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78 S. Firrerr: Kleine Einfiihrung in die Monte Carlo-Methode

Il ne peut pas étre 2 | n, puisque alors a” + b* serait une somme de deux carrés
distincts de nombres premiers entre eux, donc aurait un diviseur premier de la forme
4 k + 1, contrairement a (2). Le nombre »# est donc impair. Comme (@, b) =1 et
d’aprés (2) ona 2| a* + b, on trouve 2 | ab et le nombre (a” 4 b")/(a + b) est impair
> 1. D’apreés (2) on trouve donc (a” + b*)/(a + b) =22 — 1, d'ota + b= 2¢"1et

a"+b"=2@a+b2—(a+bd), a=3. (3)
S’il était » > 3, on aurait
A< ar+br=2@+b:—(a+b <2+ a)?=_8a?,

donc a”-1 < 84, ce qui est impossible, vu que 4"-1> 84 — 1 pour a = 3, n > 3.
Le nombre #» > 1 étant impair, on a donc # = 3 et, d’aprés (3), on trouve

@—ab+b=2(a+b—1, donc al@a—b—2)+(b—1)2=0.

S’il était 5> 1, on auraita — b — 2 < 0,donca < b + 1 et, comme a > b, on aurait
a = b+ 1. Un des nombres a et b serait donc pair, I’autre impair, contrairement a (2).
Onadoncb=1eta—b—2=0,dotta = 3eta”+ b* = 28. Le théoréme 2 se trouve
ainsi démontré.

Des théorémes 1 et 2 résultent tout de suite les corollaires suivants:

COROLLAIRE 1. Il n’existe aucun nombre parfait pair de la forme a® — 1, ot a et
n > 2 sont des nombres naturels.

COROLLAIRE 2. Le nombre 28 est le seul nombre parfait pair de la forme a™ + 1, o a et
n > 1 sont des nombres naturels. A. RotkiEwIcz (Varsovie)

Kleine Einfithrung in die Monte Carlo-Methode
1. Einleitung

Die Monte Carlo-Methode gehort zu den statistischen Losungsverfahren. Im
wesentlichen besteht diese Methode in der Simulation eines stochastischen Vorganges
auf einer elektronischen Rechenmaschine. Dabei werden fiir gewisse mathematische
Probleme die ihnen dquivalenten stochastischen Vorgidnge in einem «Spiel», dessen
Regeln dem Charakter der jeweiligen stochastischen Vorginge angepasst sind, nach-
gespielt.

Seit etwa zwanzig Jahren werden Monte Carlo-Verfahren zur Lsung von physi-
kalischen und mathematischen Problemen, zum Beispiel zur Losung von Diffusions-
problemen in der Reaktortheorie, zur Matrizeninversion, zur Berechnung von Inte-
gralen iiber n-dimensionale Bereiche, zur Lésung von gewissen partiellen Differential-
gleichungen vom elliptischen und speziellen vom parabolischen Typus, zur Lésung
von linearen Integralgleichungen zweiter Art vom Fredholmschen Typus, vor allem
aber zur Losung von vielen Problemen in der «Operations Research» [vgl. [2]1)] ver-
wendet.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 85.
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2. Zwei Beispiele zur Erlduterung der Monte Carlo-Methode
2.1. Beispiel 1

Ebenso wie NEwTON die Gravitationsgesetze angeblich bei der Beobachtung eines
fallenden Apfels entdeckt haben soll, soll ein legendirer Mathematiker, der das
Herumtorkeln eines Betrunkenen schmunzelnd beobachtete, dabei die Monte Carlo-
Methode erfunden haben. Dieser Mathematiker stellte sich ndmlich die Frage, wie-
viele Schritte der Betrunkene im Durchschnitt machen miisse, um sich von seinem
Ausgangspunkt eine bestimmte Strecke weit zu entfernen. Dabei wird die Wahr-
scheinlichkeit, dass der Betrunkene bei jedem Schritt in jede Richtung gehen kénnte,
als gleich gross vorausgesetzt. Dieses Problem wird als Problem des «Zufallsweges»
bezeichnet, und zu seiner Losung wurde die sogenannte «stochastische Stichprobe» —
eine Variante der Zufallsstichprobe — entwickelt, die spiater den Namen «Monte Carlo-
Methode» erhielt.

Wir wollen die Monte Carlo-Methode am Beispiel des Betrunkenen kurz erldutern.
Die Frage lautet: Wie gross ist die durchschnittliche Entfernung des Betrunkenen
von seinem Ausgangspunkt nach # Schritten? Wie kann man nun die gesuchte durch-
schnittliche Entfernung schédtzen, ohne eine grosse Zahl von Betrunkenen in einer
dhnlichen Situation beobachtet zu haben? Mit Hilfe einer Tabelle von Zufallszahlen
(vgl. Tabelle 1) ldsst sich der Verlauf des Zickzackweges simulieren (nachspielen) und
dadurch eine Anndaherung an die wirkliche Situation erhalten. Aus einer grossen Zahl

Tabelle 1
72 13 78 34 52 54 41 92 87 58 09 99 93 27 33
04 25 45 11 68 72 84 57 21 73 94 87 35 05 84
48 08 38 22 05 01 82 06 70 08 74 22 78 12 15
16 60 25 97 82 80 87 11 41 27 8 05 78 96 93
290 91 00 96 27 74 88 39 0903 78 60 27 34 171 84
77 70 82 01 60 25 49 34 39 27 72 64 28 92 38
90 71 50 43 75 28 27 81 65 45 95 60 31 28 70
79 66 67 60 16 34 48 27 11 52 25 60 08 52 50
72 19 38 27 80 63 31 43 80 51 47 33 88 25 77
30 95 32 43 14 02 87 28 10 11 15 66 31 56 08
36 18 37 38 34 27 14 66 49 99 9% 99 46 35 52
01 9% 49 06 73 54 01 67 47 73 64 18 31 10 51
47 40 83 91 76 73 06 74 21 25 31 84 42 63 03
10 73 98 59 08 93 94 13 09 76 16 30 43 23 26
32 40 15 30 79 75 65 28 27 47 05 40 79 78 20
24 35 |83 12 96 13 23 8 69 78 90 10 02 81 55
99 (09 |91 11 55 08 21 80 19 78 39 82 51 09 20
30 34 |73} 06 52 33 55 12 24 49 04 77 82 11 57
40 32 25| 96 17 32 58 55 13 18 77 69 99 52 06
68 86 |78 78 65 81 69 37 67 50 65 37 176 91 14
45 53 |31 87 33 36 68 94 66 25 98 92 171 10 32
24 35 [58) 32 74 26 97 75 98 55 4 24 03 32 26
54 12 |98 54 70 72 54 30 24 72 01 24 05 20 o1
79 35 |09 29 50 50 25 58 34 36 85 41 40 51 28
36 61 (19 77 93 02 05 55 07 15 9 56 07 03 96
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dieser nachgespielten Versuche kann man dann die gesuchte durchschnittliche Ent-
fernung fiir eine beliebige Zahl #» von zufilligen Zickzackschritten ndherungsweise
ermitteln.

Wollen wir zum Beispiel die durchschnittliche Entfernung des Betrunkenen von
seinem Ausgangspunkt nach # = 10 Schritten schédtzen, so haben wir folgendermassen
vorzugehen : Wir nehmen die Tabelle der zweistelligen Zufallszahlen (siehe Tabelle 1)
zur Hand und vereinbaren folgendes:

I. Der Ausgangspunkt des Betrunkenen sei der Ursprung des Koordinatensystems
(siehe Figur 1).
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Figur 1

I1. Die erste Ziffer der aus der Tabelle «gezogenen» zweistelligen Zufallszahlen soll
die Richtung des Schrittes entlang der x-Achse bestimmen, und zwar soll ein Schritt in
Richtung der positiven x-Achse gemacht werden, wenn die erste Ziffer eine gerade Zahl
oder Null ist und in Richtung der negativen x-Achse, wenn die erste Ziffer eine ungerade
Zahl ist.

II1. Die zweste Ziffer von links der gleichen zweistelligen Zufallszahl soll analog
zu II. die Richtung des Schrittes entlang der y-Achse bestimmen: Positiv, wenn
gerade oder Null, negativ, wenn ungerade.

IV. P(x,, y,) stelle die Lage des Betrunkenen am Ende des #n-ten Schrittes dar;
dabei wihlen wir als Schrittweite 4 = 1.

V.d,= l/;?: + 2 ist gleich der Entfernung des Betrunkenen am Ende des #-ten
Schrittes.

Wir konnen jetzt das «Betrunkenen-Spiel» beginnen, indem wir zehn beliebige
zweistellige Zufallszahlen aus unserer Tabelle 1 herausschreiben und aufgrund der
Vereinbarungen 1., I1.,.., V., die einzelnen Schritte mit Start im Nullpunkt Py(0,0)
ausfithren und am Ende des zehnten Schrittes d,, berechnen. «Ziehen » wir zum Beispiel
aus der Tabelle 1 die zweistelligen Zahlen (in der Tabelle eingerahmt), so haben wir
die in der Tabelle 2 zusammengefassten und in Bild 1 graphisch dargestellten Schritte
auszufiithren.

Daraus erhilt man fiir die Entfernung nach einem Zufallsweg

dio= Y28 + % = (= 42 + (— 42 = /32 = 5,657
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Das obige Verfahren muss natiirlich fiir sek» viele Zufallswege mit Hilfe von Zufalls-

zahlen aus einer grosseren Tabelle von zweistelligen Zufallszahlen wiederholt werden,
damit man einen guten Durchschnittswert 4,, erhilt.

Tabelle 2

Schritt Erste Zweite Koordinaten des
n Ziffer Ziffer Punktes P(x,, v,)

1 8 3 (+1, —1)

2 9 1 ( 0, -2

3 7 3 (-1, —-3)

4 2 5 ( 0, —4)

5 7 8 (-1, = 3)

6 3 1 (-2, —4)

7 5 8 (=3, —3)

8 9 3 (—4, -2)

9 0 9 (=3, —3)
10 1 9 (—4, —4)

Fiir dieses Spiel ldsst sich auch eine exakte Losung — nach einer grossen Zahl
unregelmdssiger Schritte — angeben; sie lautet

d,=a V;{,
dabei stellt a die durchschnittliche Linge der vom Betrunkenen durchschrittenen
geraden Strecke und #» die Anzahl der zuriickgelegten Schritte dar.

2.2. Beisprel 2

Ein weiteres schones Beispiel zur Illustration der Monte Carlo-Methode hat der
franzosische Mathematiker Buffon zur Bestimmung von m — natiirlich lisst sich 7«
numerisch schneller und besser bestimmen — ersonnen: Man zeichnet auf ein Blatt
Papier Parallelen im Abstand / und wirft in hdufiger Wiederholung ein diinnes
Stabchen der Liange I (zum Beispiel ein Streichholz) auf dieses Blatt Papier und zihlt

a) die Anzahl aller Wiirfe (fillt einmal das Stabchen auf den Boden oder ausserhalb
des Blattes, so wird dieser Wurf nicht mitgezihlt),

b) die Anzahl derjenigen Wiirfe, in denen das Stdbchen eine der Parallelen schneidet.

Es lisst sich zeigen, dass das Verhiltnis der Anzahl aller Wiirfe zur Anzahl der-
jenigen Wiirfe, in denen das Stdbchen eine der Parallelen schneidet, gleich /2 ist.

3. Erzeugung von Zufallszahlen auf elektronischen Rechenmaschinen

Wir haben im Beispiel 2.1. unser «Betrunkenen-Spiel» unter Verwendung einer
Tabelle von Zufallszahlen durchgefiihrt. Da die Monte Carlo-Methoden in jedem Fall
eine grosse Anzahl von Entscheidungen iber das Eintreten oder Nichteintreten zu-
filliger Ereignisse erfordern, und da man in einer elektronischen Rechenmaschine
wegen der begrenzten Speicherkapazitit nicht eine Tabelle von Zufallszahlen in be-
liebiger Linge speichern kann, werden die fiir die Durchfiihrung der Monte Carlo-
Methoden benétigten Zufallszahlen nach einem Programm erzeugt. Weil die Erzeu-
gung von Zahlen nach einem Programm niemals streng Zufallszahlen liefern kann,
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werden die so erhaltenen Zahlen als Pseudozufallszahlen — in der Folge schreiben wir
jedoch nur Zufallszahlen — bezeichnet. Die Pseudozufallszahlen werden folgender-
massen erzeugt: Ausgehend von einer beliebigen, frei wihlbaren zwolfstelligen Dezi-
malzahl Z, bildet man die Folge Z,, Z,,..., Z,, bei der jedes Glied aus dem vorher-
gehenden durch Quadrieren — also Z,,; = Z2 — hervorgeht. Von dem 24-stelligen
Produkt Z% werden dabei die mittleren zwolf Ziffern als neues Glied der Folge ge-
nommen. Man verwendet nun nacheinander die zwélf Ziffern jedes Gliedes der Folge
einzeln oder in Gruppen von maximal zwolf Ziffern als Zufallszahlen fiir die Durch-
fiihrung der Monte Carlo-Methoden. Sind die zwolf Ziffern aufgebraucht, so wird
Z,,s berechnet usw. Dabei ist zu beachten, dass die letzten sechs Stellen eines Gliedes
der Folge Z, zufdllig alle gleich Null werden kénnen. Dadurch werden infolge der
Vorschrift zur Berechnung von Z, ., Z, .5, . . . die letzten sechs Ziffern von da an immer
Null sein. Die Gleichverteilung der Zufallszahlen wire daher gestért und das Ergebnis
sicher nicht mehr zufillig. Durch Einbau einer Abfrage in das Programm lisst sich
dieser Nachteil stets beheben. Tritt namlich der Fall ein, dass die letzten sechs Ziffern
eines Gliedes der Folge Null sind, so unterbricht man einfach das Verfahren und rech-
net mit einem neuen Ausgangswert Z, weiter usf. Unter Benutzung des Integral-
Grenzwertsatzes von MOIVRE-LAPLACE und eines Satzes von KoLMOGOROV ldsst sich
aufgrund einer experimentellen Untersuchung (vgl. [4]) nachweisen, dass die so ge-
wonnenen Zufallszahlen asymptotisch als Zufallszahlen angesehen werden kénnen.

4. Ein Beispiel zur Losung von Randwertproblemen bei gewohnlichen
Differentialgleichungen mit Hilfe der Monte Carlo-Methode

Um zum Beispiel das Randwertproblem
y" 4+ 2¢y" =0 (c= Konstante) (1)

mit den Randbedingungen y(a) = 4 und y(b) = B nach der Monte Carlo-Methode zu
losen, verwandelt man zuerst die Differentialgleichung (1) unter Verwendung der
finiten Ausdriicke

y(x+h) —y()

y &

h
n o YEFR) =2y +y(x—h)
y ~ he

in die nach y(x) aufgel6ste Differenzengleichung

1 14+2h 1 1
YW~ 7 Trhe YEHN 4 g ey 6 h) @
oder
1 14+2kc¢ 1 1
Y) =5 550 YW+ 5 g5 Yie—h), (2a)

wenn wir mit Y(x) den Ndherungswert von y(x) bezeichnen. Fiihren wir die Ab-

kiirzungen

1 1
und q=71+h0 (3)
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ein, so konnen wir die Differenzengleichung (2a) in der Form
Yx)=pYx+h+qY(x—h 4)

schreiben. Da es durch eine geeignete Wahl von % bei beliebigem ¢ immer méglich ist,
die Koeffizienten  und ¢ von (4) positiv zu machen, und da ausserdem p + ¢ = 1 und
somit 0 << p <1 und 0 < ¢ < 1 gilt, kénnen wir  und ¢ als Wahrscheinlichkeiten
deuten. Jetzt lisst sich die «Spielregel» zur Ermittlung einer Ndherungslésung von (1)
leicht (vgl. [1], [3], [5]) aufstellen. Die Spielregel lautet hier folgendermassen: Man
verfolge den Weg einer «Spielfigur», die von einem Punkt x im Intervall a < x < b
Zufallsschritte der Lange » mit der Wahrscheinlichkeit 4 fiir Rechtsschritte und der
Wahrscheinlichkeit ¢ fiir Linksschritte [vgl. (3)] ausfiihrt und notiere die Anzahl der
Fille, bei denen die Spielfigur den Randpunkt a bzw. b erreicht (siehe Figur 2). Dabei
vereinbaren wir folgendes: Es sei P(4) die dem zufilligen Ereignis A zugeordnete
Wabhrscheinlichkeit. Fiir P(A4) gilt immer 0 << P(4) < 1. Ist nun Z, irgendeine, nach
dem oben genannten Programm erzeugte Zufallszahl, die der Bedingung 0 < 7, < 1
gentigt, so sei das Ereignis A genau dann eingetreten, wenn Z, < P(4) ist. Auf das
obige Spiel bezogen, bedeutet das, dass wir eine Zufallszahl, die kleiner als 1 ist, in der
Rechenmaschine erzeugen und befragen, ob sie kleiner als p oder kleiner als ¢ ist.
Ist zum Beispiel diese Zufallszahl kleiner als , so fithren wir mit der Spielfigur einen
Schritt der Lange 4 nach rechts aus. Startet man so von x aus eine hinreichend grosse
Zahl n von Zufallswegen mit einer kleinen Schrittweite %, so stellt der Mittelwert

— A Ma a3
Y(x)=A -2+ B! (5)

einen Ndherungswert fiir die Losung des gegebenen Randwertproblems (1) dar. Dabei
ist n, bzw. n, die Anzahl der «Besuche» der Spielfigur bei a bzw. b, wihrend 4 und B
die gegebenen Randwerte darstellen.

y

L = Linksschritte %
R = Rechtsschrifte '

AT LR,

Figur 2

In [1] wird bewiesen, dass die Losung des Wahrscheinlichkeitsproblems, das zum
hier angegebenen statistischen Prozess gehort, gegen die Differenzengleichung (2)
konvergiert und dass die «Spielfigur» bei jedem Zufallsweg nach endlich vielen
Schritten den Randpunkt a bzw. b erreicht.

Dieses Verfahren lisst sich auf mehrere Dimensionen verallgemeinern und somit
auch zur Losung einer bestimmten Klasse von partiellen linearen Differentialgleichun-
gen zweiter Ordnung verwenden. Die Monte Carlo-Methode erlangte erst bei der
Losung solcher Probleme eine praktische Bedeutung (vgl. [1], [4], [5]). Die Klasse der
gewohnlichen Differentialgleichungen [wie zum Beispiel (1)], die man mit Hilfe der
Monte Carlo-Methode niherungsweise 16sen kann, ist tiberdies immer exakt losbar. Im
Bereich der partiellen Differentialgleichungen ist dies jedoch selten der Fall.
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5. Ein Beispiel zur numerischen Quadratur nach der Monte-Carlo Methode

Wir wollen zum Beispiel das bestimmte Integral

Y= [ fx) dx o

mit Hilfe der Monte Carlo-Methode 16sen. Wir setzen dabei voraus, dass der Integrand

f(x) im Integrationsintervall 0 << x << 1 das Vorzeichen nicht wechselt und dass

0 < f(x) < 1gilt. Dazu zeichnen wir zunichst in das Einheitsquadrat E ein quadrati-

sches Gitter der Maschenweite 4 (vgl. Figur 3). Man kann nun nach der klassischen

Definition des Flicheninhaltes den gesuchten Flicheninhalt Y der zwischen der

Kurve y = f(x) und der x-Achse liegenden Fliche W aus dem folgenden Grenzwert
. M*

Y }}ir(l) i L (2)

erhalten, wobei F der Flicheninhalt des Einheitsquadrates (¥ = 1) und M bzw. M*

die Anzahl aller Gitterpunkte, die in der Fliche E bzw. in der Fliche W fiir eine gegen
Null gehende Maschenweite 4 liegen, darstellt.

Figur 3

Bei Verwendung der Monte Carlo-Methode zur Lésung der numerischen Quadratur
zdhlt man nun nicht alle in der Fliche E bzw. W gelegenen Gitterpunkte, sondern
greift zufdllig eine Menge (vgl. [5]) von m Punkten aus der Fliche E heraus und er-
mittelt davon die Anzahl m* der in W hineinfallenden Gitterpunkte.

Die «Spielregel» zur Losung von (1) mit Hilfe der Monte Carlo-Methode lautet daher:

Man erzeuge in einer elektronischen Rechenmaschine laufend eine Zufallszahl
Z,=1x, (0<Z,<1) nach der in 3. angegebenen Vorschrift, berechne dazu den
Funktionswert f(x,) und erzeuge anschliessend wieder eine Zufallszahl Z,  , =
y, (0 < Z,.; < 1) und baue in das Rechenprogramm die Abfrage ein, ob f(x,) <y,
ist oder nicht. Bei jeder Abfrage addieren wir

a) in einem Summenspeicher S, eine «1» (Start mit Summe = 0), dagegen

b) in einem Summenspeicher S, (Start mit Summe = 0) eine «1» nur bei giinstigem
Ausgang — f(x,) < y,, das heisst der durch x, und y, bestimmte Gitterpunkt P(x,, v,)
fallt in die Fliche W — der Abfrage.

Bei einer Anzahl von m solchen Abfragen zeigt der Summenspeicher S, die Anzahl
m aller Abfragen und der Summenspeicher S, die Anzahl m* aller giinstigen Abfragen
an. Damit kann man die relative Héiufigkeit m*/m berechnen und daraus den ge-
suchten Ndherungswert fiir das bestimmte Integral (1)

Y~ "™ .F (hierist F = 1) 3)
ermitteln.
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Es ldsst sich noch zeigen, dass dabei die relative Haufigkeit m*/m eine Abweichung
R = |/p (1 — p)/m besitzt, wobei p = Y|F die Wahrscheinlichkeit dafiir darstellt, dass
ein zufillig aus E herausgegriffener Gitterpunkt in W liegt und m die Anzahl aller
Abfragen ist.

Im Prinzip lisst sich auf diese Weise jedes bestimmte Integral niherungsweise
berechnen.

Die praktische Bedeutung der Monte Carlo-Methode tritt auch hier erst bei der
Berechnung von Integralen iiber n-dimensionale Bereiche in Erscheinung. Bei solchen
Problemen ist die Monte Carlo-Methode der klassischen Auszdhlmethode sogar weit
iberlegen. S. FiLipp1
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Ungeloste Probleme

Nr. 46. In einem Korper der Charakteristik + 2 ist — 1 entweder {iberhaupt nicht
Quadratsumme oder Summe einer wohlbestimmten Mindestanzahl s von Quadraten.
Die Zahl s ist entweder eine Zweierpotenz oder wenigstens durch 16 teilbar (H. KNE-
SER, Jahresber. DMV 1934). In allen bekannten Beispielen ist s = 1, 2 oder 4. Sind
hohere Werte von s moglich? (Vgl. auch Tsuzuku, Journ. Math. Soc. Japan 6, 1954).

u sel die grosste Zahl #, so dass eine quadratische Form in # Variablen die Null
nur trivial darstellt. Als Werte von # treten alle Zweierpotenzen auf. Sind andere
Werte fiir  moglich ? # = 3 ist ausgeschlossen (KAPLANSKY, Journ. Math. Soc. Japan
5, 1953), iibrigens auch # = 5. Weiter weiss man nichts. H. Lenz

Nachtrag zu Nr. 391). Die Vermutung, wonach sich in jeder richtungsvollstdndi-
gen, stetigen Geradenschar des gewohnlichen Raumes drei paarweise orthogonal-
stehende Geraden aufweisen lassen, die sich in einem Punkt schneiden, konnte kiirz-
lich von H. DEBRUNNER, Bern, bestitigt werden?). Dariiber hinaus wurde gezeigt,
dass derartige Geradenscharen existieren, die genau ein solches Geradentripel ent-
halten. Die Beweisfithrung Debrunners ist topologischer Art und stiitzt sich u.a. auf
die Theorie der Schnittzahlen héherdimensionaler berandeter Mannigfaltigkeiten.

H. HADWIGER

1) EL. Math. 16, 30-31 (1961).
%) H. DEBRUNNER, Orthogonale Dreibeine in richtungsvollstindigen, stetigen Geradenscharen des R3.
Comm. Math. Helv. 37, 36-43 (1962).
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