Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 18 (1963)

Heft: 6

Artikel: Über eine Kennzeichnung der gleichseitigen Hyperbeln

Autor: Giering, O.

DOI: https://doi.org/10.5169/seals-22647

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik und zur Förderung des mathematisch-physikalischen Unterrichts Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

> Publiziert mit Unterstützung des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung

El. Math. Band XVIII Nr. 6 Seiten 121–144 Basel, 10. November 1963

Über eine Kennzeichnung der gleichseitigen Hyperbeln

Herrn Prof. Dr. F. Lösch zum 60. Geburtstag gewidmet

- 1. Mit drei verschiedenen Punkten P_1 , P_2 , P_3 einer gleichseitigen Hyperbel liegt auch der Höhenschnittpunkt des Dreiecks $P_1P_2P_3$ auf der Hyperbel (vergleiche zum Beispiel [1], S. 159, [2], S. 368)¹); ein orthogonales Geradenpaar, das als entartete gleichseitige Hyperbel aufgefasst werden kann, besitzt dieselbe Eigenschaft²). Wir zeigen, dass dieser Satz umkehrbar ist. Die gleichseitigen Hyperbeln (orthogonale Geradenpaare eingeschlossen) lassen sich kennzeichnen als jene ebenen stetigen Kurven, für die der Höhenschnittpunkt jedes Sehnendreiecks ebenfalls Kurvenpunkt ist. Diese Umkehrung dürfte bisher übersehen worden sein. Gleichzeitig ergibt sich dabei Gelegenheit, auf mit dieser Erzeugung zusammenhängende Punktmengen auf gleichseitigen Hyperbeln einzugehen sowie Verteilungen von Hyperbelpunkten zu untersuchen, die gegenüber der Konstruktion von Höhenschnittpunkten abgeschlossen sind.
- 2. Wir betrachten solche ebene $Punktmengen \mathfrak{H}$, die mit je drei Punkten den Höhenschnittpunkt des zugehörigen Dreiecks enthalten³). Die Punktmenge \mathfrak{H} soll zunächst aus mindestens vier verschiedenen Punkten P_1, \ldots, P_4 bestehen, von denen keine drei auf einer Geraden liegen, die kein Dreieck mit seinem Höhenschnittpunkt und kein Rechteck bestimmen. Dann sind drei der Punkte P_1, \ldots, P_4 , etwa P_1, P_2, P_3 , die Ecken eines nicht rechtwinkligen Dreiecks. Ist P_5 der Höhenschnittpunkt des Dreiecks $P_1P_2P_3$, so ist $P_5 \neq P_i$ ($i=1,\ldots,4$). Da keine drei der Punkte P_1,\ldots,P_4 auf einer Geraden liegen, gibt es unter den Dreiecken mit den Ecken P_1,\ldots,P_5 mindestens ein nicht rechtwinkliges Dreieck mit der Ecke P_4 , bei geeigneter Bezeichnung das Dreieck $P_1P_4P_5$; sein Höhenschnittpunkt sei P_6 . Nach Konstruktion ist $P_6 \neq P_1, P_4, P_5$, und die Annahme $P_6 = P_2$ oder $P_6 = P_3$ führt auf $P_4 = P_3$ bzw. $P_4 = P_2$, also auf einen Widerspruch zur Voraussetzung; somit ist $P_6 \neq P_i$ ($i=1,\ldots,5$)

¹⁾ Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 127.

²) Durch Anwendung von Möbiustransformationen erhält man daraus Aussagen über weitere Kurven, speziell durch Inversion der gleichseitigen Hyperbeln an einem Kreis um ihren Mittelpunkt über Bernoullische Lemniskaten. Als Geraden fungieren dabei die Kreise eines parabolischen Kreisbündels mit den Doppelpunkten der Lemniskaten als Träger. Entsprechendes gilt bei Anwendung einer stereographischen Projektion für das Vivianische Fenster.

³⁾ Nach freundlichem Hinweis von E. Trost bestimmt N. H. Kuiper [5] endliche und unendliche Punktmengen \mathfrak{H} , jedoch auf anderem Wege und nicht, um die gleichseitigen Hyperbeln unter den stetigen Kurven zu kennzeichnen.

Ausserdem dankt der Verfasser H. Brauner, Stuttgart, für wertvolle Ratschläge bei der Abfassung dieser Arbeit.

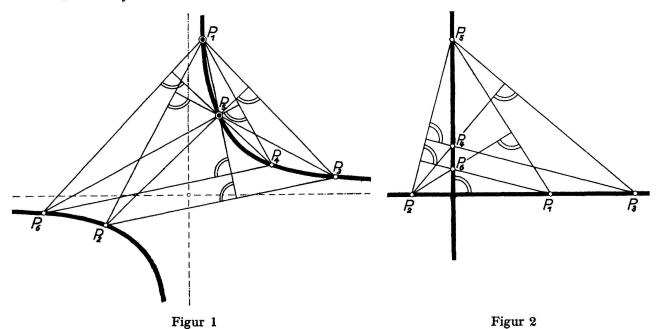
(Figur 1). In den Strahlbüscheln um P_1 und P_5 besteht wegen der Orthogonalität der Schenkel entsprechender Winkel die Kongruenz

$$P_1(P_3P_6P_2P_4) \cong P_5(P_2P_4P_3P_6) .$$

Da sich das Doppelverhältnis von vier geordneten Strahlen nicht ändert, wenn man das Paar der ersten beiden mit dem Paar der letzten beiden vertauscht, sind die Punkte P_2 , P_3 , P_4 , P_6 Schnittpunkte entsprechender Strahlen der beiden folgenden projektiven Strahlbüschel mit den Zentren P_1 , P_5 :

$$P_1(P_3P_6P_2P_4) \ \overline{\wedge} \ P_5(P_3P_6P_2P_4)$$
 ,

und P_1, \ldots, P_6 liegen daher auf einer Kurve zweiter Ordnung c. Diese gehört dem Kegelschnittbüschel mit den Grundpunkten P_1 , P_2 , P_3 , P_5 an, das wegen der Orthogonalität von P_1P_3 , P_5P_2 und P_1P_6 , P_5P_4 nur gleichseitige Hyperbeln enthält; c ist also eine gleichseitige Hyperbel. Da eine durch zwei feste projektive Strahlbüschel erzeugte Kurve zweiter Ordnung auch durch zwei projektive Strahlbüschel erzeugt wird, deren Zentren beliebige Kurvenpunkte sind, liegen alle Punkte P_n der Punktmenge \mathfrak{H} , die man ausgehend von den Punkten P_1, \ldots, P_5 als Höhenschnittpunkte von Dreiecken konstruiert, auf der durch P_1, \ldots, P_5 bestimmten gleichseitigen Hyperbel. Zu n vorhandenen Punkten P_1, \ldots, P_n (n > 5) findet man stets einen weiteren Punkt P_{n+1} der Punktmenge \mathfrak{H} , etwa als Höhenschnittpunkt des Dreiecks $P_n P_5 P_i$ bei geeignetem P_j . Man kann z.B. j=1 bei ungeradem n>5 und j=3 bei geradem n > 5 wählen, um P_{n+1} zu erhalten; $P_{n+1} \neq P_i$ (i = 1, ..., n) folgt prinzipiell wie im oben beschriebenen Fall n = 5. Dieses Verfahren bricht nur dann ab, wenn ein Dreieck $P_n P_b P_i$ rechtwinklig ist, also der Höhenschnittpunkt in eine schon vorhandene Dreiecksecke fällt. Da jedoch nicht alle Punkte von 5 auf solchen Geraden liegen, welche die Seiten des durch Ergänzung eines rechtwinkligen Dreiecks $P_n P_5 P_i$ entstehenden Rechtecks enthalten, gibt es zur Fortsetzung des Verfahrens stets einen Ersatzpunkt $P_j \neq P_1$, P_3 , P_5 , P_{n-1} .



Drei der Punkte P_1, \ldots, P_4 einer Punktmenge \mathfrak{H} , etwa P_1, P_2, P_3 , seien nun Punkte einer Geraden. Damit überhaupt Dreiecke existieren, muss \mathfrak{H} noch mindestens

einen Punkt, etwa P_4 , ausserhalb dieser Geraden P_1P_2 besitzen (Figur 2). Ist der Fusspunkt des Lotes von P_4 auf P_1P_2 einer der Punkte P_1 , P_2 , P_3 , etwa P_1 , so besteht $\mathfrak S$ aus den Punkten P_1, \ldots, P_4 , wenn das Dreieck $P_2P_3P_4$ bei P_4 rechtwinklig ist, bzw. aus den Punkten P_1, \ldots, P_5 (P_5 sei Höhenschnittpunkt im Dreieck $P_2P_3P_4$), wenn dies nicht der Fall ist. Ist der Fusspunkt des Lotes von P_4 auf P_1P_2 keiner der Punkte P_1 , P_2 , P_3 , so ist sicher eines der Dreiecke $P_4P_1P_2$, $P_4P_2P_3$, $P_4P_3P_1$, etwa das Dreieck $P_4P_2P_3$, bei P_4 nicht rechtwinklig, und P_5 als Höhenschnittpunkt dieses Dreiecks ist somit von P_1, \ldots, P_4 verschieden. Zu n vorhandenen Punkten P_1, \ldots, P_n (n > 4) findet man wieder stets einen weiteren Punkt $P_{n+1} \neq P_i$ ($i = 1, \ldots, n$) aus $\mathfrak S$. Dazu kann man P_{n+1} konstruieren als Höhenschnittpunkt des Dreiecks $P_nP_2P_j$ mit j = 1 bei ungeradem n > 4 und j = 3 bei geradem n > 4. Das Verfahren bricht nur dann ab, wenn ein Dreieck $P_nP_2P_j$ rechtwinklig ist, was durch einen geeigneten Ersatzpunkt vermieden werden kann. Alle Punkte der Punktmenge $\mathfrak S$, die man ausgehend von den Punkten P_1, \ldots, P_4 konstruiert, liegen auf dem durch P_1, \ldots, P_4 bestimmten orthogonalen Geradenpaar.

Besitzt also eine Punktmenge \mathfrak{H} mindestens vier Punkte, die kein Dreieck mit seinem Höhenschnittpunkt bestimmen, kein Rechteck, kein Dreieck mit einem Höhenfusspunkt und kein rechtwinkliges Dreieck mit einem weiteren Punkt auf einer Kathete, so ist sie notwendig unendlich, und jene Teilmenge von \mathfrak{H} , die ausgehend von den vier Punkten P_1, \ldots, P_4 konstruiert wird, liegt auf einer gleichseitigen Hyperbel bzw. einem orthogonalen Geradenpaar. Die endlichen Punktmengen \mathfrak{H} mit vier und mehr Punkten besitzen somit die kennzeichnende Eigenschaft, dass je vier ihrer Punkte eine der eben genannten vier Punktmengen bilden⁴).

Fragt man nun nach allen stetigen Kurven, welche die verlangte Eigenschaft besitzen, so kommen nur die gleichseitigen Hyperbeln, die orthogonalen Geradenpaare eingeschlossen, in Frage. Ein einzelner Hyperbelbogen besitzt diese Eigenschaft, wie man leicht sieht, nicht. Bei Hinzunahme irgendeines weiteren Punktes P ausserhalb einer gleichseitigen Hyperbel wird diese notwendig durch mindestens eine stetige Kurve durch P erweitert. Da nun jeder Hyperbelpunkt zu $\mathfrak S$ gehört, tritt sogar eine Erweiterung durch die gesamten durch P und je drei Punkte der Ausgangshyperbel bestimmten gleichseitigen Hyperbeln ein. Diese überdecken jedoch eine zweidimensionale Punktmenge und bilden daher keine stetige Kurve. Somit gilt:

Die einzigen ebenen stetigen Kurven, die mit drei Kurvenpunkten den Höhenschnittpunkt des zugehörigen Dreiecks enthalten, sind die gleichseitigen Hyperbeln.

3. Die soeben gegebene Kennzeichnung der gleichseitigen Hyperbeln lässt vermuten, dass nicht nur die Gesamtheit der Hyperbelpunkte eine Punktmenge vom Typus \mathfrak{H} bildet, sondern dass die gleichseitigen Hyperbeln auch unendliche Punktmengen \mathfrak{H} tragen, die nur gewisse Hyperbelpunkte enthalten. Solche Punktmengen hat N. H. Kuiper[5], S. 35, explizit angegeben. Zu ihrem weiteren Studium geben wir die gleichseitigen Hyperbeln ohne die orthogonalen Geradenpaare in kartesischen Koordinaten

⁴⁾ Daraus ergeben sich sämtliche, schon in [5], S. 34, angegebenen endlichen Punktmengen 5: Dreie Punkte, die ein rechtwinkliges Dreieck bilden; vier Punkte, die ein rechtwinkliges Dreieck mit dem Höhenfusspunkt der Hypotenuse bilden, ein nicht rechtwinkliges Dreieck mit seinem Höhenschnittpunkt oder ein Rechteck; fünf Punkte, die ein nicht rechtwinkliges Dreieck mit dem Höhenschnittpunkt und einem Höhenfusspunkt bilden oder ein Quadrat mit Mittelpunkt.

durch die Gleichung xy = 1 und bezeichnen die Hyperbelpunkte durch ihre Abszissen. Der Höhenschnittpunkt eines Dreiecks $x_i x_j x_k$ ist

$$x_l = -x_i^{-1} x_j^{-1} x_k^{-1}. (1)$$

Sind nun $n \ge 4$ verschiedene, eigentliche Hyperbelpunkte x_1, \ldots, x_n gegeben, die für n = 4 nicht in die Ecken und den Höhenschnittpunkt eines Dreiecks oder in die Ecken eines Rechtecks fallen, so sind alle Hyperbelpunkte, die sich daraus durch fortwährende Konstruktion von Höhenschnittpunkten ergeben, von der Form

$$x_i = (-1)^{i_0} x_1^{i_1} \dots x_n^{i_n}; \quad i_0, \dots, i_n \text{ ganz}, 5$$
 (2)

jedoch entstehen nicht notwendig alle diese Punkte x_i durch wiederholte Höhenschnittpunktkonstruktion aus den x_1, \ldots, x_n . Keiner der n Punkte x_1, \ldots, x_n lasse sich durch fortwährende Höhenschnittpunktkonstruktion aus den restlichen n-1 Punkten gewinnen, das heisst es sei

$$x_k \neq (-1)^{p_0} x_1^{p_1} \dots x_{k-1}^{p_{k-1}} x_{k+1}^{p_{k+1}} \dots x_n^{p_n}; \quad k = 1, \dots, n; \quad p_0, \dots, p_n \text{ konst., ganz.}$$
 (3)

Wir nennen n solche Hyperbelpunkte voneinander unabhängig.

Für den Höhenschnittpunkt x_i eines Dreiecks $x_i x_j x_k$ aus drei Hyperbelpunkten (2) gilt mit (1)

$$(-1)^{l_0} x_1^{l_1} \dots x_n^{l_n} = (-1)^{1-(i_0+j_0+k_0)} x_1^{-(i_1+j_1+k_1)} \dots x_n^{-(i_n+j_n+k_n)}$$
(4)

oder

$$l_0 = 1 - (i_0 + j_0 + k_0)$$
, (5a)

$$l_m = -(i_m + j_m + k_m); \quad m = 1, ..., n.$$
 (5b)

Da mit i_0, \ldots, k_n auch l_0, \ldots, l_n ganze Zahlen sind, bilden alle Hyperbelpunkte (2) eine Punktmenge \mathfrak{H} . Da weiter die Konstruktion von Höhenschnittpunkten, ausgehend von den gegebenen Punkten x_1, \ldots, x_n , stets nur auf ganzzahlige Exponenten von $-1, x_1, \ldots, x_n$ führt, bilden die Hyperbelpunkte (2) sogar die allgemeinste von n unabhängigen Punkten x_1, \ldots, x_n erzeugte Punktmenge \mathfrak{H} 0. Wir bezeichnen im folgenden eine konkrete Punktmenge \mathfrak{H} 0 durch ihr allgemeines Element.

Bei Ersetzung der i_m $(m=0,\ldots,n)$ in (2) durch Funktionen I_m (i_m) $(I_m$ ganzwertig, wenn i_m ganz) erhält man die Gesamtheit der Punkte

$$x_{I} = (-1)^{I_{0}(i_{0})} x_{1}^{I_{1}(i_{1})} \dots x_{n}^{I_{n}(i_{n})}; \quad i_{0}, \dots, i_{n} \text{ ganz}.$$
 (6)

Durch geeignete Funktionen $I_m(i_m)$ mit insgesamt unendlichem Wertevorrat W lässt sich jede unendliche Teilmenge von (2) angeben. Liegt bei der entsprechenden Ersetzung in (5a, b) mit I_0, \ldots, K_n auch L_0, \ldots, L_n in W, so ist die zugehörige Teilmenge vom Typus \mathfrak{S} . Sie sei mit \mathfrak{S}^* bezeichnet, wenn dabei der Höhenschnittpunkt

⁵) Der Verfasser konnte nicht alle Punktmengen (2) bei N. H. Kuiper [5], S. 34-36, auffinden, z. B. für n=2 nicht die Punktmenge mit $x_1=2$, $x_2=3$.

⁶) Jede Punktmenge \mathfrak{H} der Form (2) enthält mit zwei Punkten x_i , x_j die Schnittpunkte der Hyperbel xy=1 mit der Parallelen und Normalen zur Geraden x_ix_j durch einen Punkt x_k von \mathfrak{H} . Insbesondere schneidet die Hyperbelnormale in einem Punkt x_k von \mathfrak{H} und die Normale einer Hyperbelsehne x_ix_j in einem ihrer Endpunkte die Hyperbel wieder in einem Punkt von \mathfrak{H} .

jedes Urdreiecks $x_i x_j x_k$ in den Höhenschnittpunkt seines Bilddreiecks $x_{I(i)} x_{J(j)} x_{K(k)}$ übergeht. Dann gelten die folgenden Funktionalgleichungen:

$$I_0 (1 - [i_0 + j_0 + k_0]) = 1 - I_0(i_0) - I_0(j_0) - I_0(k_0),$$
 (7a)

$$I_m \left(- \left[i_m + j_m + k_m \right] \right) = - I_m (i_m) - I_m (j_m) - I_m (k_m); \quad m = 1, ..., n.$$
 (7b)

Diese sind einfache Verallgemeinerungen der in [3], S. 44, angegebenen Cauchyschen Funktionalgleichung. Durch Kombination jener Gleichungen, die aus (7a) durch Einsetzen der speziellen Tripel (0, 0, 0), $(i_0, -i_0, -i_0)$, $(i_0, 1, 0)$ entstehen, erhält man die Beziehung

$$I_0(i_0+1)-I_0(i_0)=1-4\ I_0(0)=konst.$$
, (8)

aus der sich über der Menge der ganzen Zahlen mit $I_0(0) = \alpha_0$ die Lösungen von (7a) – und auf ähnliche Weise die Lösungen von (7b) – ergeben in der Form:

$$I_0(i_0) = \alpha_0 + (1 - 4 \alpha_0) i_0; \quad \alpha_0 = konst., \alpha_0, i_0 \ ganz,$$
 (9a)

$$I_m(i_m) = \alpha_m i_m; \quad \alpha_m = konst., \alpha_m, i_m ganz; \quad m = 1, ..., n.$$
 (9b)

Für jedes ganzzahlige (n+1)-tupel $(\alpha_0, \alpha_1, \ldots, \alpha_n) \neq (0, 1, \ldots, 1)$ erhält man daher in

$$x_I^* = (-1)^{\alpha_0 + (1-4\alpha_0)i_0} x_1^{\alpha_1 i_1} \dots x_n^{\alpha_n i_n}; \quad i_0, \dots, i_n \quad ganz$$
 (10)

eine unendliche Teilmenge \mathfrak{H}^* von (2). Die unendlichen Teilmengen \mathfrak{H}^{**} von (10) ergeben sich analog, indem man in (10) die i_m durch geeignete Funktionen $I_m(i_m)$ ersetzt; dies liefert die Funktionalgleichungen

$$\alpha_{0} + (1 - 4 \alpha_{0}) I_{0} (1 - [i_{0} + j_{0} + k_{0}])$$

$$= 1 - 3 \alpha_{0} - (1 - 4 \alpha_{0}) [I_{0}(i_{0}) + I_{0}(j_{0}) + I_{0}(k_{0})],$$
(11a)

$$\alpha_m \cdot I_m \left(- [i_m + j_m + k_m] \right) = - \alpha_m \cdot [I_m(i_m) + I_m(j_m) + I_m(k_m)] ; \quad m = 1, \ldots, n. \quad (11b)$$

Diese reduzieren sich auf (7a, b) und besitzen daher über der Menge der ganzen Zahlen dieselben Lösungsfunktionen (9a, b), welche aus (10) für jedes ganzzahlige (n + 1)-tupel $(\beta_0, \ldots, \beta_n) \neq (0, 1, \ldots, 1)$ die Teilmengen

$$x_I^{**} = (-1)^{\alpha_0 + (1-4\alpha_0)(\beta_0 + [1-4\beta_0]i_0)} x_1^{\alpha_1\beta_1i_1} \dots x_n^{\alpha_n\beta_ni_n}; \quad i_0, \dots, i_n \text{ ganz}$$
 (12)

aussondern. Durch Iteration dieses Verfahrens ergibt sich:

Die von n unabhängigen Hyperbelpunkten x_1, \ldots, x_n erzeugte Höhenschnittpunktmenge $\mathfrak{H} = (-1)^{i_0} x_1^{i_1} \ldots x_n^{i_n}$ enthält zu jeder Folge ganzzahliger, von $(0, 1, \ldots, 1)$ verschiedener (n+1)-tupel eine Teilmengenfolge $\mathfrak{H} \supset \mathfrak{H}^* \supset \mathfrak{H}^*$...

Dieser Übergang von einer Teilmenge zur folgenden bedeutet geometrisch die Herausnahme abzählbar unendlich vieler eigentlicher Hyperbelpunkte derart, dass die Restmenge vom selben Typus ist; eine gewisse Verdünnung der Höhenschnittpunktmenge tritt dabei ein.

4. Welche Verteilung von Höhenschnittpunkten auf einer gleichseitigen Hyperbel bei fortwährender Konstruktion von Höhenschnittpunkten entsteht, hängt allein von der Wahl der Ausgangspunkte x_1, \ldots, x_n ab. Liegen sie von vornherein in einer

sehr speziellen Punktmenge \mathfrak{H} , etwa in einer Punktmenge \mathfrak{H}^{**} , so führt die Konstruktion weiterer Höhenschnittpunkte nicht aus \mathfrak{H}^{**} hinaus. Um – unabhängig von der Konstruierbarkeitsfrage – einen Zusammenhang zwischen den Ausgangspunkten x_1, \ldots, x_n und der Struktur der Punktmenge (2) zu finden, fragen wir nach allen Hyperbelpunkten $b \neq 0$, welche die Darstellung (2) besitzen oder Häufungspunkte solcher Punkte sind. Dazu betrachten wir die Gleichung

$$(-1)^{i_0} x_1^{i_1} \dots x_n^{i_n} = b , \qquad (13)$$

die sich stets auf die Form

$$(-1)^{s} |x_{1}|^{i_{1}} \dots |x_{n}|^{i_{n}} = b$$
 (14)

bringen lässt, wobei s die Summe der Exponenten i_0, \ldots, i_n mit negativer Basis ist. Für b>0 ist $(-1)^s$ notwendig +1, dagegen -1 für b<0. Daher ist stets die Darstellung

$$|x_1|^{i_1} \dots |x_n|^{i_n} = |b| \tag{15}$$

möglich, aus der

$$i_1 \lg |x_1| + \ldots + i_n \lg |x_n| = \lg |b|; \quad i_1, \ldots, i_n \ ganz$$
 (16)

folgt. Fasst man die i_m ($m=1,\ldots,n$) als kartesische Koordinaten eines R_n auf, so stellt (16) eine Hyperebene im R_n dar. Beachtet man nun, dass die i_m ganze Zahlen sind, so ergibt (16) die in der Hyperebene liegenden Gitterpunkte des R_n als Repräsentanten jener Exponentensysteme i_1,\ldots,i_n , welche den Verteilungspunkt b ergeben. Alle Hyperebenen (16) einer festen Verteilung (2) besitzen denselben Stellungsvektor ($\lg |x_1|,\ldots,\lg |x_n|$) und sind daher zueinander parallel. Einer Verteilung (2) von Höhenschnittpunkten auf einer gleichseitigen Hyperbel entspricht also eine Schar zueinander paralleler Hyperebenen. Die Schar lässt sich aufbauen, indem man ausgehend von einer speziellen Hyperebene ε , etwa jener mit der Gleichung

$$i_1 \lg |x_1| + \ldots + i_n \lg |x_n| = 0,$$
 (17)

durch jeden Gitterpunkt des R_n die parallele Hyperebene legt. Nun sind zwei Fälle zu unterscheiden:

a) Die Gleichung (17) von ε hat nur rationale Koeffizientenverhältnisse. In diesem Fall lassen sich auf n verschiedene Arten n-2 Koordinaten $i_m=0$ setzen und die beiden restlichen zur Befriedigung der Gleichung (17) ganzzahlig \pm 0 wählen. Die Hyperebene ε enthält daher mindestens n Gitterpunkte, welche ε aufspannen, und damit sogar unendlich viele. Enthält umgekehrt eine Hyperebene (17) mindestens n Gitterpunkte, welche die Hyperebene aufspannen, so hat ihre Gleichung rationale Koeffizienten. Errichtet man über einem geeigneten endlichen Gebiet G der Hyperebene ε einen Zylinder G0, begrenzt von den zu G0 parallelen Hyperebenen G1, G2, G3 im Abstand G3 im Abstand G4 im Gleichungen simtliche Gitterpunkte des G5 im Abstand Gitterpunkte bestimmten Richtungen sämtliche Gitterpunkte des G6 erzeugen parallelen Translationen von G8 die Gitterpunkte zwischen G9, speziell durch die zu G9 parallelen Translationen von G2 die Gitterpunkte zwischen G4, und G6, G7 enthält nur endlich viele Gitterpunkte, die nicht sämtlich in G8 liegen. Daher geht die G8 nächstliegende Hyperebene der Verteilung (2) durch den nicht in G8 liegen-

⁷⁾ Ähnliche Fragen behandelt H. Minkowski in [4], S. 187 ff.

den, aber ε nächstliegenden Gitterpunkt des Zylinders Z. Unter den Hyperebenen (16) einer Verteilung (2) gibt es also im vorliegenden Fall keine ε beliebig benachbarte Hyperebene. Entsprechendes folgt für jede Hyperebene der Verteilung (2). Somit gilt:

Sind die Verhältnisse der Logarithmen von $|x_1|, \ldots, |x_n|$ rational, so besitzt die Verteilung (2) (und damit auch jede ihrer unendlichen Teilverteilungen) keinen eigentlichen Häufungspunkt.

b) Die Gleichung (17) von ε hat mindestens zwei Koeffizienten mit irrationalem Verhältnis. Es sei etwa lg $|x_1|/\lg |x_2|$ irrational. Die Schnittgerade der Hyperebene ε mit der Koordinatenebene i_1i_2 hat somit die Gleichung

$$i_2 = -\frac{\lg |x_1|}{\lg |x_2|} i_1. \tag{18}$$

Da die Irrationalzahl $\lg |x_1|/\lg |x_2|$ beliebig genau rational approximiert werden kann, liegt in der i_1i_2 -Ebene in jedem um die Gerade (18) abgegrenzten Parallelstreifen mindestens ein Gitterpunkt. In diesem Fall gibt es also in beliebiger Nähe der Hyperebene ε noch weitere Scharebenen, und Entsprechendes folgt für jede Hyperebene der Verteilung (2). Somit gilt:

Ist mindestens ein Verhältnis der Logarithmen von $|x_1|, \ldots, |x_n|$ irrational, so ist jeder eigentliche Punkt der Verteilung (2) Häufungspunkt. O. GIERING, Stuttgart

LITERATURVERZEICHNIS

- [1] H. Prüfer: Projektive Geometrie (Geest und Portig, Leipzig 1953).
- [2] K. Fladt: Analytische Geometrie spezieller ebener Kurven (Akademische Verlagsgesellschaft, Frankfurt a.M. 1962).
- [3] J. Aczel: Vorlesungen über Funktionalgleichungen und ihre Anwendungen (Birkhäuser, Basel und Stuttgart 1961).
- [4] H. Minkowski: Geometrie der Zahlen (B. G. Teubner, Leipzig und Berlin 1910).
- [5] N. H. Kuiper: Wiskundige Opgaven, Deel 20, No. 3, Opgaven 111, 112 (P. Noordhoff, Groningen 1957).

Inequalities Concerning the Inradius and Circumradius of a Triangle

The purpose of this paper is to establish in an elementary manner a number of new inequalities between the inradius and circumradius of a triangle, its area and certain functions of its sides.

These inequalities will be strong enough to permit us to deduce without difficulty several well-known results, and to sharpen some inequalities due to other authors.

1. Some Identities

If T be any triangle and A_1 , A_2 , A_3 its vertices, we shall denote by a_i the side opposite vertex A_i , and by α_i the angle at A_i . Further, let r be the inradius and R the circumradius of T, while Δ denotes its area and 2s its perimeter. For simplicity, we shall write

$$\sum a_i \text{ for } \sum_{i=1}^3 a_i, \quad \sum_{i< j} a_i a_j \text{ for } \sum_{1< i< j< 3} a_i a_j, \quad \text{and } \prod a_i \text{ for } \prod_{i=1}^3 a_i.$$