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Über eine Kennzeichnung der gleichseitigen Hyperbeln
Herrn Prof Dr F Losch zum 60 Geburtstag gewidmet

1. Mit drei verschiedenen Punkten Plt P2, P3 einer gleichseitigen Hyperbel hegt auch
der Hohenschnittpunkt des Dreiecks PXP2PS auf der Hyperbel (vergleiche zum Beispiel
[1], S 159, [2], S 368)x), em orthogonales Geradenpaar, das als entartete gleichseitige
Hyperbel aufgefasst werden kann, besitzt dieselbe Eigenschaft2) Wir zeigen, dass
dieser Satz umkehrbar ist Die gleichseitigen Hyperbeln (orthogonale Geradenpaare
eingeschlossen) lassen sich kennzeichnen als jene ebenen stetigen Kurven, fur die der
Hohenschnittpunkt jedes Sehnendreiecks ebenfalls Kurvenpunkt ist Diese
Umkehrung durfte bisher übersehen worden sein Gleichzeitig ergibt sich dabei Gelegenheit,

auf mit dieser Erzeugung zusammenhangende Punktmengen auf gleichseitigen
Hyperbeln einzugehen sowie Verteilungen von Hyperbelpunkten zu untersuchen, die
gegenüber der Konstruktion von Hohenschnittpunkten abgeschlossen smd

2. Wir betrachten solche ebene Punktmengen £>, die mit je drei Punkten den

Hohenschnittpunkt des zugehörigen Dreiecks enthalten3) Die Punktmenge $ soll
zunächst aus mindestens vier verschiedenen Punkten Pv P4 bestehen, von denen
keine drei auf einer Geraden liegen, die kein Dreieck mit seinem Hohenschnittpunkt und
kein Rechteck bestimmen Dann sind drei der Punkte Pv P4, etwa Pv P2, P3, die
Ecken eines nicht rechtwinkligen Dreiecks Ist P5 der Hohenschnittpunkt des Dreiecks

PXP2PZ, so ist P5 4= Pt (t 1, 4) Da keine drei der Punkte Pv P4 auf
einer Geraden liegen, gibt es unter den Dreiecken mit den Ecken Pv P5 mindestens

em nicht rechtwinkliges Dreieck mit der Ecke P4, bei geeigneter Bezeichnung
das Dreieck P^^P^, sein Hohenschnittpunkt sei P6 Nach Konstruktion ist P6 4=

Pv P4, P5, und die Annahme P6 P2 oder P6 P3 fuhrt auf P4 P3 bzw P4 P2,
also auf einen Widerspruch zur Voraussetzung, somit ist P6 4= Pt (i 1, ,5)

*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 127
2) Durch Anwendung von Mobiustransformationen erhalt man daraus Aussagen uber weitere Kurven,

speziell durch Inversion der gleichseitigen Hyperbeln an einem Kreis um ihren Mittelpunkt uber Bernoullische

Lemmskaten Als Geraden fungieren dabei die Kreise eines parabolischen Kreisbundeis mit den
Doppelpunkten der Lemmskaten als Trager Entsprechendes gilt bei Anwendung einer stereographischen Projektion
fur das Viviamsche Fenster

8) Nach freundlichem Hinweis von E Trost bestimmt N H Kuiper [5] endliche und unendliche
Punktmengen §, jedoch auf anderem Wege und nicht, um die gleichseitigen Hyperbeln unter den stetigen
Kurven zu kennzeichnen

Ausserdem dankt der Verfasser H Brauner, Stuttgart, fur wertvolle Ratschlage bei der Abfassung
dieser Arbeit
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(Figur 1). In den Strahlbüscheln um Px und P5 besteht wegen der Orthogonalität der
Schenkel entsprechender Winkel die Kongruenz

Da sich das Doppelverhältnis von vier geordneten Strahlen nicht ändert, wenn man
das Paar der ersten beiden mit dem Paar der letzten beiden vertauscht, sind die
Punkte P2, P3, P4, P6 Schnittpunkte entsprechender Strahlen der beiden folgenden
projektiven Strahlbüschel mit den Zentren Plt P5:

PX(P^P2P,) Ä P5(P3PeP2P*),

und Plt P6 liegen daher auf einer Kurve zweiter Ordnung c. Diese gehört dem

Kegelschnittbuschel mit den Grundpunkten Plf P2, P3, P5 an, das wegen der
Orthogonalität von P^a, P5P2 und PXP%, P5P4 nur gleichseitige Hyperbeln enthält; c ist
also eine gleichseitige Hyperbel. Da eine durch zwei feste projektive Strahlbüschel
erzeugte Kurve zweiter Ordnung auch durch zwei projektive Strahlbüschel erzeugt
wird, deren Zentren beliebige Kurvenpunkte sind, liegen alle Punkte Pn der Punktmenge

$, die man ausgehend von den Punkten Plf P5 als Höhenschnittpunkte
von Dreiecken konstruiert, auf der durch Plt... P5 bestimmten gleichseitigen Hyperbel.

Zu n vorhandenen Punkten Plf Pn (n > 5) findet man stets einen weiteren
Punkt Pn+1 der Punktmenge .§, etwa als Höhenschnittpunkt des Dreiecks PnPbPj bei

geeignetem Pj. Man kann z.B. / 1 bei ungeradem n > 5 und / 3 bei geradem
n > 5 wählen, um Pn+1 zu erhalten; Pn+1 4= P{ (i 1, n) folgt prinzipiell wie im
oben beschriebenen Fall n 5. Dieses Verfahren bricht nur dann ab, wenn ein Dreieck

PnP^Pj rechtwinklig ist, also der Höhenschnittpunkt in eine schon vorhandene
Dreiecksecke fällt. Da jedoch nicht alle Punkte von § auf solchen Geraden liegen,
welche die Seiten des durch Ergänzung eines rechtwinkligen Dreiecks PnP&Pj
entstehenden Rechtecks enthalten, gibt es zur Fortsetzung des Verfahrens stets einen

Ersatzpunkt Pj * Pv P3, P5, Pn_v

\

Figur 1 Figur 2

Drei der Punkte Pt,..., P4 einer Punktmenge $, etwa Pv P2, P3, seien nun
Punkte einer Geraden. Damit überhaupt Dreiecke existieren, muss § noch mindestens
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einen Punkt, etwa P4, ausserhalb dieser Geraden PtP2 besitzen (Figur 2) Ist der
Fusspunkt des Lotes von P4 auf P±P2 einer der Punkte Plt P2, P3, etwa Pv so
besteht $ aus den Punkten Plf P4, wenn das Dreieck P2PZPA bei P4 rechtwinklig
ist, bzw aus den Punkten Plt P5 (P5 sei Hohenschnittpunkt im Dreieck P2PBPA),

wenn dies nicht der Fall ist Ist der Fusspunkt des Lotes von P4 auf PXP2 keiner der
Punkte Plt P2, P3, so ist sicher eines der Dreiecke P±PXP2, PJP2PZ, PAPZP1} etwa das
Dreieck PAP2PZ, bei P4 nicht rechtwinklig, und P5 als Hohenschnittpunkt dieses

Dreiecks ist somit von Plf P4 verschieden Zu n vorhandenen Punkten Pv Pn
(n > 4) findet man wieder stets einen weiteren Punkt Pn+1 4= Pt (i — 1, n) aus jr>

Dazu kann man Pn+1 konstruieren als Hohenschnittpunkt des Dreiecks PnP2Pj mit
] 1 bei ungeradem n > 4 und ] 3 bei geradem n > 4 Das Verfahren bricht nur
dann ab, wenn em Dreieck PnP2P3 rechtwinklig ist, was durch einen geeigneten
Ersatzpunkt vermieden werden kann Alle Punkte der Punktmenge §, die man
ausgehend von den Punkten Plf P4 konstruiert, liegen auf dem durch Plf P4
bestimmten orthogonalen Geradenpaar

Besitzt also eine Punktmenge .§ mindestens vier Punkte, die kein Dreieck mit seinem
Hohenschnittpunkt bestimmen, kein Rechteck, kein Dreieck mit einem Hohenfusspunkt
und kein rechtwinkliges Dreieck mit einem weiteren Punkt auf einer Kathete, so ist sie

notwendig unendlich, und jene Teilmenge von .$, die ausgehend von den vier Punkten
Plt P4 konstruiert wird, hegt auf einer gleichseitigen Hyperbel bzw einem
orthogonalen Geradenpaar Die endlichen Punktmengen $ mit vier und mehr Punkten
besitzen somit die kennzeichnende Eigenschaft, dass je vier ihrer Punkte eine der eben

genannten vier Punktmengen bilden4)
Fragt man nun nach allen stetigen Kurven, welche die verlangte Eigenschaft

besitzen, so kommen nur die gleichseitigen Hyperbeln, die orthogonalen Geradenpaare
eingeschlossen, m Frage Em einzelner Hyperbelbogen besitzt diese Eigenschaft, wie
man leicht sieht, nicht Bei Hinzunahme irgendeines weiteren Punktes P ausserhalb
einer gleichseitigen Hyperbel wird diese notwendig durch mindestens eine stetige
Kurve durch P erweitert Da nun jeder Hyperbelpunkt zu $ gehört, tritt sogar eine
Erweiterung durch die gesamten durch P und je drei Punkte der Ausgangshyperbel
bestimmten gleichseitigen Hyperbeln em Diese überdecken jedoch eine zweidimensionale

Punktmenge und bilden daher keine stetige Kurve Somit gilt
Die einzigen ebenen stetigen Kurven, die mit drei Kurvenpunkten den Hohenschnittpunkt

des zugehörigen Dreiecks enthalten, sind die gleichseitigen Hyperbeln

3. Die soeben gegebene Kennzeichnung der gleichseitigen Hyperbeln lasst
vermuten, dass nicht nur die Gesamtheit der Hyperbelpunkte eine Punktmenge vom Typus
„5 bildet, sondern dass die gleichseitigen Hyperbeln auch unendliche Punktmengen j?>

tragen, die nur gewisse Hyperbelpunkte enthalten Solche Punktmengen hat N H
Kuiper [5], S 35, explizit angegeben Zu ihrem weiteren Studium geben wir die
gleichseitigen Hyperbeln ohne die orthogonalen Geradenpaare in kartesischen Koordinaten

*) Daraus ergeben sich sämtliche, schon in [5], S 34, angegebenen endlichen Punktmengen $ Drei
Punkte, die em rechtwinkliges Dreieck bilden, vier Punkte, die ein rechtwinkliges Dreieck mit dem
Hohenfusspunkt der Hypotenuse bilden, ein nicht rechtwinkliges Dreieck mit seinem Hohenschnittpunkt oder
em Rechteck, fünf Punkte, die em nicht rechtwinkliges Dreieck mit dem Hohenschnittpunkt und einem
Hohenfusspunkt bilden oder em Quadrat mit Mittelpunkt
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durch die Gleichung xy 1 und bezeichnen die Hyperbelpunkte durch ihre Abszissen.
Der Hohenschnittpunkt eines Dreiecks xtxxk ist

si^-^r1*,*"1**"1
Sind nun n ^ 4 verschiedene, eigentliche Hyperbelpunkte xv xn gegeben, die fur
n — 4 nicht m die Ecken und den Hohenschnittpunkt eines Dreiecks oder in die Ecken
eines Rechtecks fallen, so sind alle Hyperbelpunkte, die sich daraus durch
fortwahrende Konstruktion von Hohenschnittpunkten ergeben, von der Form

*,= (-ir°4* <*, *0, ,tn ganz,5) (2)

jedoch entstehen nicht notwendig alle diese Punkte xt durch wiederholte Hohen-
schmttpunktkonstruktion aus den xv xn Keiner der n Punkte xv xn lasse

sich durch fortwahrende Hohenschnittpunktkonstruktion aus den restlichen n—l
Punkten gewinnen, das heisst es sei

xk 4= (- 1)**£ fa14til *fr> k=l, ,n, p0, ,pn konst, ganz. (3)

Wir nennen n solche Hyperbelpunkte voneinander unabhängig
Fur den Hohenschnittpunkt xl eines Dreiecks xxx3xk aus drei Hyperbelpunkten (2)

gilt mit (1)

(— l)l° Xlt Xln — (— l)1 (*» + ?o + ^o) %-(h 4 7i + ^i) x-(in + 1n + kn) u\
oder

^o 1 - (*o + 1 o + *o) » (5a)

'«. -(**+ *« + *«). tn=*h ,n (5b)

Da mit i0, kn auch l0, ln ganze Zahlen smd, bilden alle Hyperbelpunkte (2)

eine Punktmenge jr> Da weiter die Konstruktion von Hohenschnittpunkten,
ausgehend von den gegebenen Punkten xv xn, stets nur auf ganzzahlige Exponenten
von — 1, xv xn fuhrt, bilden die Hyperbelpunkte (2) sogar die allgemeinste von n
unabhängigen Punkten xx, ,xn erzeugte Punktmenge §6) Wir bezeichnen im
folgenden eine konkrete Punktmenge § durch ihr allgemeines Element

Bei Ersetzung der im (m 0, n) m (2) durch Funktionen Im (im) (Im ganz-
wertig, wenn im ganz) erhalt man die Gesamtheit der Punkte

%I (- !)'•<*•> xr/h) xT/%n), tQ, tn ganz. (6)

Durch geeignete Funktionen Im(tm) mit insgesamt unendlichem Wertevorrat W
lasst sich jede unendliche Teilmenge von (2) angeben Liegt bei der entsprechenden
Ersetzung m (5a, b) mit IQ, Kn auch L0, Ln m W, so ist die zugehonge
Teilmenge vom Typus |> Sie sei mit $* bezeichnet, wenn dabei der Hohenschnittpunkt

5) Der Verfasser konnte nicht alle Punktmengen (2) bei N H Kuiper [5], S 34-36, auffinden, z B
fur n 2 nicht die Punktmenge mit xt 2 x2 « 3

6) Jede Punktmenge § der Form (2) enthalt mit zwei Punkten xt, x3 die Schnittpunkte der Hyperbel
x y 1 mit der Parallelen und Normalen zur Geraden xtXj durch einen Punkt xk von § Insbesondere schneidet

die Hyperbelnormale in einem Punkt xk von § und die Normale einer Hyperbelsehne xixi m einem ihrer
Endpunkte die Hyperbel wieder in einem Punkt von §
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jedes Urdreiecks x{XjXk in den Höhenschnittpunkt seines Bilddreiecks xT^Xj^xK^
übergeht. Dann gelten die folgenden Funktionalgleichungen:

h (1 - [*o + U + AJ) 1 " Jo(*o) - 'oOo) - h%), (7a)

Im (- [*« + Im + *J) - Im(im) - ImiJm) ~ Inßm) \ W 1, n (7b)

Diese sind einfache Verallgemeinerungen der in [3], S. 44, angegebenen Cauchyschen
Funktionalgleichung. Durch Kombination jener Gleichungen, die aus (7a) durch
Einsetzen der speziellen Tripel (0, 0, 0), (i0, — i0, — i0), (i0,1, 0) entstehen, erhält man die
Beziehung

I0 (i0 + 1) - I0(i0) 1-4 70(0) konst., (8)

aus der sich über der Menge der ganzen Zahlen mit I0(0) <*o die Lösungen von
(7a) - und auf ähnliche Weise die Lösungen von (7b) - ergeben in der Form:

7oW oc0 + (1 - 4 Oq) i0; <x0 konst., oc0, i0 ganz, (9a)

Im{im) «m im '> am konst., <x.m, im ganz; m 1, n (9b)

Für jedes ganzzahlige (n + l)-tupel (a0, ax, ocn) 4= (0, 1, 1) erhält man daher in

x* (- l)a°+ (1~4ao) io x^ ...<»*»; i0, in ganz (10)

eine unendliche Teilmenge jr>* von (2). Die unendlichen Teilmengen £)** von (10)

ergeben sich analog, indem man in (10) die im durch geeignete Funktionen Im{im)

ersetzt; dies liefert die Funktionalgleichungen

«o + (1 - 4 oo) h (1 ~ Do + H + *J)
(IIa)

l-3a0-(l-4a0) [I0(i0) + I0(j0) + I0(kQ)], J

am • Im (- [im + im + *J) ~ am • [Im(im) + Jm(/J + Im{kJ]; m 1,..., n (Hb)

Diese reduzieren sich auf (7a, b) und besitzen daher über der Menge der ganzen Zahlen
dieselben Lösungsfunktionen (9a, b), welche aus (10) für jedes ganzzahlige (n + 1)-
tupel (ß0, ßn) 4= (0, 1, 1) die Teilmengen

X** (- l)ao + (l-4«o)(^ + [l-4^o]to) ^M .mmtfnßn*n.9 {Q) > ^ gam (12)

aussondern. Durch Iteration dieses Verfahrens ergibt sich:

Die von n unabhängigen Hyperbelpunkten xv xn erzeugte Höhenschnittpunkt-
menge $ (— 1)*° x\ xfy enthält zu jeder Folge ganzzahliger, von (0, 1, 1)
verschiedener (n -f l)-tupel eine Teilmengenfolge § D §* D §**

Dieser Übergang von einer Teilmenge zur folgenden bedeutet geometrisch die
Herausnahme abzählbar unendlich vieler eigentlicher Hyperbelpunkte derart, dass

die Restmenge vom selben Typus ist; eine gewisse Verdünnung der Höhenschnitt-
punktmenge tritt dabei ein.

4. Welche Verteilung von Höhenschnittpunkten auf einer gleichseitigen Hyperbel
bei fortwährender Konstruktion von Höhenschnittpunkten entsteht, hängt allein
von der Wahl der Ausgangspunkte xv ,xn ab. Liegen sie von vornherein in einer
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sehr speziellen Punktmenge jr>, etwa in einer Punktmenge £>**, so führt die Konstruktion

weiterer Höhenschnittpunkte nicht aus §** hinaus. Um - unabhängig von der
Konstruierbarkeitsfrage - einen Zusammenhang zwischen den Ausgangspunkten
xlt ,xn und der Struktur der Punktmenge (2) zu finden, fragen wir nach allen
Hyperbelpunkten b 4= 0, welche die Darstellung (2) besitzen oder Häufungspunkte
solcher Punkte sind. Dazu betrachten wir die Gleichung

(-1)**J. ..*? &, (13)

die sich stets auf die Form

(-l)'|«i|<'...|*,|<« d (14)

bringen lässt, wobei s die Summe der Exponenten iQ, ,in mit negativer Basis ist.
Für b > 0 ist (— l)s notwendig + 1, dagegen — 1 für b < 0. Daher ist stets die
Darstellung

l*i|<,-|*.lV"=|»l (15)

möglich, aus der

hk I % I + ••• + *'»lg I xn I lg I h |; H> ••• > *'„ ganz (16)

folgt. Fasst man die im(m= 1, ,n) als kartesische Koordinaten eines Rn auf, so

stellt (16) eine Hyperebene im Rn dar. Beachtet man nun, dass die im ganze Zahlen
sind, so ergibt (16) die in der Hyperebene liegenden Gitterpunkte des Rn als Repräsentanten

jener Exponentensysteme ilt in, welche den Verteilungspunkt b ergeben.
Alle Hyperebenen (16) einer festen Verteilung (2) besitzen denselben Stellungsvektor
(lg | xx | lg | xn |) und sind daher zueinander parallel. Einer Verteilung (2) von
Höhenschnittpunkten auf einer gleichseitigen Hyperbel entspricht also eine Schar
zueinander paralleler Hyperebenen. Die Schar lässt sich aufbauen, indem man
ausgehend von einer speziellen Hyperebene e, etwa jener mit der Gleichung

h ig l*il + .-- + *;ig l^l of (i7)

durch jeden Gitterpunkt des Rn die parallele Hyperebene legt. Nun sind zwei Fälle zu
unterscheiden:

a) Die Gleichung (17) von e hat nur rationale Koeffizientenverhältnisse. In diesem
Fall lassen sich auf n verschiedene Arten n — 2 Koordinaten im — 0 setzen und die beiden

restlichen zur Befriedigung der Gleichung (17) ganzzahlig 4= 0 wählen. Die Hyperebene

e enthält daher mindestens n Gitterpunkte, welche e aufspannen, und damit
sogar unendlich viele. Enthält umgekehrt eine Hyperebene (17) mindestens n
Gitterpunkte, welche die Hyperebene aufspannen, so hat ihre Gleichung rationale
Koeffizienten. Errichtet man über einem geeigneten endlichen Gebiet G der Hyperebene e

einen Zylinder Z, begrenzt von den zu e parallelen Hyperebenen e+c, e_c im Abstand

± c (1 < c; c fest) von e, so lassen sich durch Translation von Z in allen durch je zwei

Gitterpunkte bestimmten Richtungen sämtliche Gitterpunkte des Rn erzeugen7),
speziell durch die zu e parallelen Translationen von Z die Gitterpunkte zwischen e+c

und e__c; Z enthält nur endlich viele Gitterpunkte, die nicht sämtlich in e liegen. Daher
geht die e nächstliegende Hyperebene der Verteilung (2) durch den nicht in e liegen-

7) Ähnliche Fragen behandelt H. Minkowski in [4], S. 187 ff.
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den, aber e nächstliegenden Gitterpunkt des Zylinders Z. Unter den Hyperebenen (16)
einer Verteilung (2) gibt es also im vorliegenden Fall keine s beliebig benachbarte
Hyperebene. Entsprechendes folgt für jede Hyperebene der Verteilung (2). Somit gilt:

Sind die Verhältnisse der Logarithmen von \ xt\, \ xn\ rational, so besitzt die

Verteilung (2) (und damit auch jede ihrer unendlichen Teilverteilungen) keinen eigentlichen

Häufungspunkt.
b) Die Gleichung (17) von e hat mindestens zwei Koeffizienten mit irrationalem

Verhältnis. Es sei etwa lg | xx |/lg | x2 | irrational. Die Schnittgerade der Hyperebene
e mit der Koordinatenebene iti2 hat somit die Gleichung

^..igjM^. (18)2 lg|*.l * v ;

Da die Irrationalzahl lg | x± |/lg | x2 | beliebig genau rational approximiert werden
kann, liegt in der ^*2-Ebene in jedem um die Gerade (18) abgegrenzten Parallelstreifen

mindestens ein Gitterpunkt. In diesem Fall gibt es also in beliebiger Nähe der
Hyperebene e noch weitere Scharebenen, und Entsprechendes folgt für jede Hyperebene

der Verteilung (2). Somit gilt:
Ist mindestens ein Verhältnis der Logarithmen von \ xx \ \ xn \ irrational, so ist

jeder eigentliche Punkt der Verteilung (2) Häufungspunkt. O. Giering, Stuttgart
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Inequalities Concerning the Inradius and Circumradius
of a Triangle

The purpose of this paper is to establish in an elementary manner a number of new
inequahties between the inradius and circumradius of a triangle, its area and certain
functions of its sides.

These inequahties will be strong enough to permit us to deduce without difficulty
several well-known results, and to sharpen some inequalities due to other authors.

1. Some Idenüties

If T be any triangle and Alt _42, _48 its vertices, we shall denote by a{ the side

opposite vertex Ait and by <xf the angle at A{. Further, let r be the inradius and R the
circumradius of T, while A denotes its area and 2 s its perimeter. For simplicity, we
shall write

3 8

ZJ ai ioT Uai> Uaiaj for U aiaj> and Uai for IIai-
»~1 »<t l<«</<3 •-!


	Über eine Kennzeichnung der gleichseitigen Hyperbeln

