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76 W. Sierpinski Sur une propriete des progressions arithmetiques

bei beliebigen Schraubflächen, auf denen sich für gewöhnlich ausgezeichnete Schraublinien

(also Gewindekurven) finden lassen, die Schmieglinien der Fläche sind: es sind
dies jene Schraublinien, längs welchen der Schraubfläche eine Wendelfläche berührend
angeschrieben werden kann. W. Wunderlich (Wien)

Sur une propriete des progressions arithmetiques
Le but de cette note est de demontrer le theoreme suivant:
Theoreme : s etant un nombre naturel et

at + btf 2at + bt, 3at + bt,... (i 1,2,..., s) (1)

etant s progressions arithmetiques infinies, ou at et bt (i 1, 2,..., s) sont des entiers

positifs, s'il existe un nombre premier qui appartient ä chacune de ces s progressions
arithmetiques, il existe une infinite de tels nombres premiers.

Demonstration: Soit p un nombre premier qui appartient ä chacune des progressions
arithmetiques (1). II existe donc pour tout entier i tel que 1 < i < s un nombre
naturel kt tel que p — k(at + bt pour i 1,2,..., s. Les nombres kt, a% et bt (oü i
1, 2,..., s) etant naturels, il en resulte que p > at pour i 1,2,..., s, donc (av p) 1

pour i — 1,2,..., s, d'oü (a1a2... as,p) 1 et, d'apres le theoreme de Lejeune
Dirichlet sur la progression arithmetique, il existe une infinite de nombres premiers
dans la progression arithmetique

a1a2...ask + p. (ä 1,2,...) (2)

Soit i un nombre naturel, tel que i < s. Comme p kt at + bv on a pour k naturels

ax a2... as k + p ax a2... as k + kt at + bt at t + bt,

oü t ax a2 at_x al + 1... as k + kt est un nombre naturel. Cela prouve que tout
terme de la progression arithmetique (2) est un terme de chacune des s progressions (1).
Notre theoreme se trouve ainsi demontre.

Quant au theoreme de Lejeune Dirichlet sur la progression arithmetique, il est
ä remarquer que j'ai demontre en 1950*) qu'il peut etre deduit sans peine de la
proposition (plus faible) que dans toute progression arithmetique a k + b (k 0,1,2,...),
oü a et b sont des nombres naturels premiers entre eux, il existe au moins un nombre
premier. W. Sierpinski (Varsovie)

Remarque sur les nombres parfaits pairs de la forme an ± bn

M. A. Makowski a demontre dans sa note2) que 28 est le seul nombre parfait pair
n

de la forme xB + 1 et qu'il n'existe pas de nombres parfaits pairs de la forme nn' +1,
oü le nombre n figure plus que deux fois. Dans la note presente je demontrerai les

deux theoremes suivants:

Th£oreme 1. i7 n'existe aucun nombre patfait pair de la forme an — bn, oüaetb sont
des entiers positifs premiers entre eux et n est un entier > 2.

1) Voir mon livre Teoria Ltczb (en polonais), Monografie Matematyczne t. 19, Warszawa 1950, p. 526.
2) A. Makowski, Remark on perfect numbers, El. Math. 17 (1962), p. 109.
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