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Über Summen von Mengen natürlicher Zahlen1)

Einige der schönsten Sätze über Dichten von Mengen natürlicher Zahlen lassen
sich als Korollare von Ergebnissen auffassen, in die der Begriff der Dichte2) garnicht
eingeht. In diesem Aufsatz soll über einige hierhin gehörige Resultate und Methoden
berichtet werden.

Kleine lateinische Buchstaben bezeichnen nicht-negative ganze Zahlen. Die Zahl
n sei stets positiv. Seien A, B,... Mengen von nicht negativen ganzen Zahlen. Hier
wie im folgenden lassen wir also die Null als Element unserer Mengen zu. Wir
bezeichnen die Elemente etwa von A durch a, also A {a}.

Für jede Menge A definieren wir die Anzahl-Funktion A(x) als die Anzahl der
positiven Elemente von A, die nicht grösser sind als x, also

_!(*)= £ 1.
0 <a<x

Die Zahl Null wird also nie in A(x) gezählt, auch wenn sie zu A gehört. Definitions-
gemäss ist 0 < _4 (x) < x. Es ist A (x) 0 dann und nur dann, wenn keine natürliche
Zahl bis x zu A gehört, und es ist A (x) x, wenn alle diese Zahlen in A liegen.

Die Summe A + B zweier Mengen A und B besteht aus allen Zahlen, die sich als
die Summe einer Zahl a e A und einer Zahl b e B darstellen lassen, also A + B —

{a + b}. Entsprechend kann man die Summe von mehr als zwei Mengen definieren.
Enthält A die Null, so enthält A + B alle Zahlen 0 + b, das heisst es ist B Q

A + B. Liegt 0 sowohl in _4 als auch in B, so ist also A{J B QA + B. Dies ist einer
der Gründe, weshalb die Null oft als Element zugelassen wird, obwohl wir eigentlich
nur an natürlichen Zahlen interessiert sind.

Viele Satze der additiven Zahlentheorie betreffen die Summen gegebener Mengen.
Ist etwa A die Menge der Quadrate, so wissen wir, dass A + A alle Primzahlen der
Form 4 n + 1 enthält, und dass A + A + A + A die Menge aller nicht negativen
ganzen Zahlen ist. Wir interessieren uns hier jedoch nur für allgemeine Mengen
natürlicher Zahlen und für Probleme der folgenden Art: Was kann über die Menge
A + B und ihre Anzahlfunktion ausgesagt werden, wenn keine besonderen
arithmetischen Eigenschaften von A und B vorausgesetzt werden. Das einfachste Beispiel
ist vielleicht das folgende:

*) Vortrag am Mathematischen Institut der Universität Mainz am 15. 6. 1962.
2) Vgl. dazu E. Trost, Em wichtiger Begriff der additiven Zahlentheorie. El. Math 1 (1946), 57-60.
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Satz 1: Es sei n $ A + B. Dann ist

A(n - 1) + B(n - 1) < n - 1. (1)

Zum Beweis betrachte man die beiden Mengen

{a | 0 < a < n - 1} und {n - b | 0 < n - b < n - 1} (2)

Gäbe es ein a und ein b, so dass a n — b, so würde n a + beA + B folgen im
Widerspruch zu unserer Voraussetzung. Somit haben die beiden Mengen (2) keine
Zahlen gemein.

Die erste Menge enthält A(n — 1) Elemente. Da 0 < n — b <n — 1 äquivalent
ist mit 1 < b < n oder 0 < b < n — 1, enthält die zweite Menge B(n — 1) Zahlen.
Im ganzen haben wir somit A(n — 1) + B(n — lj verschiedene natürliche Zahlen,
die alle <^ n — 1 sind. Diese Anzahl ist daher ebenfalls <£ n — 1.

Der Leser wird Satz 1 leicht verallgemeinern:
Satz V: Es sei 0 < m < k < n; n $ A + B. Dann gilt

k-m> A(n -m-1) - A(n - k - 1) + B(k) - B(m) (3)

Die Beweisidee von Satz 1 ist fundamental. Etwas komplizierter ist der Beweis
eines im wesentlichen auf Besicovitch zurückgehenden Satzes [1]3):

Satz 2; Es sei OeA, B(n) >0,n$C; A + B Q C,

C(n - 1)< A(n -1) + B(n - 1). (4)

Dann gibt es ein m ^ C mit 0 < m < n — 1, so dass

C(n) - C(m) >A(n-m-l) + B(n) - B(m). (5)

Aus n $ C folgt natürlich, dass C(n — 1) C(n). Wegen OeA ist ferner B Q C,
daher n $ B. Somit ist auch B(n — 1) B(n), und (4) kann auch in der Form
geschrieben werden

C(n)<A(n-l) + B(n). (4')

Der Leser bestätige, dass (5) mit m n — 1 trivial ist.
Zum Beweis von (5) führe man die grosste Zahl k von B ein, die kleiner ist als n,

also k <L n — 1. Die Zahlen k + l,...,n gehören nicht zu B, und es ist B(n) B(k).
Die Menge C enthält die Zahlen k + a mit k < k + a < n, das heisst 0 < a < n — k.
Dies ergibt

C(n) - C(k) ^>A(n-k)^A(n-k-l) A(n~k-l) + B(n) - B(k) (6)

Wegen (4') ist k > 0.

Liegen alle natürlichen Zahlen bis k in C, so setzen wir m 0. Andernfalls sei m
die grosste natürliche Zahl unterhalb von kt die nicht in C liegt. Auf jeden Fall ist
also 0 <C m < k < nt und die Zahlen m + lt...,k liegen in C. Aus Satz 1' folgt daher

C(k) - C(m) =.k~tn'2iA(n~-nt-l)~A(n-k-l) + B(k) - B(m).

8) Vgl. die Bibliographie am Ende dieser Arbeit.
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Addieren wir diese Ungleichung zu (6), so erhalten wir

(C(n) - C(k)) + (C(k) - C(m)) C(n) - C(m)

> (A(n - k-1) + B(n) - B(k)) + (A(n - m - 1) - A(n - k - 1) + B(k) - B(m))

=- A (n — m — 1) + B(n) — B(m),
also (5).

Nachträglich kann der Leser noch den Fall m — 0 mit Hilfe von (4') ausschliessen.
Somit folgt aus unserer Konstruktion, dass auch 0 < m < w — 1, m $ C. Hiermit
ist Satz 2 bewiesen.

Ist B(m) > 0 und C(m) < A(m — 1) + B(m), so kann Satz 2 auf m mx statt n
angewandt werden, usf. Auf diese Weise kann der Leser leicht die folgende Bemerkung
aus Satz 2 ableiten:

Satz 2': Es sei 0 e A, 0 e B oder 1 e B, n$C;A + BCC. Dann gibt es eine Folge

m0 =- n, mx, m2,..., mt, ml + x 0 (7)

so dass mx $ C, mx — wA + 1 — 1 > 0; (X 0, 1,..., i) und

C(n) > B(n) + A(n-mx- 1) + A(mx- m2- 1) +...+ A(mt- mt hX - 1). (8)

Wählen wir A, B, C alle gleich der Menge der geraden Zahlen, so sind die
Voraussetzungen von Satz 2' erfüllt. Es wird dann wA — wA + 1— 1 1, und in (8) gilt das
Gleichheitszeichen. Kein — 1 kann in diesem Falle aus (8) weggelassen werden. In
diesem Sinne ist (8) scharf. Das Gleiche gilt erst recht für Satz 2.

Aus Satz 2 können wir andere Ungleichungen ableiten. Für diese Zwecke ist es

bequem, unsere Definitionen etwas anders zu fassen:
Es sei n fest und I {0,1,...,n} sei die Menge aller nicht negativen ganzen

Zahlen bis n. A {a}, B {b},... seien Untermengen von I. Wir definieren etwa

A ®B {a + b\a + beI}, also A ® B (A + B) n I.
Nach Khintchine [4] wird die Umkehrung A der Menge A definiert mittels

A {ä} {n — ä | ä e I, ä $ A}.

Khintchines Formel lautet dann

A ® BCC+-+C ® BQA. (9)

Der Beweis von (9) ist eine leichte Übungsaufgabe.

Wir machen in Satz 2 die Substitutionen A -> C, B -> B, C ~> A.
Die Voraussetzung OeA geht über in 0 e C. Dies ist äquivalent mit n^C. Ebenso
geht n $ C über in 0 e A. Weiter geht (4) über in

Ä(n - 1)< C(n -1) + B(n - 1). (10)

Hier ist etwa

i(n-i)= j; 1= 27 1= E l
ü<.tt<n 0 <»- a< n Q<a<n

(n~-l)~ X l tt-l-_4(w-l).
0 <a<n
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Ebenso ist

C(n - 1) n - 1 - C(n - 1)

und (10) lautet

n-1- A(n 1) < n - 1 - C(n - 1) + B(n - 1)

Somit ist (10) gleichwertig mit (4)
Formel (5) geht uber in

A(n) — A(m) >C(n — m—l) + B(n) — B(m)

Diese Ungleichung lasst sich ähnlich wie (10) bearbeiten Setzen wir dann noch
k n — m, so erhalten wir

Satz 2a Unter den Voraussetzungen von Satz 2 gibt es ein k e A mit 1 < k < n,
so dass

C(n) -C(n-k)>A(k-l) + B(n) - B (n - k)

Ähnlich zeigt man mit Hilfe von (9) und den Substitutionen A ->_4, B -> C,

C ->B
Satz 2b Es sei 0 e A, 0 e B, A ® B C C * / Ferner gelte (4)
Dann gibt es ein k e B mit 1 < k < n, so dass

C (k - 1) > A (k - 1) + B (k - 1)

Der Leser bestimme noch die Ungleichung, die aus Satz 2, - ohne Benutzung von

(9), - hervorgeht, wenn er die Substitution _4^_4,£?->_?,C->C ausfuhrt Sie ist
insofern von Interesse als die Bedingung A ® B C C übergeht m n $ A ® B ® C

Gelegentlich muss die Voraussetzung A ® B C C durch die schärfere A ® B C

ersetzt werden Um ein Analogon von (9) zu erhalten, fuhren wir die Differenz zweier
Zahlenmengen em Dieser Begriff, der der Theorie der konvexen Korper entlehnt
wurde, kann folgendermassen gefasst werden

A, B seien wieder Untermengen von / Ihre Differenz A Q B wird definiert als
die grosste Menge D C I mit D ® B QA Sie besteht also aus allen del, fur die
d + b e A fur alle be B mit b <n — d Offensichtlich gilt

A®BQC^ACCQB
Das Analogon von (9) ist dann gegeben durch

A Q B= (Ä ® Bf oder auch (A ® B)~' Ä Q B

Der Leser beweise diese Identität und überlege sich, dass (9) tatsächlich aus ihr und
der vorangehenden Beziehung folgt

Der Begriff der Differenz wird bei einer Ungleichung benutzt, die wohl eine der
schärfsten bekannten Formulierungen des berühmten Mannschen Satzes4) ist,
vgl [3] und [5]

4) Eine Kurzfassung eines Van der Corputschen Beweises wurde in El Math 2 (1947), 102-103 gegeben,
vgl Fussnote 2)
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Satz 3 Es sei 0 e A, 0 e B, n <fc C, A + B C C Dann gibt es em m mit

m n oder 0 < m < ^ (11)

n — meC Q A, n — meCQB
so dass

C(n) — C(n — m) > A(m) + B(m)

Wir können auf den schwierigen Beweis dieses Satzes mittels der Mannschen
Methode hier nicht eingehen Jedoch wollen wir das Ergebnis angeben, das man
erhalt, wenn C in Satz 3 durch C ersetzt wird

Satz 3a Es sei

OeA, OeB, OeC, n^A + B + C (12)

Dann gibt es ein m, das (11) und

m^A + B, m^A + C (13)

befriedigt, so dass

m > A(m) + B(m) + C(m)

Abgesehen von (13) ist diese Formulierung des Mannschen Satzes symmetrisch in
A, B und C Man konnte sie völlig symmetrisch machen, wenn man verlangte, dass

überdies m $ B + C Diese Vermutung scheint unter anderem insofern von Interesse,
als sie sich anscheinend nicht mit Herrn Manns Methode beweisen lasst, und auf
dieser Methode beruht der einzige bekannte direkte Beweis von Satz 3a

Eine Zeitlang vermutete man, dass (13) durch die stärkere Forderung

m $ A + B + C (14)

ersetzt werden kann Merkwürdigerweise kann man zeigen, dass Satz 3a mit (14)

statt (13) fur n < 14 richtig ist, jedoch fur n 15 falsch wird Em von Herrn Mann
gegebenes Gegenbeispiel ist das folgende

A {0,1, 8, 10, 12, 14} B {0, 2, 8, 9, 12, 13} C {0, 4, 8, 9, 10, 11}

Bei der Suche nach dem Gegenbeispiel konnte man ausser (12) noch voraussetzen,
dass n die kleinste nicht m A + B + C enthaltene Zahl ist, dass also

{0, 1, n - 1} C A + B + C (15)

Dann hatte man nur zu zeigen, dass

n<A(n) + B(n) + C(n) (16)

Dies fuhrt zu der Frage, was sich uber die rechte Seite von (16) aussagen lasst, wenn
(12) und (15) vorausgesetzt werden

Wegen n$A + B ist jedenfalls A(n) + B(n) <; n — 1 Ebenso gilt natürlich
B(n) + C(n) < n — 1, C(n) + A(n) < n — 1 Addition dieser drei Ungleichungen
ergibt

A(n) + B(n) + C(n) < * (n-1)



54 W. Sierpinski : Trois nombres tetraedraux en progression arithmätique

Sonderbarerweise ist diese anscheinend recht grobe Abschätzung in dem folgenden
Sinne scharf:

(i) Es gibt ein y > 0, so dass für jedes Tripel A, B, C, das die Voraussetzungen
(12) und (15) erfüllt, gilt

A(n) + B(n) + C(n) <
Z

n-y n2'3.

(ii) Es gibt ein von n unabhängiges a > 0 und zu jedem n drei Mengen A, B, C,
die (12) und (15) befriedigen, so dass

A(n) + B(n) + C(n) > 3
n - a n**.

Peter Scherk, University of Toronto, Kanada
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Trois nombres tetraedraux en progression arithmetique
Le but de cette note est de donner une demonstration elementaire de la proposition

suivante:
Th£ori_me. II existe une infiniti de progressions arithmetiques formees de trois

nombres Utraedraux distincts1).

Ddmonstration. D^finissons les suites infinies d'entiers positifs an et bn (n 1,2,...)
par les conditions:

ax 2, bx 1 an¥X 73 an + 148 bn, bn, x^36an + 73 bn. (1)

On aura evidemment

an> bn pour »=1,2,... (2)

On verifie sans peine l'identite

[3 (73 a + 148 b)f - 37 (36 a + 73 b)2 (3 af - 37 ö2

d'apres laquelle il resulte de (1) que

(3 an + l)* - 37 bl+1 + 1 - (3 an)* -37b2n+l pour n 1, 2,...

et, comme (3 ax)2 — 37 b\ + 1 62 - 37 + 1 0, il resulte par l'induction que

(3 an)* - 37 b%n + 1 0 pour n 1, 2,... (3)

1) On appelle Utraidral (ou pyramidal) tout nombre de la forme Tn [(» + l)8— (» 4- l)]/6. Voir
ma note dans les Elemente der Math. XVII (1962), p. 29.
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