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bisherigen Ergebnisse können wir auch die Lösung dieser abgeänderten Aufgabe
angeben. Haben nämlich die 3 rationalen Nullstellen von f(x) und die 2 rationalen
Nullstellen von f(x) den Hauptnenner n, so setzen wir x xjn und erhalten f(x) f(xjn)
f(x). Die Funktionen f(x) und f'(x) besitzen dann lauter ganzzahlige Nullstellen. Für
die Nullstellen von f(x) gelten damit die in (5) gegebenen Darstellungen. Wegen

x x\n erhält man die Nullstellen von f(x) aus denen von f(x) durch Division mit der
natürlichen Zahl n. Karl Zuser, Ingolstadt

Über die Summe beliebiger und die Differenz

aufeinanderfolgender Primzahlen

Wir bezeichnen mit kleinen lateinischen Buchstaben natürliche Zahlen, mit p eine

Primzahl, mit : Gleichheit nach Definition, mit A das «und» der Logik, mit
A {*:... } die Anzahl der * mit den Eigenschaften und mit C eine absolute positive
Konstante.

Wir gehen aus von zwei geläufigen Ergebnissen der elementaren additiven
Primzahltheorie. Schnirelmann1) hat bewiesen, dass die Folge der Zahlen der Gestalt
px 4- p2 (pX2 prim) positive asymptotische Dichte hat; Prachar2) hat gezeigt, dass

die Folge der Zahlen der Gestalt p+ — p, wenn p+ die der Primzahl p folgende Primzahl

bezeichnet, positive asymptotische Dichte hat. Wir nehmen beide Fragestellungen

zusammen und beweisen einen verwandten Satz für Zahlenpaare in der Ebene:

Satz 1. Es gibt positive Konstanten Cx, C2, C3 derart, dass aus x > Cx folgt

A {m,n: m<xAn< C2logx/\m px-}-p2 f\n p+ — p2 A^1>2prim}> Csxlogx. (1)

Beweis. Mit
f(m, n): A {px, p2: px -f p2 m A p+ - p2 n)

kann man für (1) auch

B(x): A {m, n: m < x A n <C C2 log x A f(m, n) > 0} > C3 x log x (2)

schreiben. Nach der Schwarzsehen Ungleichung ist

(E E /(w' n)Y ^ fi(*) E E f2(m>n) ¦ (3)
\m<# «<Calog* / m<x M<C2log#

Es ist
f(m, n) < A {p: p < m A (p/\m — pf\n + p prim)}

< C* lir Al II^(l+ |)2 (tn<x,x>2)ö p\tnn{tn + n) \ P /
nach der Brunschen Siebmethode3). Mit

*) Vgl. etwa [1], 150-153.
2) Vgl. etwa [1], 154-155.
3) Vgl. [1], II. Satz 4.2 und I. (5.23).
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folgt

E E /2K «X Cl ki E E PmPnPm+n- (5)
tn < x n <C2logx " m < x »<C2log^

Nach der Schwarzsehen Ungleichung ist

E E PmPnPm + n< E Pn( E PZY'2 E PZ + nY12

m<u n<v n<v \m<u J \m<u /

<EPn E P*<Cbv(H+v)
n <v j<u + v

wegen (4) und

e _7(i+^r<c(s)^

mit einer nur von s abhängigen positiven Konstanten C(s)4). Aus (5) und (6) folgt
x3

log5 x

(6)

E E /2K«)<c61o_^ <*>2)- w
m < x n < C2 log x

Ferner ist

JT JJ f(m, n) A {px, p2: px + p2 < x A pt ~p2<C2 log x}
m < x n < C2 log*

>A[p1:fi1< ^}A{fi2:p2<-x- A^1 -£2<C2log*}

X \2

wegen der Cebyshevschen Formel

(8)

und wegen
A{p:p<y}>C,^y (y>2)

A {p:p <y A p+ - p <C2\ogy}> Cxx -^ (y > Cxo)

bei geeignetem C2 > 05). Aus (3), (7) und (8) folgt (2) und damit die Behauptung.
Man gelangt zu einigen interessanten Verallgemeinerungen von Satz 1, wenn man

zum obigen Beweis frühere Überlegungen6) hinzunimmt. G. J. Rieger, München7)
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