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Uber Summen von Mengen natiitlicher Zahlen')

Einige der schonsten Sdtze iiber Dichten von Mengen natiirlicher Zahlen lassen
sich als Korollare von Ergebnissen auffassen, in die der Begriff der Dichte?) garnicht
eingeht. In diesem Aufsatz soll {iber einige hierhin gehorige Resultate und Methoden
berichtet werden.

Kleine lateinische Buchstaben bezeichnen nicht-negative ganze Zahlen. Die Zahl
n sei stets positiv. Seien A4, B,... Mengen von nicht negativen ganzen Zahlen. Hier
wie im folgenden lassen wir also die Null als Element unserer Mengen zu. Wir be-
zeichnen die Elemente etwa von A durch 4, also 4 = {a}.

Fiir jede Menge A definieren wir die Anzahl-Funktion A(x) als die Anzahl der
positiven Elemente von A4, die nicht grosser sind als x, also

Ax) = 2 1.
0<a<zx
Die Zahl Null wird also nie in 4(x) gezédhlt, auch wenn sie zu 4 gehort. Definitions-
gemiss ist 0 < 4(x) < x. Esist 4(x) = 0 dann und nur dann, wenn keine natiirliche
Zahl bis x zu A gehort, und es ist 4(x) = x, wenn alle diese Zahlen in A liegen.

Die Summe A + B zweier Mengen A und B besteht aus allen Zahlen, die sich als
die Summe einer Zahl a € A und einer Zahl b € B darstellen lassen, also 4 + B =
{a + b}. Entsprechend kann man die Summe von mehr als zwei Mengen definieren.

Enthilt A die Null, so enthidlt A + B alle Zahlen O + b, das heisst es ist B C
A + B. Liegt 0 sowohl in A4 als auch in B, so ist also A U B C A + B. Dies ist einer
der Griinde, weshalb die Null oft als Element zugelassen wird, obwohl wir eigentlich
nur an natiirlichen Zahlen interessiert sind.

Viele Sitze der additiven Zahlentheorie betreffen die Summen gegebener Mengen.
Ist etwa A die Menge der Quadrate, so wissen wir, dass 4 + A alle Primzahlen der
Form 4 n + 1 enthilt, und dass 4 + 4 + A + A die Menge aller nicht negativen
ganzen Zahlen ist. Wir interessieren uns hier jedoch nur fiir allgemeine Mengen
natiirlicher Zahlen und fiir Probleme der folgenden Art: Was kann tiber die Menge
A + B und ihre Anzahlfunktion ausgesagt werden, wenn keine besonderen arith-
metischen Eigenschaften von 4 und B vorausgesetzt werden. Das einfachste Beispiel
ist vielleicht das folgende:

1) Vortrag am Mathematischen Institut der Universitit Mainz am 15. 6. 1962.
2) Vgl. dazu E. Trost, Ein wichtiger Begriff der additiven Zahlentheorie. E1. Math 1 (1946), 57-60.
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Satz1: Es sein¢ A + B. Dann ist
Am—1)+Bnrn—-1)<n-—1. (1)
Zum Beweis betrachte man die beiden Mengen
fal0<a<n—1} und -0 |0<n—b<n—1}. (2)

Gébe es ein a und ein b, so dass a =#n — b, so wiirde n = a + b€ A + B folgen im
Widerspruch zu unserer Voraussetzung. Somit haben die beiden Mengen (2) keine
Zahlen gemein.

Die erste Menge enthdlt 4(n — 1) Elemente. Da 0 < # — b << # — 1 dquivalent
ist mit 1 << b < n oder 0 < b < 7 — 1, enthilt die zweite Menge B(n — 1) Zahlen.
Im ganzen haben wir somit 4A(n — 1) + B(n — 1) verschiedene natiirliche Zahlen,
die alle < # — 1 sind. Diese Anzahl ist daher ebenfalls < »n — 1.

Der Leser wird Satz 1 leicht verallgemeinern:

Satz7': Essei0 <m < k< n;n¢ A+ B. Dann gilt

E—m>An—m—1)— A(n —k — 1) + B(k) — B(m). (3)

Die Beweisidee von Satz 1 ist fundamental. Etwas komplizierter ist der Beweis
eines im wesentlichen auf BesicoviTcH zuriickgehenden Satzes [1]3):
Satz2: Essei0e€ A, B(n) >0,n¢C; A+ BCC,

Cn—1) < An—1)+ B(n —1). (4)
Dann gibt es ein m ¢ C mit 0 < m < n — 1, so dass
Cn) — C(m) > A(n — m — 1) + B(n) — B(m). (5)

Aus 7 ¢ C folgt natiirlich, dass C(n — 1) = C(n). Wegen 0 € 4 ist ferner B C C,
daher n ¢ B. Somit ist auch B(n — 1) = B(n), und (4) kann auch in der Form ge-
schrieben werden

Cn) < A(n — 1) + B(n) . (4)

Der Leser bestitige, dass (5) mit m = n — 1 trivial ist.

Zum Beweis von (5) fithre man die grésste Zahl £ von B ein, die kleiner ist als #»,
also # << n — 1. Die Zahlen % + 1,..., n gehoéren nicht zu B, und es ist B(n) = B(%).
Die Menge C enthilt die Zahlen 2 + amit 2 < 2+ a < #,das heisst 0 < a < #n — k.
Dies ergibt

Cw) —Ch) > An—k) > A —k—1)=A(n — k—1) + B(n) — B(K) . (6)

Wegen (4') ist 2> 0.

Liegen alle natiirlichen Zahlen bis & in C, so setzen wir m = 0. Andernfalls sei m
die grosste natiirliche Zahl unterhalb von &, die nicht in C liegt. Auf jeden Fall ist
also 0 < m < k < », und die Zahlen m + 1,..., k liegen in C. Aus Satz 1’ folgt daher

Ck) —Cim)=k—m>An—m—1) — An — k — 1) + B(k) — B(m).

3) Vgl. die Bibliographie am Ende dieser Arbeit.
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Addieren wir diese Ungleichung zu (6), so erhalten wir
(C(n) — C(R)) + (C(k) — C(m)) = C(n) — C(m)
> (Adn —k—1) 4 B(n) — B(k)) + (A(n —m —1) — A(n — k — 1) + B(k) — B(m))
=Amn —m — 1) + B(n) — B(m),
also (5).
Nachtréglich kann der Leser noch den Fall m = 0 mit Hilfe von (4') ausschliessen.

Somit folgt aus unserer Konstruktion, dass auch 0 < m <#n — 1, m ¢ C. Hiermit
ist Satz 2 bewiesen.

Ist B(m) > 0 und C(m) < A(m — 1) + B(m), so kann Satz 2 auf m = m, statt »
angewandt werden, usf. Auf diese Weise kann der Leser leicht die folgende Bemerkung
aus Satz 2 ableiten:

Satz2':Essei0 e 4,0 Boderle B,n¢ C; A + B CC. Dann gibt es eine Folge
My = N, My, Mg,..., M; M;,1=70, (7)

sodassm, ¢ C,my —my,;,—1>0;(A=0,1,...,7) und
Cn) =Bn)+An—m;— 1)+ Amy —my— 1) +...4+ A(m; — m; ., — 1). (8)

Wihlen wir 4, B, C alle gleich der Menge der geraden Zahlen, so sind die Voraus-
setzungen von Satz 2’ erfillt. Es wird dann m, — m, ., — 1 =1, und in (8) gilt das
Gleichheitszeichen. Kein — 1 kann in diesem Falle aus (8) weggelassen werden. In
diesem Sinne ist (8) scharf. Das Gleiche gilt erst recht fiir Satz 2.

Aus Satz 2 konnen wir andere Ungleichungen ableiten. Fiir diese Zwecke ist es
bequem, unsere Definitionen etwas anders zu fassen:

Es sei n fest und I ={0,1,..., n} sei die Menge aller nicht negativen ganzen
Zahlen bis n. A = {a}, B = {b},... seien Untermengen von I. Wir definieren etwa

A®B={a+bla+bel}, also A@®@B=A+BNI.
Nach KHINTCHINE [4] wird die Umkehrung A der Menge A definiert mittels
A={a}={n—alael, ag¢A).
Khintchines Formel lautet dann
A®BCCoCO®BCA. (9)
Der Beweis von (9) ist eine leichte Ubungsaufgabe.~ i
Wir machen in Satz 2 die Substitutionen 4 > C, B > B, C > A.

Die Voraussetzung 0 € 4 geht iiber in 0 € C. Dies ist dquivalent mit » ¢ C. Ebenso
geht »n ¢ C iiber in 0 € 4. Weiter geht (4) iiber in

Am —1) < Cn—1) + Bn — 1. (10)
Hier ist etwa
An—-1)= 3 1= ' 1= 31
o<a<n O<n—-a<n O<a<n
a¢A a¢A

=m—1)— ) 1=n—-1-AMn-1).

I<a<n
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Ebenso ist
Cm—1)=n—1—-C(n-1),
und (10) lautet

n—1—An-1)<n—1—-C(n—1)+ B(n — 1).

Somit ist (10) gleichwertig mit (4).
Formel (5) geht tiber in

~

Am) — Am) > C (n — m — 1) + Bn) — B(m) .

Diese Ungleichung ldsst sich dhnlich wie (10) bearbeiten. Setzen wir dann noch
k = n — m, so erhalten wir:
Satz 2a: Unter den Voraussetzungen von Satz 2 gibt esein k€ 4 mit 1 < & < n,
so dass
Cm)—Cmn—k >A(k—-1)+ Bn) —B(n—~k).

Ahnlich zeigt man mit Hilfe von (9) und den Substitutionen 4 - 4, B - C,

C > B:
Satz2b: Essei0e A4,0e B, A @ BC C + I. Ferner gelte (4).
Dann gibt es ein £ € B mit 1 < £ < #, so dass

Ck—1)>A(k—-1)+BE—1).

Der Leser bestimme noch die Ungleichung, die aus Satz 2, — ohne Benutzung von

(9), — hervorgeht, wenn er die Substitution 4 > 4, B> B, C > C ausfiihrt. Sie ist
insofern von Interesse als die Bedingung A @ B C C tibergehtinn¢ 4 @ B @ C.

Gelegentlich muss die Voraussetzung 4 @ B C C durch die schirfere 4 @ B=C
ersetzt werden. Um ein Analogon von (9) zu erhalten, fithren wir die Differenz zweier
Zahlenmengen ein. Dieser Begriff, der der Theorie der konvexen Korper entlehnt
wurde, kann folgendermassen gefasst werden.

A, B seien wieder Untermengen von I. Thre Differenz A © B wird definiert als
die grosste Menge D C I mit D @ B C A. Sie besteht also aus allen d € I, fiir die
d + be A fir alle b € B mit b < »n — d. Offensichtlich gilt

A®BCC—ACC OB.
Das Analogon von (9) ist dann gegeben durch
AOB=(4d ®B) oderauch (4 ® B) =4 © B.

Der Leser beweise diese Identitdt und tiberlege sich, dass (9) tatsdchlich aus ihr und
der vorangehenden Beziehung folgt. ‘

Der Begriff der Differenz wird bei einer Ungleichung benutzt, die wohl eine der
schirfsten bekannten Formulierungen des beriihmten Mannschen Satzes?) ist;
vgl. [3] und [5]:

4} Eine Kurzfassung eines Van der Corputschen Beweises wurde in El. Math. 2 (1947), 102-103 gegeben,
vgl. Fussnote 2).
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Satz 3: Essei0e€A4,0e B, n¢ C; A + BC C. Dann gibt es ein m mit
m =n oder O<m<3§—, (11)
n—meCOA, n—meCOB,
so dass
C(n) — C(n —m) > A(m) + B(m) .

Wir kénnen auf den schwierigen Beweis dieses Satzes mittels der Mannschen
Methode hier nicht eingehen. Jedoch wollen wir das Ergebnis angeben, das man er-
hilt, wenn C in Satz 3 durch C ersetzt wird:

Satz 3a: Es sei

0ed, 0eB, 0eC, n¢A+ B+ C. (12)
Dann gibt es ein m, das (11) und

mgA+B, m¢gA+C (13)
befriedigt, so dass
m > A(m) + B(m) + C(m) .

Abgesehen von (13) ist diese Formulierung des Mannschen Satzes symmetrisch in
A, B und C. Man konnte sie vollig symmetrisch machen, wenn man verlangte, dass
iiberdies m ¢ B + C. Diese Vermutung scheint unter anderem insofern von Interesse,
als sie sich anscheinend nicht mit Herrn MANNS Methode beweisen lidsst, und auf
dieser Methode beruht der einzige bekannte direkte Beweis von Satz 3a.

Eine Zeitlang vermutete man, dass (13) durch die stdrkere Forderung

me¢A+B+C (14)

ersetzt werden kann. Merkwiirdigerweise kann man zeigen, dass Satz 3a mit (14)
statt (13) fiir » < 14 richtig ist, jedoch fiir » = 15 falsch wird. Ein von Herrn MANN
gegebenes Gegenbeispiel ist das folgende:

A={0,1,8,10,12,14}; B=1{0,2,8,9,12,13}; C=1{0,4,8,9,10,11}.

Bei der Suche nach dem Gegenbeispiel konnte man ausser (12) noch voraussetzen,
dass # die kleinste nicht in 4 4+ B + C enthaltene Zahl ist, dass also

{0,1,....n—1}CA+B+C. (15)
Dann hatte man nur zu zeigen, dass
n < An) + B(n) + C(n) . (16)

Dies fiihrt zu der Frage, was sich iiber die rechte Seite von (16) aussagen ldsst, wenn
(12) und (15) vorausgesetzt werden.

Wegen n¢ A + B ist jedenfalls A(n) + B(n) < n — 1. Ebenso gilt natiirlich
B(n)+ Cn) <n—1, C(n) + A(n) < n — 1. Addition dieser drei Ungleichungen
ergibt

A(n) + B(n) + C(n) < 3 (n—1).
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Sonderbarerweise ist diese anscheinend recht grobe Abschitzung in dem folgenden
Sinne scharf:

(i) Es gibt ein y > 0, so dass fiir jedes Tripel 4, B, C, das die Voraussetzungen
(12) und (15) erfiillt, gilt

A(n) + B(n) + Cln) < 5 n—y n®s.

(ii) Es gibt ein von » unabhingiges « > 0 und zu jedem # drei Mengen 4, B, C,
die (12) und (15) befriedigen, so dass

A(n) + B(n) + Cn) > 3 n— onts.

PETER ScHERK, University of Toronto, Kanada
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Trois nombres tétraédraux en progression arithmétique

Le but de cette note est de donner une démonstration élémentaire de la proposition
suivante:

THEOREME. Il extste une infinité de progressions arithmétiques formées de trois
nombres tétraédraux distincts?).

Démonstration. Définissons les suites infinies d’entiers positifsa,etd, (n =1, 2,...)
par les conditions:

a,=2, by=1, a,,,=73a,+148b,, b, =364a,+73b,. (1)

On aura évidemment
a,>b, pour n=1,2,.... (2)

On vérifie sans peine l'identité
[3(73a+ 1480)]12— 37 (36 a + 73 b)%2 = (3 a)%? — 37 b2
d’apreés laquelle il résulte de (1) que
Ba,, )2 —3702,,+1=(3a,)2—3782+1 pour n=1,2,...,
et, comme (3 4,)2 — 37 + 1 = 6% — 37 + 1 = 0, il résulte par l'induction que
(3a,)2—37024+1=0 pour n=1,2,.... (3)

1) On appelle tétraédral (ou pyramidal) tout nombre de la forme T, = [(n + 1)®— (n + 1)]/6. Voir
ma note dans les Elemente der Math. XVII (1962), p. 29.
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