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Uber ecine gewisse Klasse von ganzen rationalen Funktionen

3. Grades

Wir betrachten ganze rationale Funktionen 3. Grades
f(x) =cox®+ ¢, 22+ cox + ¢4

und suchen die Lésung der folgenden Aufgabe:

Unter den betrachteten Funktionen f(x) ermittle man alle mit der Eigenschaft,
dass f(x) und f'(x) lauter ganzzahlige Nullstellen besitzen.

Ist x = 7 eine der 3 ganzzahligen Nullstellen von f(x), so setzen wir x = x 4+ » und

erhalten f(x) = f(x + 7) = f(x). Die Funktion f(x) besitzt dann ebenfalls die von f(x)
verlangte Eigenschaft und x = 0 ist eine ihrer Nullstellen. Bezeichnen wir die beiden

anderen ganzzahligen Nullstellen von f(x) mit @ und b, so gilt
f(®) = cox (x — a) (% — b) = co [x3 — (a + b) X2 + ab x]
und damit

fx) =co[322 — 2 (a+ b)x+ ab] .

Die beiden Nullstellen von ]7’(35) lauten nun
% g = %(a—k b j:‘/az—aberz).

Wegen a2 —ab + b2 = (@ — b/2)2 + 3 b2/4 = O sind x, und x, reell, was auch aus dem
Satz von ROLLE entnommen werden kann. x, und x, kénnen nur ganzzahlig sein,
wenn der Radikand 42 — a b + b2 gleich dem Quadrat einer ganzen Zahl ¢ ist. Wenn
dann noch dafiir gesorgt wird, dass 3 ein gemeinsamer Teiler von @ + b + ¢ und
a + b — c ist, sind x; und x, wirklich ganzzahlig.

Wir haben also zunéchst alle Lésungen der Gleichung

a2 —ab4 b2 =2 (1)

in ganzen Zahlen a, b, ¢ zu suchen.

Im Sonderfall ¢ = 0 folgt ¢ = 0, b = 0 und damit auch x; = 0, x, = 0. Samtliche
Nullstellen von f(x) sowie die von f'(x) fallen also in ¥ = 0 zusammen ; man hat hier
f(x) = ¢4 3.

Um im Fall ¢ + 0 alle Losungen der Gleichung (1) in ganzen Zahlen a, b, ¢ zu
finden, schreiben wir

a\2 a b b\2 a b
(;‘) . (?) (7) + (—(—;) = 1 und setzen ? == E, -E— =1MN.
Jede Losung der Gleichung (1) in ganzen Zahlen 4, b, ¢ liefert also rationale Zahlen
& und 7, welche der Gleichung
#—Entop=1 @

geniigen. Hat man andererseits eine Lésung der Gleichung (2) in rationalen Zahlen
£ und 7, so kann man & und 7 auf gemeinsamen Nenner bringen und beide Seiten von
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(2) mit dem Quadrat dieses Nenners multiplizieren. Man besitzt dann eine Losung
von (1) in ganzen Zahlen. Durch (2) ist in einem rechtwinkligen kartesischen (&, #)-
Koordinatensystem eine Ellipse gegeben, die durch den Punkt A (1; 1) verlduft (vgl.
Figur). Ist P(£;%) ein von A(1;1) verschiedener Ellipsenpunkt mit rationalen

?

A(1;1)
P(&;»%%?)
K}// =§

Koordinaten &, 7, so hat die durch A(1; 1) und P(§; n) verlaufende Gerade g den
rationalen Richtungsfaktor

Die folgende Rechnung zeigt nun, dass umgekehrt eine durch A(1; 1) verlaufende
Gerade g mit rationalem Richtungsfaktor 4 die Ellipse ausser in 4(1; 1) stets in einem
weiteren Punkt P(&; %) trifft, der rationale Koordinaten &, # hat?!). Setzen wir nimlich
7y =A (& — 1) + 1in (2) ein, so ergibt sich die Gleichung

E—1D[EM@A-21+1)—12+24]=0.

Die hier interessierende Losung lautet

A2— 22
£= AA—A4+1"
damit wird
. 1=2}
A2 — 141

Hierin besitzen wir eine Parameterdarstellung simtlicher Lésungen von (2) in ratio-
nalen Zahlen & und #». Die Losung & = 1, # = 1 erhélt man fir A = — 1. Fiir A > oo
gilt £ > 1 und 5 - 0. Wir schreiben nun A = «/v und diirfen dabei die ganzen Zahlen
» und v als zueinander teilerfremd auffassen. Wir erhalten

é._a__ ut—2uv b v*—2uv
T T W_—uv+er’ N T @ uviorr
Mit einem Proportionalitdtsfaktor ¢ ergeben sich die Darstellungen
a=tut—2uv), b=tw—-2uv), c=twt—uv+0?, (3)
}1=—§~(a+b+c)=—;—(2u2+2v2~—5uv)=—2§~(u2——uv+v2)—-tuv,
}2z%~(a+b—c)=——tuv.

1) Diese Methode zur Bestimmung der rationalen Punkte auf einem Kegelschnitt ist wohlbekannt.
Man findet die allgemeine Losung zum Beispiel in Dickson-Bopewic: Einfithrung in die Zahlentheorie,
B. G. Teubner, Leipzig 1931, S. 40.
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Hitten zum Beispiel #2 —2uv, v>— 2uv und #v einen gemeinsamen Teiler
d > 1, so kénnte man mit ganzen Zahlen %,, %,, k3 schreiben

u—2uv=d~k;, V¥ -2uv=dk,, uv=dk,
und erhielte
M2=d(k1+2k3), Uzzd(k2+2k3>.

2 und v? hitten also d > 1 als gemeinsamen Teiler; dies ist aber unmoglich, weil
wegen (#, v) = 1 auch (#?%, v*) = 1 sein muss. Der Proportionalitdtsfaktor ¢ darf also
nur ganzzahlig gewdhlt werden.

Wir untersuchen jetzt, fiir welche Werte von # und v der symmetrische Ausdruck
u? — u v + v2 durch 3 teilbar ist. Hierzu beachten wir, dass beim Paar (u, v) folgende
5 Kombinationen von Resten modulo 3 méglich sind: (0, 1), (0, — 1), (1, 1), (— 1, — 1),
(1, — 1). In den ersten 4 Fillen ist 2 — » v 4 v2 =1 (mod 3). Daher ist in diesen
Fillen x, nur ganzzahlig, wenn ¢ ein Vielfaches von 3 ist. In den Darstellungen (3)
haben wir dann ¢ durch 3 ¢ zu ersetzen, wobei ¢ nach wie vor eine beliebige ganze Zahl
bedeuten soll. Bei der letzten Restekombination (1, — 1) ist #?2 —uv + 22=0
(mod 3). In diesem Fall liefern also die Darstellungen (3) bereits lauter ganzzahlige
Werte. Zusammengefasst konnen wir demnach schreiben:

a =3t(wu*—2uv),
b =3¢t (2 —2uv),
c =3t —uv+ 02, (4)
%y =23"Y¢ (w2 —uv+vY)—3tuv,
X, =—3tuv.
Hierin bedeuten ¢, # und v beliebige ganze Zahlen mit (#,v) =1. Fir uv=—1

(mod 3) ist s = 0 zu setzen, wihrend s = 1 zu nehmen ist, falls # v = 0 (mod 3) oder
v = 1 (mod 3). Der frither genannte Sonderfall ¢ = 0 wird durch (4) ebenfalls erfasst;
man braucht dazu nur ¢ = 0 zu setzen.

Die Funktion f(x) besitzt die Nullstellen

dl’—‘:?’,
a,=a-+vr, (3)
az=>b-+r.

Hierin bedeutet 7 eine beliebige ganze Zahl, wihrend fiir @ und & die durch (4) ge-
gebenen Ausdriicke einzusetzen sind. Diese durch (5) gegebene Form der Nullstellen
von f(x) ist notwendig und hinreichend dafiir, dass auch f'(x) ganzzahlige Nullstellen
hat. Diese lauten dann x; = x; + » und x, = x, + 7.

Die eingangs gestellte Aufgabe dndern wir nun dahin gehend ab, dass wir den Aus-
druck «ganzzahlige Nullstellen» durch «rationale Nullstellen» ersetzen. Mit Hilfe der
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bisherigen Ergebnisse kénnen wir auch die Losung dieser abgeinderten Aufgabe an-
geben. Haben ndmlich die 3 rationalen Nullstellen von f(x) und die 2 rationalen Null-
stellen von f'(x) den Hauptnenner #, so setzen wir x = x/n und erhalten f(x) = f(¥/n) =

~

f(x). Die Funktionen f(x) und f'(x) besitzen dann lauter ganzzahlige Nullstellen. Fiir
die Nullstellen von f(x) gelten damit die in (5) gegebenen Darstellungen. Wegen

x = x/n erhilt man die Nullstellen von f(x) aus denen von f(x) durch Division mit der
natiirlichen Zahl ». KARL ZUSER, Ingolstadt

Uber die Summe beliebiger und die Differenz
aufeinanderfolgender Primzahlen

Wir bezeichnen mit kleinen lateinischen Buchstaben natiirliche Zahlen, mit p eine
Primzahl, mit : = Gleichheit nach Definition, mit A das «und» der Logik, mit
A {*: ...} die Anzahl der * mit den Eigenschaften ... und mit C eine absolute positive
Konstante.

Wir gehen aus von zwei geldufigen Ergebnissen der elementaren additiven Prim-
zahltheorie. SCHNIRELMANN!) hat bewiesen, dass die Folge der Zahlen der Gestalt
P, + P (P, prim) positive asymptotische Dichte hat; PRACHAR?) hat gezeigt, dass
die Folge der Zahlen der Gestalt p+ — p, wenn p+ die der Primzahl p folgende Prim-
zahl bezeichnet, positive asymptotische Dichte hat. Wir nehmen beide Fragestellun-
gen zusammen und beweisen einen verwandten Satz fiir Zahlenpaare in der Ebene:

Satz 1. Es gibt positive Konstanten C,, C,, Cg derart, dass aus x > C, folgt
A{mn:m<xAn<CylogxAm=p;+ps An=p —ps AN pyoprim} > Cyxlogzx. (1)

Bewers. Mit
fm,m): = A {751’7525?51‘*‘?52:7”/\?;_?2:”}

kann man fiir (1) auch
Bx):=A{mn:m<xAn<<Cylogx A fim,n) > 0}> Czxlogx (2)

schreiben. Nach der Schwarzschen Ungleichung ist

(&, & fonm)p<B@ 2 2 fmn. (3)

m<zx n<Cglogx m<x n<Cylogx

Es ist
fm,m) < A{p:p<mA (pANm—pAmn+pprim)}

<C__'E__

4 Jogd x

1\2
plmn(m+n)(1+?;) m <z x>2)

nach der Brunschen Siebmethode?). Mit
1\4
Pm.=ll(1+*1;) (4)

pim
1) Vgl. etwa [1], 150-153.
2) Vgl. etwa [1], 154-155.
3) Vgl. [1], 11. Satz 4.2 und 1. (5.23).
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