a, =3, ay=4, a;=15, we have »r =1 and R = 5/2, and therefore
2a;<2)3(r+ R), while in the isoceles triangle 4, =2, a, = a3 =6, we have
r = }/35/7 and R = 18]35, so that X'a; > 2 /3 (r + R). J. StEINIG, Ziirich
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