Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 18 (1963)

Heft: 4

Artikel: Sur une propriété des progressions arithmétique

Autor: Sierpiski, W.

DOI: https://doi.org/10.5169/seals-22639

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

bei beliebigen Schraubflächen, auf denen sich für gewöhnlich ausgezeichnete Schraublinien (also Gewindekurven) finden lassen, die Schmieglinien der Fläche sind: es sind dies jene Schraublinien, längs welchen der Schraubfläche eine Wendelfläche berührend angeschrieben werden kann.

W. Wunderlich (Wien)

Sur une propriété des progressions arithmétiques

Le but de cette note est de démontrer le théorème suivant:

THÉORÈME: s étant un nombre naturel et

$$a_i + b_i$$
, $2 a_i + b_i$, $3 a_i + b_i$,... $(i = 1, 2, ..., s)$ (1)

étant s progressions arithmétiques infinies, ou a_i et b_i $(i=1,2,\ldots,s)$ sont des entiers positifs, s'il existe un nombre premier qui appartient à chacune de ces s progressions arithmétiques, il existe une infinité de tels nombres premiers.

Démonstration: Soit p un nombre premier qui appartient à chacune des progressions arithmétiques (1). Il existe donc pour tout entier i tel que $1 \le i \le s$ un nombre naturel k_i tel que $p = k_i a_i + b_i$ pour i = 1, 2, ..., s. Les nombres k_i , a_i et b_i (où i = 1, 2, ..., s) étant naturels, il en résulte que $p > a_i$ pour i = 1, 2, ..., s, donc $(a_i, p) = 1$ pour i = 1, 2, ..., s, d'où $(a_1 a_2 ... a_s, p) = 1$ et, d'après le théorème de Lejeune Dirichlet sur la progression arithmétique, il existe une infinité de nombres premiers dans la progression arithmétique

$$a_1 a_2 \dots a_s k + p$$
. $(k = 1, 2, \dots)$ (2)

Soit i un nombre naturel, tel que $i \le s$. Comme $p = k_i a_i + b_i$, on a pour k naturels

$$a_1 a_2 \dots a_s k + p = a_1 a_2 \dots a_s k + k_i a_i + b_i = a_i t + b_i$$
,

où $t = a_1 a_2 \dots a_{i-1} a_{i+1} \dots a_s k + k_i$ est un nombre naturel. Cela prouve que tout terme de la progression arithmétique (2) est un terme de chacune des s progressions (1). Notre théorème se trouve ainsi démontré.

Quant au théorème de Lejeune Dirichlet sur la progression arithmétique, il est à remarquer que j'ai démontré en 1950^1) qu'il peut être déduit sans peine de la proposition (plus faible) que dans toute progression arithmétique $a \ k + b \ (k = 0, 1, 2, ...)$, où a et b sont des nombres naturels premiers entre eux, il existe au moins un nombre premier.

W. Sierpiński (Varsovie)

Remarque sur les nombres parfaits pairs de la forme $a^n \pm b^n$

M. A. Makowski a démontré dans sa note²) que 28 est le seul nombre parfait pair de la forme $x^3 + 1$ et qu'il n'existe pas de nombres parfaits pairs de la forme $n^{n} + 1$, où le nombre n figure plus que deux fois. Dans la note présente je démontrerai les deux théorèmes suivants:

Théorème 1. Il n'existe aucun nombre parfait pair de la forme $a^n - b^n$, où a et b sont des entiers positifs premiers entre eux et n est un entier > 2.

¹⁾ Voir mon livre Teoria Liczb (en polonais), Monografie Matematyczne t. 19, Warszawa 1950, p. 526.

²⁾ A. MAKOWSKI, Remark on perfect numbers, El. Math. 17 (1962), p. 109.