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Ungel6ste Probleme 85

Es ldsst sich noch zeigen, dass dabei die relative Haufigkeit m*/m eine Abweichung
R = |/p (1 — p)/m besitzt, wobei p = Y|F die Wahrscheinlichkeit dafiir darstellt, dass
ein zufillig aus E herausgegriffener Gitterpunkt in W liegt und m die Anzahl aller
Abfragen ist.

Im Prinzip lisst sich auf diese Weise jedes bestimmte Integral niherungsweise
berechnen.

Die praktische Bedeutung der Monte Carlo-Methode tritt auch hier erst bei der
Berechnung von Integralen iiber n-dimensionale Bereiche in Erscheinung. Bei solchen
Problemen ist die Monte Carlo-Methode der klassischen Auszdhlmethode sogar weit
iberlegen. S. FiLipp1
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Nr. 46. In einem Korper der Charakteristik + 2 ist — 1 entweder {iberhaupt nicht
Quadratsumme oder Summe einer wohlbestimmten Mindestanzahl s von Quadraten.
Die Zahl s ist entweder eine Zweierpotenz oder wenigstens durch 16 teilbar (H. KNE-
SER, Jahresber. DMV 1934). In allen bekannten Beispielen ist s = 1, 2 oder 4. Sind
hohere Werte von s moglich? (Vgl. auch Tsuzuku, Journ. Math. Soc. Japan 6, 1954).

u sel die grosste Zahl #, so dass eine quadratische Form in # Variablen die Null
nur trivial darstellt. Als Werte von # treten alle Zweierpotenzen auf. Sind andere
Werte fiir  moglich ? # = 3 ist ausgeschlossen (KAPLANSKY, Journ. Math. Soc. Japan
5, 1953), iibrigens auch # = 5. Weiter weiss man nichts. H. Lenz

Nachtrag zu Nr. 391). Die Vermutung, wonach sich in jeder richtungsvollstdndi-
gen, stetigen Geradenschar des gewohnlichen Raumes drei paarweise orthogonal-
stehende Geraden aufweisen lassen, die sich in einem Punkt schneiden, konnte kiirz-
lich von H. DEBRUNNER, Bern, bestitigt werden?). Dariiber hinaus wurde gezeigt,
dass derartige Geradenscharen existieren, die genau ein solches Geradentripel ent-
halten. Die Beweisfithrung Debrunners ist topologischer Art und stiitzt sich u.a. auf
die Theorie der Schnittzahlen héherdimensionaler berandeter Mannigfaltigkeiten.

H. HADWIGER
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