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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege dev Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichis
Organ fiir den Verein Schweizerischer Mathematik- und Physiklehrer

Publiziert mit Unterstiitzung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El. Math. Band XVIII Nr. 6 Seiten 121-144 Basel, 10. November 1963

Uber eine Kennzeichnung der gleichseitigen Hyperbeln

Herrn Prof. Dr. F. LOoscH zum 60. Geburtstag gewidmet

1. Mqt drei verschiedenen Punkten Py, Py, Pg einer gleichseitigen Hyperbel liegt auch
der Hohenschnittpunkt des Dreiecks P, PyPgy auf der Hyperbel (vergleiche zum Beispiel
[1], S. 159, [2], S. 368)1); ein orthogonales Geradenpaar, das als entartete gleichseitige
Hyperbel aufgefasst werden kann, besitzt dieselbe Eigenschaft?). Wir zeigen, dass
dieser Satz umkehrbar ist. Die gleichseitigen Hyperbeln (orthogonale Geradenpaare
eingeschlossen) lassen sich kennzeichnen als jene ebenen stetigen Kurven, fiir die der
Hohenschnittpunkt jedes Sehnendreiecks ebenfalls Kurvenpunkt ist. Diese Um-
kehrung diirfte bisher iibersehen worden sein. Gleichzeitig ergibt sich dabei Gelegen-
heit, auf mit dieser Erzeugung zusammenhingende Punktmengen auf gleichseitigen
Hyperbeln einzugehen sowie Verteilungen von Hyperbelpunkten zu untersuchen, die
gegeniiber der Konstruktion von Hoéhenschnittpunkten abgeschlossen sind.

2. Wir betrachten solche ebene Punkimengen §, die mit je drei Punkten den
Hohenschnittpunkt des zugehérigen Dreiecks enthalten3). Die Punktmenge £ soll
zunichst aus mindestens vier verschiedenen Punkten P,, ..., P, bestehen, von denen
keine drei auf einer Geraden liegen, die kein Dreieck mit seinem Hohenschnittpunkt und
kein Rechteck bestimmen. Dann sind drei der Punkte Py, ..., P,, etwa P;, P,, P,, die
Ecken eines nicht rechtwinkligen Dreiecks. Ist Py der Hohenschnittpunkt des Drei-
ecks P, P,P,, soist Pg+ P; (1 =1, ...,4). Da keine drei der Punkte P,, ..., P, auf
einer Geraden liegen, gibt es unter den Dreiecken mit den Ecken P, ..., P; minde-
stens ein nicht rechtwinkliges Dreieck mit der Ecke P,, bei geeigneter Bezeichnung
das Dreieck P,P,P;; sein Hohenschnittpunkt sei Pg. Nach Konstruktion ist Py +
P,, P,, P, und die Annahme Py = P, oder Py = P, fithrt auf P, = P, bzw. P, = P,,
also auf einen Widerspruch zur Voraussetzung; somit ist Py + P, (1=1,...,5)

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 127.

2) Durch Anwendung von Mdbiustransformationen erhilt man daraus Aussagen iiber weitere Kurven,
spezieﬁ durch Inversion der gleichseitigen Hyperbeln an einem Kreis um ihren Mittelpunkt iiber Bernoulli-
sche Lemniskaten. Als Geraden fungieren dabei die Kreise eines parabolischen Kreisbiindels mit den Doppel-
punkten der Lemniskaten als Triger. Entsprechendes gilt bei Anwendung einer stereographischen Projektion
fiir das Vivianische Fenster.

3) Nach freundlichem Hinweis von E. Trost bestimmt N. H. Kuipgr [5] endliche und unendliche
Punktmengen §), jedoch auf anderem Wege und nicht, um die gleichseitigen Hyperbeln unter den stetigen
Kurven zu kennzeichnen.

Ausserdem dankt der Verfasser H. BRAUNER, Stuttgart, fiir wertvolle Ratschlige bei der Abfassung
dieser Arbeit.
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(Figur 1). In den Strahlbiischeln um P; und P besteht wegen der Orthogonalitdt der
Schenkel entsprechender Winkel die Kongruenz

P (P3PyPyP,) X Py(PyPyPyPy) .

Da sich das Doppelverhiltnis von vier geordneten Strahlen nicht dndert, wenn man
das Paar der ersten beiden mit dem Paar der letzten beiden vertauscht, sind die
Punkte P,, P;, P,, Py Schnittpunkte entsprechender Strahlen der beiden folgenden
projektiven Strahlbiischel mit den Zentren P,, Py:

Py(P3PePyPy) N Py(P3PePyPy)

und P,, ..., P, liegen daher auf einer Kurve zweiter Ordnung c. Diese gehort dem
Kegelschnittbiischel mit den Grundpunkten P,, P,, P;, P; an, das wegen der Ortho-
gonalitit von P,P,, PyP, und P,P, P;P, nur gleichseitige Hyperbeln enthilt; c ist
also eine gleichseitige Hyperbel. Da eine durch zwei feste projektive Strahlbiischel
erzeugte Kurve zweiter Ordnung auch durch zwei projektive Strahlbiischel erzeugt
wird, deren Zentren beliebige Kurvenpunkte sind, liegen alle Punkte P, der Punkt-
menge $), die man ausgehend von den Punkten P, ..., Py als Hohenschnittpunkte
von Dreiecken konstruiert, auf der durch P,, ..., Pgbestimmten gleichseitigen Hyper-
bel. Zu n vorhandenen Punkten P,, ..., P, (n > 5) findet man stets einen weiteren
Punkt P, ; der Punktmenge §), etwa als H6henschnittpunkt des Dreiecks P, Py P, bei
geeignetem P,. Man kann z.B. 7 = 1 bei ungeradem # > 5 und 7 = 3 bei geradem
n > 5 wihlen, um P, , zu erhalten; P, ., = P, (¢ =1, ..., n) folgt prinzipiell wie im
oben beschriebenen Fall » = 5. Dieses Verfahren bricht nur dann ab, wenn ein Drei-
eck P,PgP; rechtwinklig ist, also der Hohenschnittpunkt in eine schon vorhandene
Dreiecksecke fillt. Da jedoch nicht alle Punkte von § auf solchen Geraden liegen,
welche die Seiten des durch Ergdnzung eines rechtwinkligen Dreiecks P, PP, ent-
stehenden Rechtecks enthalten, gibt es zur Fortsetzung des Verfahrens stets einen
Ersatzpunkt P, & P,, Py, Py, P,_;.

Figur 1 Figur 2

Drei der Punkte P,, ..., P, einer Punktmenge §, etwa P;, P,, P, seien nun
Punkte einer Geraden. Damit iiberhaupt Dreiecke existieren, muss § noch mindestens
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einen Punkt, etwa P,, ausserhalb dieser Geraden P,P, besitzen (Figur 2). Ist der
Fusspunkt des Lotes von P, auf P, P, einer der Punkte P,, P,, P,, etwa P,, so be-
steht § aus den Punkten P,, ..., P,, wenn das Dreieck P,P,P, bei P, rechtwinklig
ist, bzw. aus den Punkten P,, ..., P; (P, sei Hohenschnittpunkt im Dreieck P,P,P,),
wenn dies nicht der Fall ist. Ist der Fusspunkt des Lotes von P, auf P, P, keiner der
Punkte P,, P,, P,, so ist sicher eines der Dreiecke P, P, P,, P,P,P,, P,P,P,, etwa das
Dreieck P,P,P,, bel P, nicht rechtwinklig, und P, als Hoéhenschnittpunkt dieses
Dreiecks ist somit von P;, ..., P, verschieden. Zu » vorhandenen Punkten P;, ..., P,
(n > 4) findet man wieder stets einen weiteren Punkt P, ., &= P, (¢ =1, ..., n) aus §.
Dazu kann man P, ,; konstruieren als Hohenschnittpunkt des Dreiecks P, P, P; mit
7 = 1 bei ungeradem »# > 4 und 7 = 3 bei geradem »# > 4. Das Verfahren bricht nur
dann ab, wenn ein Dreieck P,P,P; rechtwinklig ist, was durch einen geeigneten
Ersatzpunkt vermieden werden kann. Alle Punkte der Punktmenge §), die man aus-
gehend von den Punkten P,, ..., P, konstruiert, liegen auf dem durch P,,..., P,
bestimmten orthogonalen Geradenpaar.

Besitzt also eine Punktmenge § mindestens vier Punkte, die kein Dreteck mit seinem
Hoéhenschnittpunkt bestimmen, kein Rechteck, kein Dreieck mit einem Hohenfusspunkt
und kein rechtwinkliges Dreteck mit einem weiteren Punkt auf einer Kathete, so ist sie
notwendig unendlich, und jene Teilmenge von §), die ausgehend von den vier Punkten
P,, ..., P, konstruiert wird, liegt auf einer gleichseitigen Hyperbel bzw. einem ortho-
gonalen Geradenpaar. Die endlichen Punktmengen $ mit vier und mehr Punkten be-
sitzen somit die kennzeichnende Eigenschaft, dass je vier ihrer Punkte eine der eben
genannten vier Punktmengen bilden?).

Fragt man nun nach allen stetigen Kurven, welche die verlangte Eigenschaft be-
sitzen, so kommen nur die gleichseitigen Hyperbeln, die orthogonalen Geradenpaare
eingeschlossen, in Frage. Ein einzelner Hyperbelbogen besitzt diese Eigenschaft, wie
man leicht sieht, nicht. Bei Hinzunahme irgendeines weiteren Punktes P ausserhalb
einer gleichseitigen Hyperbel wird diese notwendig durch mindestens eine stetige
Kurve durch P erweitert. Da nun jeder Hyperbelpunkt zu § gehort, tritt sogar eine
Erweiterung durch die gesamten durch P und je drei Punkte der Ausgangshyperbel
bestimmten gleichseitigen Hyperbeln ein. Diese tiberdecken jedoch eine zweidimen-
sionale Punktmenge und bilden daher keine stetige Kurve. Somit gilt:

Die einzigen ebenen stetigen Kurven, die mit drei Kurvenpunkien den Hohenschnitt-
punkt des zugehiorigen Dreiecks enthalten, sind die gleichseitigen Hyperbeln.

3. Die soeben gegebene Kennzeichnung der gleichseitigen Hyperbeln lasst ver-
muten, dass nicht nur die Gesamtheit der Hyperbelpunkte eine Punkimenge vom Typus
$ bildet, sondern dass die gleichseitigen Hyperbeln auch unendliche Punktmengen §
tragen, die nur gewisse Hyperbelpunkte enthalten. Solche Punktmengen hat N. H.
Kutper([5], S. 35, explizit angegeben. Zu ihrem weiteren Studium geben wir die gleich-
seitigen Hyperbeln ohne die orthogonalen Geradenpaare in kartesischen Koordinaten

%) Daraus ergeben sich sidmtliche, schon in [5], S. 34, angegebenen endlichen Punktmengen $): Drei
Punkte, die ein rechtwinkliges Dreieck bilden; vier Punkte, die ein rechtwinkliges Dreieck mit dem Hohen-
fusspunkt der Hypotenuse bilden, ein nicht rechtwinkliges Dreieck mit seinem Hohenschnittpunkt oder
ein Rechteck; fiinf Punkte, die ein nicht rechtwinkliges Dreieck mit dem H&henschnittpunkt und einem
Hohenfusspunkt bilden oder ein Quadrat mit Mittelpunkt.
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durch die Gleichung xy = 1 und bezeichnen die Hyperbelpunkte durch ihre Abszissen.
Der Hohenschnittpunkt eines Dreiecks x;x;%; ist

X = —x7tatat (1)

Sind nun #» = 4 verschiedene, eigentliche Hyperbelpunkte «,, ..., x, gegeben, die fiir
n = 4 nicht in die Ecken und den H6henschnittpunkt eines Dreiecks oder in die Ecken
eines Rechtecks fallen, so sind alle Hyperbelpunkte, die sich daraus durch fort-
wahrende Konstruktion von Hohenschnittpunkten ergeben, von der Form

x,= (= D)oxit . an; 4y, ...,1, ganz,5) (2)

jedoch entstehen nicht notwendig alle diese Punkte x; durch wiederholte Hohen-
schnittpunktkonstruktion aus den %, ..., x,. Keiner der » Punkte x,, ..., x, lasse
sich durch fortwihrende Hohenschnittpunktkonstruktion aus den restlichen n — 1
Punkten gewinnen, das heisst es sei

% = (— 1) xfr ...x:’i‘llx:’ﬂl coxbny R=1,...,n; po,...,p, konst., ganz. (3)
Wir nennen » solche Hyperbelpunkte voneinander unabhingig.

Fiir den Hohenschnittpunkt x, eines Dreiecks x,%;x, aus drei Hyperbelpunkten (2)
gilt mit (1)

(___ 1)’0 xlll . xfzz — (__ 1)1”(io+7'o+ko) xl_(i1+ j1 -+ ky) . x;(in+jn+kn) (4)

oder
lo=1— (ig+ 7o + ko) » (5a)
L—— G +i 4+k) m=1 ..., 7. (5b)

Da mit %, ..., &k, auch /;, ..., /, ganze Zahlen sind, bilden alle Hyperbelpunkte (2)
eine Punktmenge §. Da weiter die Konstruktion von Hohenschnittpunkten, aus-
gehend von den gegebenen Punkten x;, ..., x,, stets nur auf ganzzahlige Exponenten
von — 1, %,, ..., %, fiihrt, bilden die Hyperbelpunkte (2) sogar die allgemeinste von »
unabhingigen Punkten x,, ..., x, erzeugte Punktmenge $8%). Wir bezeichnen im
folgenden eine konkrete Punktmenge § durch ihr allgemeines Element.

Bei Ersetzung der ¢, (m =0, ...,#n) in (2) durch Funktionen I, (¢,) (I, ganz-
wertig, wenn ¢,, ganz) erhdlt man die Gesamtheit der Punkte

xp = (— 1)Te ghhG) | yInln) o g 0 gamz. (6)

Durch geeignete Funktionen I,(s,) mit insgesamt unendlichem Wertevorrat W
lasst sich jede unendliche Teilmenge von (2) angeben. Liegt bei der entsprechenden
Ersetzung in (5a, b) mit I, ..., K, auch L,, ..., L, in W, so ist die zugehorige Teil-
menge vom Fypus §. Sie sei mit §* bezeichnet, wenn dabei der Hohenschnittpunkt

5) Der Verfasser konnte nicht alle Punktmengen (2) bei N. H. Kuiper [5], S. 34-36, auffinden, z. B.
fiir » = 2 nicht die Punktmenge mit x; = 2, x, = 3.

%) Jede Punktmenge §) der Form (2) enthilt mit zwei Punkten 2, x; die Schnittpunkte der Hyperbel
xy = 1 mit der Parallelen und Normalen zur Geraden x;%; durch einen Punkt x4 von §). Insbesondere schnci-
det die Hyperbelnormale in einem Punkt x; von §) und die Normale einer Hyperbelsehne %, in einem ihrer
Endpunkte die Hyperbel wieder in einem Punkt von §).
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jedes Urdreiecks x;x;x, in den Hoéhenschnittpunkt seines Bilddreiecks %y % ;) ¥k )
iibergeht. Dann gelten die folgenden Funktionalgleichungen:

Iy (1 — 29+ 70 + kol) = 1 — Io(sg) — Io(fo) — Lo(%0) , (7a)
Im (_ [im + jm + km]) i Im(im) - Im(]m) - Im(km) ; m = 1! RN (R (7b)

Diese sind einfache Verallgemeinerungen der in [3], S. 44, angegebenen Cauchyschen
Funktionalgleichung. Durch Kombination jener Gleichungen, die aus (7a) durch Ein-
setzen der speziellen Tripel (0, 0, 0), (¢, — %y, — %), (¢g, 1, 0) entstehen, erhilt man die
Beziehung

I, (5o + 1) — Iy(se) = 1 — 4 I,(0) = konst., (8)

aus der sich iiber der Menge der ganzen Zahlen mit I,(0) = &, die Losungen von
(7a) — und auf dhnliche Weise die Lésungen von (7b) — ergeben in der Form:

Io(tg) = og + (1 — 4 atg) 3g; &g = Ronst., a,, 1, ganz, (9a)

1.0, =a,1,; o,=kFkonst., a,,i,gmz; m=1...,n. (9b)

Fiir jedes ganzzahlige (» + 1)-tupel (g, 4, ..., ,) = (0, 1, ..., 1) erhdlt man daher in
xy = (— 1)xetU-demdio gouis | ponin. g5, ganz (10)

eine unendliche Teilmenge $* von (2). Die unendlichen Teilmengen $** von (10)
ergeben sich analog, indem man in (10) die ¢, durch geeignete Funktionen I,(,,)
ersetzt; dies liefert die Funktionalgleichungen

oo+ (1 — 4 o) Tp (1 — [5g + 7o + &)
=1—3ay— (1 —4axg) [Lotg) + Lo(10) + Io(kg)],
<xm.Im (— [1’m+7m+km])=_mm[Im(zm)_I_Im(?m)-l_Im(km)]’ m=1,...,n. (llb)

(11a)

Diese reduzieren sich auf (7a, b) und besitzen daher tiber der Menge der ganzen Zahlen
dieselben Losungsfunktionen (9a, b), welche aus (10) fiir jedes ganzzahlige (» + 1)-
tupel (B, ---, f,) * (0,1, ..., 1) die Teilmengen

x’;* — (__ 1)an+(1“4°‘o) (Bo + [1-4 o] %0) xi‘lﬁxix .. x:nﬁnin; 7’.0’ eer, in ganz (12)

aussondern. Durch Iteration dieses Verfahrens ergibt sich:

Die von n unabhingigen Hyperbelpunkien x,, ..., x, erzeugte Hohenschnittpunki-
menge § = (— 1) x% ... &' enthilt zu jeder Folge ganzzahliger, von (0,1, ..., 1) ver-

schiedener (n + 1)-tupel eine Teilmengenfolge § D H* D H** ...

Dieser Ubergang von einer Teilmenge zur folgenden bedeutet geometrisch die
Herausnahme abzdhlbar unendlich vieler eigentlicher Hyperbelpunkte derart, dass
die Restmenge vom selben Typus ist; eine gewisse Verdiinnung der H6henschnitt-
punktmenge tritt dabei ein.

4. Welche Verteilung von Hohenschwittpunkten auf einer gleichseitigen Hyperbel
bei fortwihrender Konstruktion von Hohenschnittpunkten entsteht, hiangt allein
von der Wahl der Ausgangspunkte %, ..., %, ab. Liegen sie von vornherein in einer
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sehr speziellen Punktmenge §), etwa in einer Punktmenge $**, so fithrt die Konstruk-
tion weiterer Hohenschnittpunkte nicht aus $** hinaus. Um — unabhéngig von der
Konstruierbarkeitsfrage — einen Zusammenhang zwischen den Ausgangspunkten
%y, ..., %, und der Struktur der Punktmenge (2) zu finden, fragen wir nach allen
Hyperbelpunkten b + 0, welche die Darstellung (2) besitzen oder Haufungspunkte
solcher Punkte sind. Dazu betrachten wir die Gleichung

(—1)oxi...xin=1b, (13)

die sich stets auf die Form
(— 1) |2y ... | %, |"n =0 (14)
bringen ldsst, wobei s die Summe der Exponenten 1, ..., 7, mit negativer Basis ist.

Fiir 5 > 0 ist (— 1)* notwendig + 1, dagegen — 1 fiir & < 0. Daher ist stets die Dar-
stellung

EALENEALERNY (15)

moglich, aus der
g% |+ ... +id,1g|x, | =1g|b|; 4y ...,0, ganz (16)
folgt. Fasst man die 7,, (m = 1, ..., ) als kartesische Koordinaten eines R, auf, so

stellt (16) eine Hyperebene im R, dar. Beachtet man nun, dass die 7,, ganze Zahlen
sind, so ergibt (16) die in der Hyperebene liegenden Gitterpunkte des R, als Reprasen-
tanten jener Exponentensysteme i, ..., ,, welche den Verteilungspunkt b ergeben.
Alle Hyperebenen (16) einer festen Verteilung (2) besitzen denselben Stellungsvektor
(gl%1,...,1g1x,|) und sind daher zueinander parallel. Einer Verteilung (2) von
Hohenschnittpunkten auf einer gleichseitigen Hyperbel entspricht also eine Schar
zueinander paralleler Hyperebenen. Die Schar ldsst sich aufbauen, indem man aus-
gehend von einer speziellen Hyperebene ¢, etwa jener mit der Gleichung

iIg | % |+ +iy1g 7, = 0, 1)

durch jeden Gitterpunkt des R, die parallele Hyperebene legt. Nun sind zwei Fille zu
unterscheiden:

a) Die Gleichung (17) von ¢ hat nur rationale Koeffizientenverhdltnisse. In diesem
Fall lassen sich auf »# verschiedene Arten » — 2 Koordinaten ¢,, = 0 setzen und die bei-
den restlichen zur Befriedigung der Gleichung (17) ganzzahlig + 0 wéhlen. Die Hyper-
ebene ¢ enthilt daher mindestens # Gitterpunkte, welche ¢ aufspannen, und damit
sogar unendlich viele. Enthilt umgekehrt eine Hyperebene (17) mindestens » Gitter-
punkte, welche die Hyperebene aufspannen, so hat ihre Gleichung rationale Koeffi-
zienten. Errichtet man iiber einem geeigneten endlichen Gebiet G der Hyperebene ¢
einen Zylinder Z, begrenzt von den zu ¢ parallelen Hyperebenen ¢, e_, im Abstand
4 ¢ (1 < ¢; c fest) von ¢, so lassen sich durch Translation von Z in allen durch je zwei
Gitterpunkte bestimmten Richtungen simtliche Gitterpunkte des R, erzeugen?),
speziell durch die zu ¢ parallelen Translationen von Z die Gitterpunkte zwischen ¢,
und e__; Z enthilt nur endlich viele Gitterpunkte, die nicht sémtlich in ¢ liegen. Daher
geht die ¢ nichstliegende Hyperebene der Verteilung (2) durch den nicht in ¢ liegen-

7y Ahnliche Fragen behandelt H, MiNnkowsK1 in [4], S. 187 ff.
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den, aber ¢ ndchstliegenden Gitterpunkt des Zylinders Z. Unter den Hyperebenen (16)
einer Verteilung (2) gibt es also im vorliegenden Fall keine ¢ beliebig benachbarte
Hyperebene. Entsprechendes folgt fiir jede Hyperebene der Verteilung (2). Somit gilt:

Sind die Verhiltnisse der Logarithmen von | %, |, ..., | %, | rational, so besitzt die
Verteilung (2) (und damit auch jede ihrer unendlichen Teilverteilungen) keinen eigent-
lichen Hdufungspunkt.

b) Die Gleichung (17) von ¢ hat mindestens zwei Koeffizienten mit irrationalem
Verhiltnis. Es sei etwa lg | x, |/1g | x5 | irrational. Die Schnittgerade der Hyperebene
¢ mit der Koordinatenebene 4,7, hat somit die Gleichung

. Ig x| .
= g ] 1 (18)

Da die Irrationalzahl lg |, |/lg | x5 | beliebig genau rational approximiert werden
kann, liegt in der ¢;i,-Ebene in jedem um die Gerade (18) abgegrenzten Parallel-
streifen mindestens ein Gitterpunkt. In diesem Fall gibt es also in beliebiger Ndhe der
Hyperebene ¢ noch weitere Scharebenen, und Entsprechendes folgt fiir jede Hyper-
ebene der Verteilung (2). Somit gilt:

Ist mindestens ein Verhilinis der Logarithmen von | x4 |, ..., | %, | trrational, so ist
1eder eigentliche Punkt der Verteilung (2) Haufungspunkt. O. GIERING, Stuttgart
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Inequalities Concerning the Inradius and Circumradius
of a Triangle

The purpose of this paper is to establish in an elementary manner a number of new
inequalities between the inradius and circumradius of a triangle, its area and certain
functions of its sides.

These inequalities will be strong enough to permit us to deduce without difficulty
several well-known results, and to sharpen some inequalities due to other authors.

1. Some Identities

If T be any triangle and A4,, 4,, 4, its vertices, we shall denote by 4, the side
opposite vertex 4;, and by «, the angle at 4,. Further, let 7 be the inradius and R the
circumradius of 7', while A4 denotes its area and 2 s its perimeter. For simplicity, we
shall write

8 8
Za,. for Zai , Za,- a; for 2 a;a;, and Ua,- for Ha,..
i=1 i i=1

1< 1<i<j<3
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