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54 W. SierpiNski: Trois nombres tétraédraux en progression arithmétique

Sonderbarerweise ist diese anscheinend recht grobe Abschitzung in dem folgenden
Sinne scharf:

(i) Es gibt ein y > 0, so dass fiir jedes Tripel 4, B, C, das die Voraussetzungen
(12) und (15) erfiillt, gilt

A(n) + B(n) + Cln) < 5 n—y n®s.

(ii) Es gibt ein von » unabhingiges « > 0 und zu jedem # drei Mengen 4, B, C,
die (12) und (15) befriedigen, so dass

A(n) + B(n) + Cn) > 3 n— onts.

PETER ScHERK, University of Toronto, Kanada
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Trois nombres tétraédraux en progression arithmétique

Le but de cette note est de donner une démonstration élémentaire de la proposition
suivante:

THEOREME. Il extste une infinité de progressions arithmétiques formées de trois
nombres tétraédraux distincts?).

Démonstration. Définissons les suites infinies d’entiers positifsa,etd, (n =1, 2,...)
par les conditions:

a,=2, by=1, a,,,=73a,+148b,, b, =364a,+73b,. (1)

On aura évidemment
a,>b, pour n=1,2,.... (2)

On vérifie sans peine l'identité
[3(73a+ 1480)]12— 37 (36 a + 73 b)%2 = (3 a)%? — 37 b2
d’apreés laquelle il résulte de (1) que
Ba,, )2 —3702,,+1=(3a,)2—3782+1 pour n=1,2,...,
et, comme (3 4,)2 — 37 + 1 = 6% — 37 + 1 = 0, il résulte par l'induction que
(3a,)2—37024+1=0 pour n=1,2,.... (3)

1) On appelle tétraédral (ou pyramidal) tout nombre de la forme T, = [(n + 1)®— (n + 1)]/6. Voir
ma note dans les Elemente der Math. XVII (1962), p. 29.



D. G. CHAKERIAN: On the Diameter and Triameter of a Convex Body 55

Posons maintenant

w,=3b,—a,, v,=4b,, w,=3b,4+a, pour n=1,2,.... 4)
D’aprés (1) et (2) ona u, <v, <w, pour n=1,2,... et u; =1, v, =4, w, =5,
U, 1=3b,,,—a,,,=35a,+71b, pour n=1,2,..., donc les nombres #,, v,, w,
sont, pour # = 2, 3,..., des entiers > 1 et, les nombres b, croissant avec #, on a

UV, 1> v, pourn=12...
Or, d’aprés (4), on trouve pour n =1, 2,...

w4+ w20 —u, —w,+2v,=25,[(3a,)2— 370>+ 1],
donc, d’apres (3):

3 3 3 — —_
u, +w, —2v, —u, —w,+2v,=0 pour n=1,2,...,

d’ou
u%_‘un wgz'_ wy _ U%—vn .
g +- = = 2 ¢~ bpour #w==1,2...,
donc
T,1+tT, 1=2T, _, pour n=1,2,..., (5)
ce qui prouve que, pour # = 1, 2,..., les trois nombres tétraédraux

T

Uy —17 Tvn—l et Twn—l

forment une progression arithmétique. Comme #, < v, < w, et v, ., > v, pour n =
1,2,..., il en résulte notre théoréme. Pour #n = 2 on obtient T4 + Tp95 = 2 T5qp.

Pourm=1onawu, =1, v, =4, w, =35 et la formule (5) donne T, = 2 T;. Dans
ma note citée j'ai posé le probléme s’il existe d’autres solutions en nombres naturels
m et n de 'équation T,, = 2 T,. M. S. L. SEGAL a démontré récemment qu’il n’existe
pas d’autres solutions2). Or, il mentionne aussi (l.c., p. 638) que M. S. CHOWLA a
démontré récemment qu'’il existe une infinité de nombres tétraédraux qui sont sommes
de deux nombres tétraédraux (ce que j’ai démontré dans ma note citée des Elemente
der Math.). La démonstration de M. CHowLA m’est inconnue.

Il est encore a remarquer qu'il existent d’autres solutions de I'équation 7, + T, =
2 T, outre celles que nous avons trouvées, par exemple T, + Ty, = 2 T§.

Or, M. A. MAKOWSKI a pos¢ le probléme suivant, dont la solution me semble étre
difficile: Existe-t-1l pour tout nombre naturel k une infinité de solutions de I’équation
T, + T, =k T, en entiers positifs x, y et z?

Je sais démontrer (ce que je ferai ailleurs) qu'il existe une infinité de nombres
naturels & pour lesquels cela est vrai. W. SIERPINSKI (Varsovie)

On the Diameter and Triameter of a Convex Body

1. By a convex body in Euclidean n-dimensional space E, we shall mean a compact,
convex subset with interior points. One phase of the theory of convex bodies seeks to
establish inequalities between the geometrical invariants associated with these bodies.

2) S, L. SEGAL, A note on pyramidal numbers, Amer. Math. Monthly 69 (1962), p. 637.
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