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II ne peut pas etre 2 | n, puisque alors an + fe" serait une somme de deux carres
distincts de nombres premiers entre eux, donc aurait un diviseur premier de la forme
4 ß + 1, contrairement ä (2). Le nombre n est donc impair. Comme (a, fe) 1 et
d'apres (2) on a 2 | an + fe", on trouve 2 )f ab et le nombre (an + bn)j(a + fe) est impair
> 1. D'apres (2) on trouve donc (an + fe")/(a + fe) 2P - 1, d'oü a + fe 2P~X et

an + fe" - 2 (a + fe)2 - (a + fe), a ^ 3 (3)

S'il etait n > 3, on aurait

an<an + bn 2(a + b)2- (a + b) <2(a + a)2 8 a2,

donc an~x < Sa, ce qui est impossible, vu que a"-1 > 8a — 1 pour a ^ 3, n > 3.

Le nombre n > 1 etant impair, on a donc n 3 et, d'apres (3), on trouve

a2 - a 6 + fe2 2 (a 4- 6) - 1, donc a (a - fe - 2) + (fe - l)2 0

S'il etait fe > 1, on aurait a — fe — 2 < 0, donc a ^ fe + 1 et, comme <z > fe, on aurait
a b + 1. Un des nombres # et fe serait donc pair, l'autre impair, contrairement ä (2).
On a donc fe leta — fe — 2 0, d'oü a 3 et a" + fe" 28. Le theoreme 2 se trouve
ainsi demontre.

Des theoremes 1 et 2 resultent tout de suite les corollaires suivants:

Corollaire 1. II n'existe aucun nombre parfait pair de la forme an — 1, oü a et

n> 2 sont des nombres naturels.

Corollaire 2. Le nombre 28 est le seul nombre parfait pair de la forme an + l,oüaet
n > 1 sont des nombres natu?eis. A. Rotkiewicz (Varsovie)

Kleine Einführung in die Monte Carlo-Methode

1. Einleitung

Die Monte Carlo-Methode gehört zu den statistischen Lösungsverfahren. Im
wesentlichen besteht diese Methode in der Simulation eines stochastischen Vorganges
auf einer elektronischen Rechenmaschine. Dabei werden für gewisse mathematische
Probleme die ihnen äquivalenten stochastischen Vorgänge in einem «Spiel», dessen

Regeln dem Charakter der jeweiligen stochastischen Vorgänge angepasst sind,
nachgespielt.

Seit etwa zwanzig Jahren werden Monte Carlo-Verfahren zur Lösung von
physikahschen und mathematischen Problemen, zum Beispiel zur Lösung von Diffusionsproblemen

in der Reaktortheorie, zur Matrizeninversion, zur Berechnung von
Integralen über w-dimensionale Bereiche, zur Lösung von gewissen partiellen Differentialgleichungen

vom elliptischen und speziellen vom parabolischen Typus, zur Lösung
von linearen Integralgleichungen zweiter Art vom Fredholmschen Typus, vor allem
aber zur Lösung von vielen Problemen in der «Operations Research» [vgl. [2]1)]
verwendet.

*) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 85.
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2. Zwei Beispiele zur Erläuterung der Monte Carlo-Methode

79

21 Beispiel 1

Ebenso wie Newton die Gravitationsgesetze angeblich bei der Beobachtung eines
fallenden Apfels entdeckt haben soll, soll em legendärer Mathematiker, der das
Herumtorkeln eines Betrunkenen schmunzelnd beobachtete, dabei die Monte Carlo-
Methode erfunden haben Dieser Mathematiker stellte sich namhch die Frage,
wieviele Schritte der Betrunkene im Durchschnitt machen müsse, um sich von seinem
Ausgangspunkt eine bestimmte Strecke weit zu entfernen Dabei wird die
Wahrscheinlichkeit, dass der Betrunkene bei jedem Schritt in jede Richtung gehen konnte,
als gleich gross vorausgesetzt Dieses Problem wird als Problem des «Zufallsweges»
bezeichnet, und zu seiner Losung wurde die sogenannte «stochastische Stichprobe» -
eine Variante der Zufallsstichprobe - entwickelt, die spater den Namen «Monte Carlo-
Methode» erhielt

Wir wollen die Monte Carlo-Methode am Beispiel des Betrunkenen kurz erläutern
Die Frage lautet Wie gross ist die durchschnittliche Entfernung des Betrunkenen
von seinem Ausgangspunkt nach n Schrittenp Wie kann man nun die gesuchte
durchschnittliche Entfernung schätzen, ohne eine grosse Zahl von Betrunkenen in einer
ähnlichen Situation beobachtet zu haben Mit Hilfe einer Tabelle von Zufallszahlen
(vgl Tabelle 1) lasst sich der Verlauf des Zickzackweges simulieren (nachspielen) und
dadurch eine Annäherung an die wirkliche Situation erhalten Aus einer grossen Zahl

Tabelle 1

72 13 78 34 52 54 41 92 87 58 09 99 93 27 33
04 25 45 11 68 72 84 57 21 73 94 87 35 05 84
48 08 38 22 05 01 82 96 70 08 74 22 78 12 15
16 60 25 97 82 89 87 11 41 27 85 05 78 96 93
29 91 00 96 27 74 88 39 93 78 60 27 34 71 84

77 70 82 01 60 25 49 34 39 27 72 64 28 92 38
90 71 50 43 75 28 27 81 65 45 95 60 31 28 70
79 66 67 60 16 34 48 27 11 52 25 60 08 52 50
72 19 38 27 80 63 31 43 80 51 47 33 88 25 77
30 95 32 43 14 02 87 28 10 11 15 66 31 56 08

36 18 37 38 34 27 14 66 49 99 96 99 46 35 52
01 96 49 06 73 54 01 67 47 73 64 18 31 10 51
47 40 83 91 76 73 06 74 21 25 31 84 42 63 03
10 73 98 59 08 93 94 13 09 76 16 30 43 23 26
32 40 15 30 79 75 65 28 27 47 05 40 79 78 20

24 35 83 12 96 13 23 86 69 78 90 10 02 81 55
99 09 91 11 55 08 21 89 19 78 39 82 51 09 20
30 34 73 06 52 33 55 12 24 49 04 77 82 11 57
40 32 25 96 17 32 58 55 13 18 77 69 99 52 06
68 86 78 78 65 81 69 37 67 50 65 37 76 91 14

45 53 31 87 33 36 68 94 66 25 98 92 71 10 32
24 35 58 32 74 26 97 75 98 55 44 24 03 32 26
54 12 98 54 70 72 54 30 24 72 01 24 05 20 01

79 35 09 29 50 59 25 58 34 36 85 41 40 51 28
36 61 19 77 93 02 05 55 07 15 90 56 07 03 96
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dieser nachgespielten Versuche kann man dann die gesuchte durchschnittliche
Entfernung fur eine beliebige Zahl n von zufälligen Zickzackschritten naherungsweise
ermitteln

Wollen wir zum Beispiel die durchschnittliche Entfernung des Betrunkenen von
seinem Ausgangspunkt nach n 10 Schritten schätzen, so haben wir folgendermassen
vorzugehen Wir nehmen die Tabelle der zweistelligen Zufallszahlen (siehe Tabelle 1)

zur Hand und vereinbaren folgendes
I Der Ausgangspunkt des Betrunkenen sei der Ursprung des Koordinatensystems

(siehe Figur 1)

y
+1

4 -3 ¦2 -7 Po + 1 *2
0

1 *P1

X

-2>
'P2

P9 VP7 %PS 3

dp10 ps 9" 4

Figur 1

II Die erste Ziffer der aus der Tabelle «gezogenen» zweistelligen Zufallszahlen soll
die Richtung des Schrittes entlang der x-Achse bestimmen, und zwar soll ein Schritt in
Richtung der positiven x-Achse gemacht werden, wenn die erste Ziffer eine gerade Zahl
oder Null ist und m Richtung der negativen x-Achse, wenn die erste Ziffer eine ungerade
Zahl ist

III Die zweite Ziffer von links der gleichen zweistelligen Zufallszahl soll analog
zu II die Richtung des Schrittes entlang der y-Achse bestimmen Positiv, wenn
gerade oder Null, negativ, wenn ungerade

IV P(xn, yn) stelle die Lage des Betrunkenen am Ende des n-ten Schrittes dar,
dabei wählen wir als Schrittweite h 1

V dn \/xl + yl ist gleich der Entfernung des Betrunkenen am Ende des n-ten
Schrittes

Wir können jetzt das «Betrunkenen-Spiel» beginnen, indem wir zehn beliebige
zweistellige Zufallszahlen aus unserer Tabelle 1 herausschreiben und aufgrund der

Vereinbarungen I, II V die einzelnen Schntte mit Start im Nullpunkt P0(0,0)
ausfuhren und am Ende des zehnten Schrittes d10 berechnen « Ziehen»wir zum Beispiel
aus der Tabelle 1 die zweistelligen Zahlen (in der Tabelle eingerahmt), so haben wir
die in der Tabelle 2 zusammengefassten und m Bild 1 graphisch dargestellten Schritte
auszufuhren

Daraus erhalt man fur die Entfernung nach einem Zufallsweg

fi\2 + y\0 ii- 4)2 + (- 4)2 ^32 5,657
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Das obige Verfahren muss natürlich fur sehr viele Zufallswege mit Hilfe von Zufallszahlen

aus einer grosseren Tabelle von zweistelligen Zufallszahlen wiederholt werden,
damit man einen guten Durchschnittswert d1Q erhalt

Tabelle 2

Schritt Erste Zweite Koordinaten des

n Ziffer Ziffer Punktes P(xn yn)

1 8 3 (+1 -1)
2 9 1 0 -2)
3 7 3 (-1 -3)
4 2 5 0 -4)
5 7 8 (-1 -3)
6 3 1 (-2 -4)
7 5 8 (-3 -3)
8 9 8 (-4 -2)
9 0 9 (-3 -3)

10 1 9 (-4 -4)

Für dieses Spiel lasst sich auch eine exakte Losung - nach einer grossen Zahl
unregelmassiger Schritte - angeben, sie lautet

dabei stellt a die durchschnittliche Lange der vom Betrunkenen durchschnttenen
geraden Strecke und n die Anzahl der zurückgelegten Schritte dar

2 2 Beispiel 2

Ein weiteres schönes Beispiel zur Illustration der Monte Carlo-Methode hat der
franzosische Mathematiker Buffon zur Bestimmung von n - naturlich lasst sich tz

numerisch schneller und besser bestimmen - ersonnen Man zeichnet auf em Blatt
Papier Parallelen im Abstand / und wirft m häufiger Wiederholung ein dünnes
Stabchen der Lange / (zum Beispiel em Streichholz) auf dieses Blatt Papier und zahlt

a) die Anzahl aller Wurfe (fallt einmal das Stabchen auf den Boden oder ausserhalb
des Blattes, so wird dieser Wurf nicht mitgezahlt),

b) die Anzahl derjenigen Wurfe, in denen das Stabchen eine der Parallelen schneidet

Es lasst sich zeigen, dass das Verhältnis der Anzahl aller Wurfe zur Anzahl
derjenigen Wurfe, in denen das Stabchen eine der Parallelen schneidet, gleich jr/2 ist

3. Erzeugung von Zufallszahlen auf elektronischen Rechenmaschinen

Wir haben im Beispiel 2 1 unser «Betrunkenen-Spiel» unter Verwendung einer
Tabelle von Zufallszahlen durchgeführt Da die Monte Carlo-Methoden in jedem Fall
eine grosse Anzahl von Entscheidungen uber das Eintreten oder Nichteintreten
zufälliger Ereignisse erfordern, und da man in einer elektronischen Rechenmaschine

wegen der begrenzten Speicherkapazität nicht eine Tabelle von Zufallszahlen m
behebiger Lange speichern kann, werden die fur die Durchfuhrung der Monte Carlo-
Methoden benotigten Zufallszahlen nach einem Programm erzeugt Weil die Erzeugung

von Zahlen nach einem Programm niemals streng Zufallszahlen liefern kann,
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werden die so erhaltenen Zahlen als Pseudozufallszahlen - m der Folge schreiben wir
jedoch nur Zufallszahlen - bezeichnet Die Pseudozufallszahlen werden folgendermassen

erzeugt Ausgehend von einer beliebigen, frei wahlbaren zwolfstelhgen
Dezimalzahl Z0 bildet man die Folge Zx, Z2, Zn, bei der jedes Glied aus dem
vorhergehenden durch Quadrieren - also Zn+X Z\ - hervorgeht Von dem 24-stelhgen
Produkt Z\ werden dabei die mittleren zwölf Ziffern als neues Glied der Folge
genommen Man verwendet nun nacheinander die zwölf Ziffern jedes Gliedes der Folge
einzeln oder in Gruppen von maximal zwölf Ziffern als Zufallszahlen fur die
Durchfuhrung der Monte Carlo-Methoden Smd die zwölf Ziffern aufgebraucht, so wird
Zn+2 berechnet usw Dabei ist zu beachten, dass die letzten sechs Stellen eines Gliedes
der Folge Zn zufallig alle gleich Null werden können Dadurch werden infolge der
Vorschrift zur Berechnung von Zn+X, Zn+2, die letzten sechs Ziffern von da an immer
Null sein Die GleichVerteilung der Zufallszahlen wäre daher gestört und das Ergebnis
sicher nicht mehr zufallig Durch Einbau einer Abfrage in das Programm lasst sich
dieser Nachteil stets beheben Tritt namhch der Fall em, dass die letzten sechs Ziffern
eines Gliedes der Folge Null sind, so unterbricht man einfach das Verfahren und rechnet

mit einem neuen Ausgangswert Z01 weiter usf Unter Benutzung des Integral-
Grenzwertsatzes von Moivre-Laplace und eines Satzes von Kolmogorov lasst sich
aufgrund einer experimentellen Untersuchung (vgl [4]) nachweisen, dass die so

gewonnenen Zufallszahlen asymptotisch als Zufallszahlen angesehen werden können

4. Ein Beispiel zur Lösung von Randwertproblemen bei gewohnlichen
Differentialgleichungen mit Hilfe der Monte Carlo-Methode

Um zum Beispiel das Randwertproblem

y" + 2 c y' 0 (c Konstante) (1)

mit den Randbedingungen y(a) A und y(fe) B nach der Monte Carlo-Methode zu
losen, verwandelt man zuerst die Differentialgleichung (1) unter Verwendung der
finiten Ausdrucke

y» ~ y (* +h) - 2^w + y (* -h)
h2

m die nach y(x) aufgelöste Differenzengleichung

oder

yW-TJfWy<* + *> + TTTÄJy<*-*>' (2a)

wenn wir mit Y(x) den Näherungswert von y(x) bezeichnen Fuhren wir die
Abkürzungen

1 l + 2hc A 11 ,_x^T-TTTT und *-TTTA7 (3)
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ein, so können wir die Differenzengleichung (2a) in der Form

Y(x) =pY(x + h) + qY(x-h) (4)

schreiben. Da es durch eine geeignete Wahl von h bei beliebigem c immer möglich ist,
die Koeffizienten p und q von (4) positiv zu machen, und da ausserdem p + q 1 und
somit 0 < p < 1 und 0 < q < 1 gilt, können wir p und q als Wahrscheinlichkeiten
deuten. Jetzt lässt sich die «Spielregel» zur Ermittlung einer Näherungslösung von (1)
leicht (vgl. [1], [3], [5]) aufstellen. Die Spielregel lautet hier folgendermassen: Man
verfolge den Weg einer «Spielfigur», die von einem Punkt x im Intervall a < x < fe

Zufallsschritte der Länge h mit der Wahrscheinlichkeit p für Rechtsschritte und der
Wahrscheinlichkeit q für Linksschritte [vgl. (3)] ausführt und notiere die Anzahl der
Fälle, bei denen die Spielfigur den Randpunkt a bzw. fe erreicht (siehe Figur 2). Dabei
vereinbaren wir folgendes: Es sei P{A) die dem zufälligen Ereignis A zugeordnete
Wahrscheinlichkeit. Für P(A) gilt immer 0 < P(A) < 1. Ist nun Zn irgendeine, nach
dem oben genannten Programm erzeugte Zufallszahl, die der Bedingung 0 < Zn < 1

genügt, so sei das Ereignis A genau dann eingetreten, wenn Zn < P(A) ist. Auf das

obige Spiel bezogen, bedeutet das, dass wir eine Zufallszahl, die kleiner als 1 ist, in der
Rechenmaschine erzeugen und befragen, ob sie kleiner als p oder kleiner als q ist.
Ist zum Beispiel diese Zufallszahl kleiner als p, so führen wir mit der Spielfigur einen
Schritt der Länge h nach rechts aus. Startet man so von x aus eine hinreichend grosse
Zahl n von Zufallswegen mit einer kleinen Schrittweite h, so stellt der Mittelwert

Ylx) A™a + B -^ (5)

einen Näherungswert für die Lösung des gegebenen Randwertproblems (1) dar. Dabei
ist na bzw. nb die Anzahl der «Besuche» der Spielfigur bei a bzw. fe, während A und B
die gegebenen Randwerte darstellen.

y
L Unksschntfe
R s Rechtsschritte

B

a] ~l *U \

0 a '
h

' *
' '

b x

Figur 2

In [IJ wird bewiesen, dass die Lösung des Wahrscheinlichkeitsproblems, das zum
hier angegebenen statistischen Prozess gehört, gegen die Differenzengleichung (2)

konvergiert und dass die «Spielfigur» bei jedem Zufallsweg nach endlich vielen
Schritten den Randpunkt a bzw. fe erreicht.

Dieses Verfahren lässt sich auf mehrere Dimensionen verallgemeinern und somit
auch zur Lösung einer bestimmten Klasse von partiellen linearen Differentialgleichungen

zweiter Ordnung verwenden. Die Monte Carlo-Methode erlangte erst bei der
Lösung solcher Probleme eine praktische Bedeutung (vgl. [1], [4], [5]). Die Klasse der
gewöhnlichen Differentialgleichungen [wie zum Beispiel (1)], die man mit Hilfe der
Monte Carlo-Methode näherungsweise lösen kann, ist überdies immer exakt lösbar. Im
Bereich der partiellen Differentialgleichungen ist dies jedoch selten der Fall.
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5. Ein Beispiel zur numerischen Quadratur nach der Monte-Carlo Methode

Wir wollen zum Beispiel das bestimmte Integral

f(x) dx (i)

mit Hilfe der Monte Carlo-Methode lösen. Wir setzen dabei voraus, dass der Integrand
f(x) im Integrationsintervall 0 < x < 1 das Vorzeichen nicht wechselt und dass
0 < f(x) < 1 gilt. Dazu zeichnen wir zunächst in das Einheitsquadrat E ein quadratisches

Gitter der Maschenweite h (vgl. Figur 3). Man kann nun nach der klassischen
Definition des Flächeninhaltes den gesuchten Flächeninhalt Y der zwischen der
Kurve y f(x) und der x-Achse liegenden Fläche W aus dem folgenden Grenzwert

M*^rF (2)Y lim
h ^0

erhalten, wobei F der Flächeninhalt des Einheitsquadrates (F 1) und M bzw. M*
die Anzahl aller Gitterpunkte, die in der Fläche E bzw. in der Fläche W für eine gegen
Null gehende Maschenweite h liegen, darstellt.

^ >. >

Figur 3

Bei Verwendung der Monte Carlo-Methode zur Lösung der numerischen Quadratur
zählt man nun nicht alle in der Fläche E bzw. W gelegenen Gitterpunkte, sondern
greift zufällig eine Menge (vgl. [5]) von m Punkten aus der Fläche E heraus und
ermittelt davon die Anzahl m* der in W hineinfallenden Gitterpunkte.

Die «Spielregel» zur Lösung von (1) mit Hilfe der Monte Carlo-Methode lautet daher:
Man erzeuge in einer elektronischen Rechenmaschine laufend eine Zufallszahl

Zn xn (0 < Zn < 1) nach der in 3. angegebenen Vorschrift, berechne dazu den
Funktionswert f(xn) und erzeuge anschliessend wieder eine Zufallszahl Zn+X

yn (0 < Zn+X < 1) und baue in das Rechenprogramm die Abfrage ein, ob f(xn) < yn
ist oder nicht. Bei jeder Abfrage addieren wir

a) in einem Summenspeicher Sx eine «1» (Start mit Summe 0), dagegen
b) in einem Summenspeicher S2 (Start mit Summe 0) eine «1» nur bei günstigem

Ausgang - f(xn) < yn, das heisst der durch xn und yn bestimmte Gitterpunkt P(xn, yn)

fällt in die Fläche W - der Abfrage.
Bei einer Anzahl von m solchen Abfragen zeigt der Summenspeicher Sx die Anzahl

m aller Abfragen und der Summenspeicher S2 die Anzahl m* aller günstigen Abfragen
an. Damit kann man die relative Häufigkeit m*/m berechnen und daraus den
gesuchten Näherungswert für das bestimmte Integral (1)

ermitteln.
Y & ^- F (hier ist F 1)

m
(3)
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Es lasst sich noch zeigen, dass dabei die relative Häufigkeit m*/m eine Abweichung
R ]/p (1 — p)\m besitzt, wobei p YjF die Wahrscheinlichkeit dafür darstellt, dass

em zufällig aus E herausgegriffener Gitterpunkt in W liegt und m die Anzahl aller
Abfragen ist

Im Prinzip lasst sich auf diese Weise jedes bestimmte Integral naherungsweise
berechnen

Die praktische Bedeutung der Monte Carlo-Methode tritt auch hier erst bei der
Berechnung von Integralen uber n-dimensionale Bereiche in Erscheinung Bei solchen
Problemen ist die Monte Carlo-Methode der klassischen Auszahlmethode sogar weit
überlegen S Filippi
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Ungelöste Probleme

Nr 46 In einem Korper der Charakteristik + 2 ist — 1 entweder überhaupt nicht
Quadratsumme oder Summe einer wohlbestimmten Mindestanzahl s von Quadraten
Die Zahl 5 ist entweder eine Zweierpotenz oder wenigstens durch 16 teilbar (H Kneser,

Jahresber DMV 1934) In allen bekannten Beispielen ist s 1, 2 oder 4 Sind
höhere Werte von s möglich? (Vgl auch Tsuzuku, Journ Math Soc Japan 6, 1954)

u sei die grosste Zahl n, so dass eine quadratische Form in n Variablen die Null
nur trivial darstellt Als Werte von u treten alle Zweierpotenzen auf Smd andere
Werte fur u möglich u 3 ist ausgeschlossen (Kaplansky, Journ Math Soc Japan
5, 1953), übrigens auch u 5 Weiter weiss man nichts H Lenz

Nachtrag zu Nr 39 *) Die Vermutung, wonach sich in jeder nchtungsvollständigen,

stetigen Geradenschar des gewöhnlichen Raumes drei paarweise orthogonalstehende

Geraden aufweisen lassen, die sich in einem Punkt schneiden, konnte kürzlich

von H Debrunner, Bern, bestätigt werden2) Darüber hinaus wurde gezeigt,
dass derartige Geradenscharen existieren, die genau ein solches Geradentnpel
enthalten Die Beweisführung Debrunners ist topologischer Art und stutzt sich u a auf
die Theorie der Schnittzahlen hoherdimensionaler berandeter Mannigfaltigkeiten

H Hadwiger
*) El Math 16, 30 31 (1961)
2) H Debrunner, Orthogonale Dreibeine in richtungsvollstandigen, stetigen Geradenscharen des Rz

Comm Math Helv 37, 36-43 (1962)
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