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Aufgaben 89

Identifiziert man die Kreise K¥, K§ mit den Kreisen K,, K, des zugrunde gelegten
Kreiszwillings, so entsteht eine Pascalschnecke mit der (im Endlichen gelegenen) Spitze in
S’, eben die von MULLER erwdhnte Kardioide k. Gleitet also eine Tangente ¢, auf K;, so
gleitet die adjungierte Gerade ¢, auf K,. Der Schnittpunkt X = ¢, #, durchlduft die Kar-
dioide 2. Man hat so einen ebenen Zwanglauf vor sich, bei dem ein fester Winkel (von der
Grosse ¢) auf den Kreisen K,, K, reitet (umgekehrte Ellipsenbewegung). Die zugehorige

— T

X~ ™~

Figur 2

Gangpolkurve ist jener Kreis, den MULLER in der genannten Arbeit mit K bezeichnet. Die
von MULLER in Satz IIT erwdhnten Kreispaare gehdren zu den Hiillbahnen der Strahlen
des Biischels um den Scheitel des reitenden Winkels. Damit ist ein bemerkenswerter Zu-
sammenhang zwischen der Verwandtschaft der adjungierten Geraden eines Kreiszwillings
und der ebenen Kinematik angedeutet. R. Bereis, Dresden

Aufgaben

Aufgabe 430. Démontrer que chacune des formules
n|2"+1, mn|22"4+1, n|2"4 2
a une infinité de solutions en nombres naturels #. W. SierpriNskKiI, Varsovie

1. Teil der Losung: In Verallgemeinerung der ersten beiden Aussagen der Aufgabe gilt
folgender

Satz: Ist a eine natiirliche Zahl und a + 1 keine Potenz von 2 (alsoa * 1, 3,7, 15, 31, ...),
dann besitzt die Beziehung # | " + 1 unendlich viele Lésungen in natiirlichen Zahlen #.
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Beweis: Es sei f(x) = a® + 1. Daa + 1 = f(1) keine Potenz von 2 ist, besitzt diese Zahl
mindestens einen Primteiler » > 2; und da p ungerade ist, gilt dann die Identitit

for+y = 109 — e+ 1= £ (= 1oe (P) i fix h=0,1,2,

Aus dieser folgt zunichst fiir £ = 0, dass wegen ¢ | f(1) auch p | f(p). Wird weiterhin
vorausgesetzt, dass p* | f(p¥) fiir irgendein £ = 1, dann enthilt jeder Summand in obiger

Summe wegen p I (f ) (v=1,2,...,p — 1) zumindest den Faktor p¥+1, so dass also auch
pE+1| f(pF+1). Folglich bildet die Potenzfolge p* (¢ = 0,1, 2, ...) eine unendliche Losungs-
mannigfaltigkeit, q.e.d. O. REUTTER, Ochsenhausen

2. Teil dev Losung: Die Bedingung » | 2" 4+ 2 wird erfiillt durch die rekursiv definierten
Zahlen n, = 2, n; ; = 2(n;) + 1, wo z(N) = 2N 4+ 1 gesetzt ist. Der Beweis erfolgt durch
vollstindige Induktion: %, ,|#n;,, bedeutet z (n; — 1) | z (»; ., — 1), und dafiir ist hin-
reichend, dass n; — 1 Teiler von #;  , — 1ist, das heisst z(n;_,) | 2(n;). Dies ist aber richtig,
wenn#n;_, | n, und der Quotient »;/n; _, ungerade ist. Das gilt fiir 1 = 2 und 7 = 3, und damit
folgt dann die Behauptung. Durch die Rekursion werden nicht alle Losungen erfasst; zum

Beispiel ist auch #» = 946 = 2 - 11 - 43 eine Lésung. C. BINDSCHEDLER, Kiisnacht

Ungefahr dieselben Losungen sandte E. TEUFFEL (Stuttgart) ein. Weitere Losungen
gingen ein von L. BERNSTEIN (Tel-Aviv), L. CaArriTz (Durham/USA), P. HoHLER (Olten)
und W. JANICHEN (Berlin).

Aufgabe 431. Zu beweisen: Stimmen zwei auf einer Fliche @ verlaufende Kurvenc,
und ¢, in einem Punkte U des wahren Umrisses von @ in den Linienelementen von genau
n-ter Ordnung iiberein, so haben ihre Projektionen c¢¥ und c¥ in der Projektion U* von
U ein Linienelement von mindestens (n + 1)-ter Ordnung gemeinsam. Beriihren die
Fliachenkurven ¢, und ¢, in U den wahren Umriss von @, so haben ihre Projektionen c¥
und c¥ sogar ein Linienelement von mindestens (» + 2)-ter Ordnung gemeinsam, wobei
vorausgesetzt wird, dass die Kurven ¢, und ¢, in U keine projizierende Tangente haben.

H. VoGcLER, Wien

Losung des Aufgabenstellevs: Zur analytischen Festlegung von @ verwenden wir ein
projektives, inhomogenes Koordinatensystem mit dem Koordinatentetraeder O, O, O, O,
und dem Einheitspunkt E. Der «Ursprung» O, mége mit dem Umrisspunkt U, O, mit dem
Projektionszentrum zusammenfallen; ferner sei die Tangente des wahren Umrisses in U
durch [0, O,] bestimmt. Die Geraden ¢, = [0, O,] und ¢, = [0, O,] liegen dann in konju-
gierten Flichentangenten von ®. Ist die Fliche @ in der Umgebung von U regulir, so hat
sie dort nach einer geeigneten Wahl des Einheitspunktes E folgende TavLoRrsche Ent-
wicklung: .

%y = g(%, ¥3) = 4] + 2} +i23‘Pi(x1» Xg) » (1)
wobei die ¢; Formen n-ten Grades in den (unabhdngigen) Variablen ¥, und x, bedeuten.
Insbesondere gilt also fiir die partiellen Ableitungen der Funktion g(x,, x,) im Ursprung

Oy:
o gxl - gx’ - gxlx’ =0 ' gzlxl = gx:x: =2. (2)

Es bedeutet keine Einschrinkung der vollen Allgemeinheit, die Bildebene in die Ebene
[0, O, O] zu verlegen, da das Ubereinstimmen der Linienelemente bis zur #-ten Ordnung
bei « Weiterprojektion» erhalten bleibt.

Durch % = f(x,) (3)

sei eine auf @ liegende Kurve ¢ bestimmt, die durch den Punkt U geht und in einer Um-
gebung von U regulir ist. Ihre Projektion ¢* auf die Bildebene = ist durch

%o = gl f() = 21+ 1) + T gt f22) (4
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festgelegt. c* ist in der Umgebung von U ebenfalls reguldr. Die Koeffizienten ihrer
TavrLorschen Entwicklung erhalten wir durch Anwendung der «Kettenregel» fiir die
Differentiation zusammengesetzter Funktionen. Es gilt:

’ a*x ’ ’ "
dxl :gxl+gx2'f ’ ‘&}?&:g"lxi—*—zgﬁxz‘f +g123’2.f2+gx9.'f ’ 1

s By +3gxxx 'f,+3gxxx..f/2+gxxx'f’3+3gxx']‘” (5)
[Z)Vl 1M1 % 1% X2 1%2%2 2 Xy Xg 1%

+ 3;3}{211:‘l . ]Ufn + gxz N f///.

Durch vollstandige Induktion zeigt man leicht, dass die Ableitung d”x,/dx} die Bauart:

o =B I TV e g (6)
1

hat, wobei die Funktion ¥ von den partiellen Ableitungen von g(x,, #,) bis zur Ordnung »
und von den Ableitungen der Funktion f(x,) bis zur Ordnung » — 2 abhdngt. Wegen (2)
héngt im Punkt U die Ableitung d”x,/dx{ nur in den ersten » — 1 Ableitungen von f(x,) ab.
Beriihrt ferner ¢ den wahren Umriss von @ in U, so ist

£(0) =0 (7)

und die Ableitung d”x;/dx} hingt sogar nur von den ersten » — 2 Ableitungen von f(x,) ab.
Damit sind die behaupteten Aussagen bewiesen.

Anmervkung: Fiir die Sonderfdlle » = 1, 2 sind die entsprechenden Aussagen bereits
bekannt *).

Eine weitere Losung sandte H. MeiL1, Winterthur.

Aufgabe 432. Durch Rotieren der Bernoullischen Lemniskate um die Mittelsenk-
rechte ihrer Brennpunkte entsteht eine Fliche. Man bestimme ihre nichttrivialen Kreis-
schnitte. G. UNGER, Dornach

Lésung: Die Bernoullische Lemniskate ¢ ist die Inverse einer gleichseitigen Hyperbel
¢’ in bezug auf den Hauptscheitelkreis 2 um O (vgl. z. B. G. Loria, Ebene Kurven Bd. I,
S. 216), wobei das Mittellot z der Brennpunkte von ¢ die imagindre Achse von ¢’ bildet.

Die gegebene Fliache ¢ ist daher zu dem einschaligen Drehhyperboloid ¢’ mit Meridian
¢’ invers in bezug auf die Kugel K mit Meridian %, und dabei entsprechen den Kreisen von
¢ die Kreise und Geraden von ¢’. Daraus folgt, dass die gesuchten, von den Parallelkreisen
verschiedenen Kreisschnitte von ¢ als inverse Bilder der Erzeugenden von ¢’ in den gegen
z um 45° geneigten Biindelebenen durch O liegen und die Radien des Aquators von ¢ als
Durchmesser haben.

Es ist zu bemerken, dass dieselben Uberlegungen ergeben, dass die Drehfliche von ¢
auch bei Rotation um die andere Achse von ¢ nichttriviale Kreisschnitte besitzt, die aller-
dings nicht reell sind, denn anstelle von ¢’ tritt ein zweischaliges Drehhyperboloid, und
ein solches triagt konjugiert-komplexe Erzeugende. H. ScuaaL, Stuttgart

Weitere Losungen sandten J. BasiLe (Briissel) und C. BiNpDscHEDLER (Kiisnacht).

Aufgabe 433. Entsprechende Strahlbiischel einer ebenen Kollineation sind projektiv
und erzeugen bekanntlich einen Kegelschnitt, der alle Fixpunkte der Kollineation ent-
hilt. Wie verteilen sich die Scheitel solcher Biischelpaare, die Kegelschnitte einer be-
stimmten (etwa durch die numerische Exzentrizitit gekennzeichneten) Gestalt erzeu-
gen, insbesondere Parabeln und gleichseitige Hyperbeln ? W. WuUNDERLICH, Wien

*) H. ScHaAL, Zur Konstruktion der Kriimmungskreise des scheinbaren Umrisses einer Fliche bei
Zentral- oder Parallelprojektion, Sber. d. Bayr. Akad. Wiss. Miinchen, Sonderdruck No. 17, 1960, S. 280,
Satz 1.
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Losung des Aufgabenstellers: Die Gestalt des von zwei projektiven Strahlbiischeln er-
zeugten Kegelschnittes hingt im wesentlichen von dem (reellen oder komplexen) Winkel
w ab, den die beiden Paare entsprechender Parallelen bilden, weil er den Asymptoten-
winkel angibt. Es sind mithin zunichst die Paare solcher kollinear entsprechenden Geraden
¢, t’ zu ermitteln, die parallel sind. Gibt man den gemeinsamen Fernpunkt P = Q' beliebig
vor, so legen die zugeordneten Punkte P’ und Q ein Paar entsprechender Parallelen { = PQ,
t’ = P’Q’ fest. Lasst man dann P = @’ die Ferngerade » = v’ der Ebene durchlaufen, so
beschreibt P’ die Fluchtgerade ' (+ v’) und Q die Verschwindungsgerade v (*+ u). Das
Hiillgebilde der Geraden ¢ ist im allgemeinen eine Parabel ¢, erzeugt von den projektiven
Punktreihen v’(Q’) < v(Q); ihr entspricht im zweiten Feld die von den Punktreihen
u’(P’) X u(P) erzeugte Parabel ¢’.

Jeder Punkt S des ersten Feldes, fiir welchen die beiden an die Parabel ¢ legbaren
Tangenten ¢,, ¢, die Winkel w und = — o bilden, ist Scheitel eines Strahlbiischels, das mit
dem kollinear entsprechenden Biischel S’ einen Kegelschnitt mit dem Asymptotenwinkel
w oder m — w erzeugt. Der Ort aller Punkte S fiir festes w ist eine «isoptische Kurve» £ von
¢, und das ist wiederum ein gewisser Kegelschnitt. Die Fernpunkte P,, P, von {,, {, sind
niamlich durch eine Projektivitidt verkniipft, die die absoluten Kreispunkte I, J zu Doppel-
punkten hat. Da die diese Projektivitit tragende Ferngerade u Parabeltangente ist,
hingen auch die Tangentenpaare ¢,, ¢, von ¢ selbst durch eine Projektivitdt zusammen, die
die beiden Minimaltangenten ¢, / von ¢ zu Doppelelementen hat. Der (reelle) Schnittpunkt
von ¢ und j ist der Brennpunkt F von ¢, ihre (konjugiert-imagindren) Beriihrungspunkte
M, N liegen auf der Leitlinie f von ¢. Das Erzeugnis der Projektivitat c¢(¢;) < ¢(¢,) — die in
der Ebene eine automorphe Kollineation von ¢ induziert — ist ein die Parabel ¢ in M und N
doppelt beriihrender Kegelschnitt %2, der mithin gleichfalls FF zum Brennpunkt und f zur
zugehorigen Leitlinie besitzt; sein Asymptotenwinkel betrdgt, wie leicht zu erkennen ist,
2w. Mit Riicksicht auf die analogen Verhiltnisse im zweiten Feld gilt mithin:

«Die Scheitel S, S’ kollinear entsprechender Strahlbiischel, die einen Kegelschnitt mit
dem Asymptotenwinkel o erzeugen, verteilen sich auf zwei Kegelschnitte 2, 2’ mit dem
Asymptotenwinkel @ = 2 w, welche zwei monofokalen Beriihrungsbiischeln entnommen
sind».

Zwischen den numerischen Exzentrizitdten e = sec(w/2) und & = sec w besteht die
Relation & = £2/(2 — &?).

Soll der erzeugte Kegelschnitt insonderheit eine Parabel sein (¢2 = 1), so ist S auf der
obgenannten Parabel ¢ zu widhlen. Soll der erzeugte Kegelschnitt eine gleichseitige
Hyperbel sein (2 = 2), so ist S auf der (zur Verschwindungsgeraden v parallelen) Leitlinie
f von ¢ zu wihlen. Soll der erzeugte Kegelschnitt ein Kreis sein, so kommt fiir S nur der
Brennpunkt F in Betracht.

Neue Aufgaben

Aufgabe 457. a) Wie gross ist das Achsenverhéltnis einer Ellipse, der sich (unendlich
viele) Sehnensechsecke einschreiben lassen, deren Seiten abwechselnd zu den beiden Winkel-
halbierenden der Achsen parallel sind ?

b) Zu jeder.Ellipse mit einem Achsenverhiltnis a/b > |/3 gibt es zwei Scharen von
Sehnensechsecken, bei denen je zwei aufeinanderfolgende Seiten aufeinander senkrecht
stehen. Alle Sechsecke derselben Schar sind schiefsymmetrisch in bezug auf denselben
Durchmesser der Ellipse. Man konstruiere ein solches Sechseck in eine gegebene Ellipse.

C. BINDSCHEDLER, Kiisnacht

Aufgabe 458. Man zeige, dass fiir ein Tetraeder die Summe der Quadrate der Kanten-
projektionen auf eine Ebene dann und nur dann von der Lage der Ebene nicht abhidngt,
wenn das Tetraeder reguldr ist. W. JANICHEN, Berlin

Aufgabe 459. Man zeige, dass jede ganze Zahl auf unendlich viele Weisen als Summe
von achtzehn fiinften Potenzen ganzer Zahlen darstellbar ist. E. KrRATZEL, Jena
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Aufgabe 460. a,, a,, ..., a, seien natiirliche Zahlen < » mit der Eigenschaft, dass a, a
fiir » + s keine Quadratzahl 1st Man zelge dass k£ hochstens gleich der Anzahl der quadrat-
freien Zahlen < # ist. P. ErDpOs, Budapest

Aufgaben fiir die Schule

Es wird kein Anspruch auf Originalitit der Aufgaben erhoben; Autoren und Quellen werden im allgemeinen

nicht genannt. Die Daten fiir Aufgaben aus der Darstellenden Geometrie sind durchweg so festgelegt, dass

der Ursprung des Koordinatensystems in der Mitte des linken Randes eines Blattes vom Format A 4 gewahlt

werden soll, x-Achse nach rechts, y-Achse nach vorn, z-Achse nach oben, Einheit 1 cm. Anregungen und
Beitrige sind zu senden an Prof. Dr. WiLL1 LUssy, Biielrainstrasse 51, Winterthur.

: o= (13 (5

Berechne die Funktionswerte fiir n = 0; 1; 2; 3; 4.

4 92 238
) : .

2; —; —2; - -

V5 ’ 5V5 25

2. Stelle z = [/4ab + 214 (a® — b?) in der Form u + i v dar.

p 1. Losung:
u?—v2=4ab
ut 4 v? = 4 2 (a? + b?)

unter Beriicksichtigung von « v = a% — b2.

2. L('jsung:
z=)—2i(b+ia)?= 4 (b+ia) V—2i= 4 (b+1ia) (1—14) = £ [(a+d)+i(a—b)].
3. Zeige, dass die Bilder der drei Zahlen

. 2)3 3 V3 1 5)/3
Am——l-—zmm—— B-—~2~~z~~6~~-, C~——7+1,~—6——
in der Ebene der komplexen Zahlen die Ecken eines gleichseitigen Dreiecks sind, dessen
Mittelpunkt der Nullpunkt ist.

p 4, B und C sind die Werte von

4. B, C, D, E sind die Schnittpunkte einer gleichseitigen Hyperbel mit einem Kreis, dessen
Zentrum A derjenige Hyperbelpunkt ist, der B diametral gegeniiberliegt. C, D und E
sind die Ecken eines gleichseitigen Dreiecks.

) Beweis analytisch mittels komplexer Zahlen, Nullpunkt in 4. Ein planimetrischer,
leider nicht sehr einfacher Beweis findet sich in J. LEMAIRE, Etude élémentaive de
U'hyperbole équilatére, Paris 1927, p. 40. Fiir einen eleganten planimetrischen Beweis
dieses schonen Satzes wire ich dankbar. Der Inhalt des Satzes wird in Praxis der Mathe-
matik, Heft 6, 1961 als STrazzERI-Konfiguration mitgeteilt; der Satz stammt aber von
Brocarp (Nouwvelle Correspondance Mathématique, 1877, p. 127).

5. Dem Einheitskreis wird ein regulires #-Eck einbeschrieben. Bestimme das geometrische
Mittel der Abstidnde irgendeines Eckpunktes von den » — 1 anderen.
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p In der Ebene der komplexen Zahlen sind die Ecken z = ¢, die Wurzeln der Gleichung

" —1=0,(k=0;1;...;n— 1). Fir die Abstinde des Punktes ¢, = 1 von den ande-
ren gilt

d=11—¢l, (k=1,2,...;n—1).
2" — 1 = 0 hat die Wurzel z = 1, folglich besitzt

2" —1

I -1 n—2 —

PR =zl 4 2 +...4+2+1 0

die Wurzeln z = ¢, (¢ =1;2;... ;n — 1); demnach ist

2l izt l=(2—¢&)(2—€) ... (2—¢€,_1) -
Fiir z = 1 folgt hieraus
, l—e)(l—¢)...(1L—¢,_4)=mn,
also ist auch d, d,...d,_, = n, und das gesuchte geometrische Mittel hat den Wert

n-1__
V.

Literaturiiberschau

Inequalities. Von E. F. BECKENBACH und R. BELLMAN. Ergebnisse der Mathematik und
ihrer Grenzgebiete Neue Folge Heft 30. XII und 198 Seiten mit 6 Abbildungen. DM 48.60.
Springer Verlag, Berlin 1961.

1934 erschien das heute klassische Werk gleichen Titels von HArDY, LITTLEWOOD und
PoLvA, das wohl zum ersten Mal eine Systematik in das aus vielen Einzelresultaten be-
stehende Spezialgebiet der Ungleichungen brachte. Seither ist die Bedeutung der Un-
gleichungen stdndig gewachsen, vor allem im Hinblick auf viele moderne Anwendungs-
gebiete der Mathematik (Spieltheorie, Lineare Programmierung, Okonometrie etc.). Wie
sehr die allgemeine Entwicklung der Algebra und Analysis auch diesem Forschungsgebiet
zugute gekommen ist, wird aus dem vorliegenden Heft ersichtlich, das ein modernes
Sammelwerk von Resultaten und Methoden in iibersichtlicher Forim darstellt.

Die klassischen Ungleichungen haben weitgehende Verallgemeinerungen und Ver-
schiarfungen erfahren. Dariiber orientiert das 1. Kapitel, in dem der Leser auch viele in
letzter Zeit entdeckte Ungleichungen kennenlernt. Die Beweise sind hier meistens ange-
geben; fiir die Ungleichung zwischen dem arithmetischen und geometrischen Mittel sogar
deren zwolf.

Neuartige Typen von Ordnungsbeziehungen treten im hyperkomplexen Bereich auf.
Das wird im 2. Kapitel gezeigt, dessen Hauptgegenstand die Matrizen sind. Der grund-
legende Begriff der positiven Zahl kann hier auf verschiedene Arten erweitert werden.

Im 3. Kapitel iiber Momentenrdume kommen geometrische Gesichtspunkte aus der
Theorie der konvexen Koérper zur Anwendung. Einem Funktionenraum, der mit f(x) und
g(¥) auch alle 4 f(x) + (1 — 4) g(»), 0 £ 1 < 1, enthdlt, entspricht ndmlich ein konvexes
Gebiet in einem R,, wenn als Koordinaten eines Punktes die (sehr allgemein definierten)
ersten » Momente von f(¥) genommen werden. Die einfache geometrische Bemerkung, dass
die Distanz zwischen einem ausserhalb eines Eibereichs 8B liegenden Punkt P und einem
Punkt der Begrenzung von 8 dort minimal wird, wo der Abstand von P von den Tangen-
tialebenen von B ein (lokales) Maximum hat, zeigt die Aquivalenz zwischen gewissen
Maximal- und Minimalproblemen, die in abstrakten Riumen zu wichtigen Resultaten
fithrt.

Gegenstand des 4. Kapitels sind Differentialoperatoren L. Unter gewissen Voraus-
setzungen gelten Sidtze von folgendem Typus: Aus L(u) = 0 folgt » = 0, oder aus
L(u) > 0 und L(v) = 0 folgt v > v.

Imletzten Kapitel werden Differentialungleichungen behandelt, die eng mit der Theorie
der linearen Differentialgleichungen zusammenhidngen. Typisch ist folgendes Resultat:
Gehort # dem linearen normierten Raum L? [0, oo] mit » = 1 und #” dem Raum L” mit
r = 1 an, so liegt #’ fiir m = max (p, #) in L™, das heisst, das von 0 bis oo erstreckte
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