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Seitenrisse konvexer Korper und Homothetie
Es sei n ^ 3 Zwei konvexe Korper1) des n-dimensionalen euklidischen Raumes

smd nach einem bekannten Satz homothetisch, wenn ihre Normalnsse2) auf allen
(n — 1)-dimensionalen Ebenen homothetisch sind Altere bekannte Beweise von
W Süss3), S Matsumura4) und anderen beziehen sich auf den Fall des gewöhnlichen
Raumes (n 3), doch smd diese leicht auf beliebige Dimensionen zu übertragen
Analoge Aussagen sind auch gültig, wenn man fur em festes i (2 ^ i fj n — 1) die
Homothetie der Normalnsse auf allen ^-dimensionalen Unterraumen voraussetzt Sie

lassen sich auf induktive Weise aber leicht auf den eingangs erwähnten Hauptsatz
fur i n — 1 zurückfuhren Fur alle diese Satze, bezogen auf zentralsymmetrische
Korper, gab kürzlich H Groemer5) einen kurzen Beweis

Ziel der vorliegenden Note ist es, zu zeigen, dass die Hauptaussage auch unter
schwächeren Voraussetzungen gilt, insbesondere im Falle n 2_; 4 dann, wenn die
Homothetie der Normalrisse lediglich fur die Ebenen eines Buscheis mit fester
gemeinsamer Geraden gefordert wird Diese speziellen Normalnsse wollen wir hier
Seitennsse nennen, wahrend der Normalnss auf die zur Buscheigeraden orthogonal
stehende Ebene Grundriss heissen soll Im Falle n 3 ist fur die Gültigkeit der Aussage

noch zusätzlich die Homothetie der Grundnsse erforderlich
I Vorbereitend legen wir einige Bezeichnungen fest
Eine Raumrichtung werde durch einen Einheitsvektor u gekennzeichnet Mit Eu

und Gu bezeichnen wir die durch den Ursprung 0 des w-dimensionalen euklidischen
Raumes hindurchgehende (n — 1)-dimensionale Ebene und 1-dimensionale Gerade

der Richtung u Ist A ein konvexer Korper des Raumes, so bedeute Au bzw Au den

Normalnss von A auf Eu bzw Gu Eine im folgenden stets fest gedachte Richtung w
heisse Grundrissrichtung Die auf w orthogonal stehenden Richtungen u nennen wir
Seitennssnchtungen Entsprechend smd Aw und Au Grundriss und Seitennsse von A
Zwei Korper A und JE? heissen homothetisch, geschrieben A ~ B, wenn sie durch
Translation und Dilatation von 0 aus ineinander übergeführt werden können Korper,
die durch eine Translation in Richtung w ineinander übergehen, sind _e>-translations-

*) Kompakte und konvexe Punktmengen des Raumes
2) Der Normalnss eines Korpers des Raumes auf eine Ebene ist hier die Menge der Punkte in der Ebene,

die durch orthogonale Projektion der Punkte des Korpers entstehen In unserem Falle ist der Normalnss
ein (n — 1) dimensionaler konvexer Korper

3) Zusammensetzung von Eikorpern und homothetische Eiflächen Tohoku, Math J 35 (1932), 47-50,
insb 49

4) Eine Kennzeichnung homothetischer Elflachen Tohoku, Math J 35 (1932), 285-286
6) Em Satz uber komexe Korper und deren Projektionen Portugaliae Math 21 (1962), 41-43
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gleich, geschrieben A — B. Unter dem Hüllzylinder H(A, w) des konvexen Körpers
A in Richtung w verstehen wir den Zylinderkörper mit dem Basiskörper Aw und der
Höhenstrecke Aw; er umschliesst A.

II. Nun formulieren wir die nachher zu beweisenden Aussagen. Zunächst gilt der
folgende

Satz: Es sei n ^ 4. Weisen zwei konvexe Körper A und B des n-dimensionalen
euklidischen Raumes homothetische Seitenrisse auf, das heisst, gilt Au~ Bu für alle auf
einer festen Grundrissrichtung w orthogonal stehenden Richtungen u, so gilt A ~ B, das

heisst, die beiden Körper sind selbst homothetisch.

Ergänzend formulieren wir weiter zwei Nebenaussagen:
Zusatz a: Für n 3 ist der Satz falsch.
Zusatz b: Ist n 2__ 3 und wird zusätzlich vorausgesetzt, dass auch die beiden Grundrisse

homothetisch sind, so dass Aw~ Bw ausfällt, so ist der Satz richtig, das heisst, es gilt
jetzt auch in diesem n 3 einschliessenden Fall die Behauptung A ~ B.

Selbstverständlich enthält Zusatz b den in der Einleitung erwähnten klassischen
Satz als Korollar.

III. Endlich lassen wir die Beweise folgen.
Beweis von Zusatz a: A und B seien gerade zylindrische Körper des gewöhnlichen

Raumes mit Höhenrichtung w und übereinstimmender Höhe 1. Basisbereich von A
sei ein Reuleauxdreiecksbereich konstanter Breite 1 und derjenige von B ein
Kreisbereich vom Durchmesser 1. Alle Seitenrisse Au und Bu sind translationsgleiche
Einheitsquadrate, insbesondere also homothetisch. A und B sind aber nicht
homothetisch. Man beachte hier die Existenz inkongruenter Körper mit kongruenten Seitenrissen.

Beweis von Zusatz b: Ohne Einschränkung darf angenommen werden, dass (1)

Aw= Bw gilt. Wegen n ^> 3 gibt es eine auf u orthogonal stehende weitere
Seitenrissrichtung v. Offensichtlich gelten die Beziehungen (_4Jy (Aw)v und (Bu)v

(Bw)v, aus welchen mit (1) evidenterweise (Au)v (Bu)v hervorgeht. Wegen der
Voraussetzung Au ~ Bu und wieder mit (1) folgt (2) Au — Bu. Weiter gilt Aw (Au)w
und JE?«' (Bu)w und im Hinblick auf (2) demnach Aw — Bw. Ohne Einschränkung
darf mithin (3) Aw Bw angenommen werden. Mit (1) und (3) schhesst man, dass A
und B übereinstimmende Hüllzylinder haben, sodass H H(A, w) H(B, w) gilt.Weiter
gilt offensichtlich Hu H(AU, w) und Hu H(Bu,w), sodass auf H(AU, w) H(BU, w)
geschlossen werden kann. Die beiden homothetischen Körper Au und Bu haben identische

Hüllzylinder und müssen demnach zusammenfallen, so dass (4) Au Bu gilt.
Hieraus folgert man mühelos (5) A B. Andernfalls gäbe es etwa einen Punkt pe A
und p $ B. Es existiert dann eine p von B trennende Ebene T der Richtung t. Wegen
n ä 3 gibt es eine auf t orthogonal stehende Seitenrissrichtung s, und man folgert
ps e As und ps $ Bs, also einen Widerspruch zu (4), wonach ja As Bs sein muss. Mit
(5) ist aber die Behauptung A ~ B bewiesen.

Beweis des Satzes: Es sei n 2> 4. Wir gehen von den Bemerkungen (Aw)u (Au)w
und (Bw)u (B^w aus und schhessen mit Au ~ Bu auf (Aw)u ~ {Bw)u. Die in der
Grundrissebene Ew liegenden (n — l)-dimensionalen konvexen Körper Aw und Bw
haben demnach homothetische Seitenrisse in allen Richtungen u des Ew und sind, im
Hinblick auf n — 1 ^ 3, nach Korollar zu Zusatz b selbst homothetisch, so dass also

Aw ~ Bw und, nach Zusatz b, A ~ B resultiert. H. Hadwiger, Bern
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