**Zeitschrift:** Elemente der Mathematik

**Herausgeber:** Schweizerische Mathematische Gesellschaft

**Band:** 18 (1963)

Heft: 2

Rubrik: Aufgaben

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 29.10.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## Aufgaben

**Aufgabe 423.** Wie muss die Matrix  $\mathfrak{A} = (a_{ik})$  einer Affinität  $\mathfrak{p}^* = \mathfrak{A} \mathfrak{p} + \mathfrak{a}$  beschaffen sein, damit es in der Ebene vier (durch ihre Ortsvektoren  $\mathfrak{p}_0$ ,  $\mathfrak{p}_1$ ,  $\mathfrak{p}_2$ ,  $\mathfrak{p}_3$  gegebene) Punkte gibt, die durch die Affinität in der angegebenen Reihenfolge zyklisch aufeinander abgebildet werden?

W. Jänichen, Berlin

*Lösung:* Aus dem Ansatz (die Indizes im folgenden modulo 4 gerechnet):  $\mathfrak{p}_{j+1} = \mathfrak{A} \mathfrak{p}_j + \mathfrak{a}$  folgt durch Differenzbildung

$$\mathfrak{p}_{i+1} - \mathfrak{p}_{i-1} = \mathfrak{A} (\mathfrak{p}_i - \mathfrak{p}_{i-2}) = \mathfrak{A}^2 (\mathfrak{p}_{i-1} - \mathfrak{p}_{i-3}) = \mathfrak{A}^2 (\mathfrak{p}_{i-1} - \mathfrak{p}_{i+1})$$

oder

$$(\mathfrak{A}^2 + \mathfrak{E}) \ (\mathfrak{p}_3 - \mathfrak{p}_1) = \mathfrak{o}, \ (\mathfrak{A}^2 + \mathfrak{E}) \ (\mathfrak{p}_2 - \mathfrak{p}_0) = \mathfrak{o}. \ \ (\mathfrak{o} = \text{Nullvektor})$$

Wir wollen voraussetzen, dass mindestens einer der Vektoren  $\mathfrak{p}_3 - \mathfrak{p}_1$  und  $\mathfrak{p}_2 - \mathfrak{p}_0$  vom Nullvektor verschieden ist (allgemeiner Fall). Dann ergibt sich als notwendige Bedingung für die Matrix  $\mathfrak{A}$ :

$$|\mathfrak{A}^2 + \mathfrak{E}| = 0.$$

Diese Bedingung ist auch hinreichend für die Existenz von Punkten  $\mathfrak{p}_j$  der beschriebenen Art.

Es sei nämlich  $\mathfrak{p}^* = \mathfrak{A} \, \mathfrak{p} + \mathfrak{a} \, (|\mathfrak{A}| \neq 0)$  eine Affinität mit  $|\mathfrak{A}^2 + \mathfrak{E}| = 0$ . Dann hat das Gleichungssystem  $(\mathfrak{A}^2 + \mathfrak{E}) \, \mathfrak{z} = \mathfrak{o}$  eine ein- oder zweiparametrige Lösungsmannigfaltigkeit. Ist  $\mathfrak{z}_0$  eine beliebige Lösung des Systems, so ordnen wir ihr durch den Ansatz  $\mathfrak{z}_0 = (\mathfrak{A}^2 - \mathfrak{E}) \, \mathfrak{p} + \mathfrak{A} \, \mathfrak{a} + \mathfrak{a}$  in eineindeutiger Weise einen Punkt  $\mathfrak{p}$  der Ebene zu (aus  $|\mathfrak{A}| \neq 0$  und  $|\mathfrak{A}^2 + \mathfrak{E}| = 0$  folgt, wie man sich leicht überlegt:  $|\mathfrak{A}^2 - \mathfrak{E}| \neq 0$ ). Nun ist

$$(\mathfrak{A}^2 + \mathfrak{E}) \mathfrak{z}_0 = \mathfrak{o} = (\mathfrak{A}^4 - \mathfrak{E}) \mathfrak{p} + (\mathfrak{A}^3 + \mathfrak{A}^2 + \mathfrak{A} + \mathfrak{E}) \mathfrak{a}$$

oder

$$\mathfrak{p} = \mathfrak{A} \{ \mathfrak{A} \{ \mathfrak{A} \{ \mathfrak{A} \{ \mathfrak{A} \mathfrak{p} + \mathfrak{a} \} + \mathfrak{a} \} + \mathfrak{a} \} + \mathfrak{a}.$$

Man erkennt, dass  $\mathfrak{p} = \mathfrak{p}_0$  oder  $\mathfrak{p} = \mathfrak{A} \mathfrak{p}_0 + \mathfrak{a} = \mathfrak{p}_1$  oder  $\mathfrak{p} = \mathfrak{A} \mathfrak{p}_1 + \mathfrak{a} = \mathfrak{p}_2$  oder  $\mathfrak{p} = \mathfrak{A} \mathfrak{p}_2 + \mathfrak{a} = \mathfrak{p}_3$  gesetzt werden kann. Die Lösungsmannigfaltigkeit des Systems ( $\mathfrak{A}^2 + \mathfrak{E}$ )  $\mathfrak{z} = \mathfrak{p}$  ist von derselben Dimension wie die Mannigfaltigkeit der Punkte  $\mathfrak{p}_j$ . Die Punktquadrupel ( $\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3$ ) erfüllen daher entweder vier (nicht notwendig verschiedene) Geraden (Rang ( $\mathfrak{E} + \mathfrak{A}^2$ ) = 1) oder die ganze Ebene (Rang ( $\mathfrak{A}^2 + \mathfrak{E}$ ) = 0, das heisst  $\mathfrak{A}^2 = -\mathfrak{E}$ ).

C. Bindschedler (Küsnacht) und O. Reutter (Ochsenhausen) geben als spezielle Lösung die reellen Matrizen mit den Eigenwerten  $\pm i$  an.

**Aufgabe 424.** Es bezeichne  $A(a_i)$  das arithmetische,  $H(a_i)$  das harmonische Mittel der drei Seiten eines Dreiecks und  $G(w_i)$  das geometrische Mittel der drei Winkelhalbierenden. Wie gross ist die Fläche des Dreiecks, wenn

$$G^{3}(w_{i})\left[\frac{3}{H(a_{i})}-\frac{1}{3A(a_{i})}\right]=3$$
?

F. Leuenberger, Zuoz

Lösung: Ist s der halbe Dreiecksumfang, so erhält man mittels der Identität

$$(a_1 + a_2 + a_3) (a_1 a_2 + a_2 a_3 + a_3 a_1) - a_1 a_2 a_3 = (a_1 + a_2) (a_2 + a_3) (a_3 + a_1)$$

sofort

$$G^{3}(w_{i})\left[\frac{3}{H(a_{i})}-\frac{1}{3 A(a_{i})}\right]=w_{1} w_{2} w_{3} \frac{(a_{1}+a_{2}) (a_{2}+a_{3}) (a_{3}+a_{1})}{2 s a_{1} a_{2} a_{3}}=3.$$

Setzt man

$$w_1 = \frac{\sqrt{a_2 a_3 [(a_2 + a_3)^2 - a_1^2]}}{a_2 + a_3} = \frac{2\sqrt{a_2 a_3} s (s - a_1)}{a_2 + a_3}$$

und die durch zyklische Vertauschung der  $a_i$  entstehenden Ausdrücke für  $w_2$  und  $w_3$  ein, so ergibt sich

$$4\sqrt{s(s-a_1)(s-a_2)(s-a_3)}=3.$$

Aufgaben 41

Nach der Formel von Heron ist somit F = 3/4.

Lösungen sandten F. Bachmann (Zürich), B. Bollobás (Budapest), K. Fiedler (Dresden), W. Jänichen (Berlin), H. Meili (Winterthur), W. Zulliger (Küsnacht ZH).

Aufgabe 425. Man beweise folgenden Satz über quadratische Matrizen mit  $n^2 \ge 1$  Elementen: Die Matrizen  $\mathfrak{A}_0, \mathfrak{A}_1, \ldots, \mathfrak{A}_r$   $(r \ge 0)$  sollen konstante, komplexwertige Elemente besitzen. Das Polynom  $\mathfrak{P}(x) = \sum_{\varrho=0}^r \mathfrak{A}_\varrho \, x^\varrho$  ist dann eine Matrix, deren Elemente Polynome in x sind. Die Determinante dieser Matrix sei  $f(x) = |\mathfrak{P}(x)|$ . Wenn es nun eine konstante Matrix  $\mathfrak{X}$  derart gibt, dass  $\mathfrak{P}(\mathfrak{X}) = \mathfrak{D}$  ist, dann ist auch  $f(\mathfrak{X}) = \mathfrak{D}$ .  $\mathfrak{D}$  bedeutet dabei die Nullmatrix.

(Es ist zu beachten, dass im allgemeinen  $f(\mathfrak{X}) + |\mathfrak{P}(\mathfrak{X})|$  ist, weil das Bilden der Determinante einer Matrix und das «Einsetzen» einer Matrix in ein abstraktes Polynom nichtvertauschbare Operationen sind.)

O. Reutter, Ochsenhausen/Deutschland

Lösung: Ist  $f(x) \equiv 0$ , dann ist nichts zu beweisen. Sei also  $f(x) \not\equiv 0$ . – Bekanntlich gibt es eine Matrix  $\mathfrak{Q}(x)$ , die zu  $\mathfrak{P}(x)$  adjungierte Matrix, so dass identisch gilt:

$$\mathfrak{P}(x) \ \mathfrak{Q}(x) = \mathfrak{Q}(x) \ \mathfrak{P}(x) = f(x) \ \mathfrak{E} \ (\mathfrak{E} = \text{Einheitsmatrix}).$$

f(x) & ist ebenfalls ein Matrixpolynom wie  $\mathfrak{P}(x)$ . Der «rechte» Wert des Polynoms  $\mathfrak{P}(x)$  für  $x=\mathfrak{X}$  ist gleich  $\mathfrak{D}$ . Das ist nach dem verallgemeinerten Satz von Bézout (vgl. F. R. Gantmacher, Matrizenrechnung I, Berlin 1958, S. 77f.) genau dann der Fall, wenn das Polynom  $x \mathfrak{E} - \mathfrak{X}$  das Polynom  $\mathfrak{P}(x)$  von rechts ohne Rest teilt. Dann ist aber auch das Polynom  $\mathfrak{P}(x)$   $\mathfrak{P}(x)$ , also das Polynom f(x) & von rechts ohne Rest durch  $x \mathfrak{E} - \mathfrak{X}$  teilbar. Somit ist  $f(\mathfrak{X}) = \mathfrak{D}$ .

Der Aufgabensteller weist darauf hin, dass der Satz der Aufgabe eine Verallgemeinerung des Cayleyschen Satzes ist, nach dem jede quadratische Matrix  $\mathfrak A$  ihrer charakteristischen Gleichung  $f(x) = |\mathfrak A - x\mathfrak E| = 0$  genügt.

**Aufgabe 426.** Es seien  $v_1, v_2, \ldots, v_{(p-1)/2}$  die (p-1)/2 quadratischen Reste mod p  $(p=\operatorname{Primzahl})$ . Ist r ein fester dieser Reste, so ergeben die mod p kleinsten positiven Reste der Produkte r  $v_i$   $(i=1,2,\ldots,(p-1)/2)$  wiederum das System der Reste  $v_i$ . Ordnen wir dem Rest v die Permutation  $P_r$  zu, die  $v_i$  in v  $v_i$   $(i=1,2,\ldots,(p-1)/2)$  überführt, so bilden die  $P_r$  eine Gruppe  $\mathfrak R$  der Ordnung (p-1)/2. Es soll gezeigt werden: Ist p=4 k+3, so sind alle Permutationen von  $\mathfrak R$  gerade, ist p=4 k+1, so ist die Hälfte der Permutationen von  $\mathfrak R$  gerade, die andere Hälfte ungerade. W. Jänichen, Berlin-Zehlendorf

Lösung: Nach Definition heisst eine Permutation der n Variabeln  $x_1, x_2, \ldots, x_n$  gerade bzw. ungerade, wenn sie das Differenzenprodukt

$$\Lambda = \prod_{i < k} (x_i - x_k)$$

in sich bzw. in  $-\Delta$  überführt. Werden anstelle der n Variablen  $x_i$  die (p-1)/2 Reste  $r_i$  gesetzt, so geht  $\Delta$  durch die Permutation  $P_r$  über in

$$\Delta' = \prod_{i \le k} r \, (r_i - r_k) \equiv r^E \, \Delta \pmod{p}, \quad E = \frac{1}{2} \, \frac{p-1}{2} \, \left(\frac{p-1}{2} - 1\right).$$

Ist w eine Primitivwurzel mod p, so können die Reste  $r_t$  durch  $r_t = w^{2t}$  (t = 1, 2, ..., (p-1)/2) dargestellt werden.

a) p = 4 k + 3. Man hat

$$r^E = r_t^E = \lceil w^{p-1} \rceil^{tk} \equiv 1 \pmod{p}$$
 für jedes  $t$ ,

also ist  $\Delta' = \Delta$  und alle Permutationen  $P_r$  sind gerade.

b) p = 4 k + 1. Man hat hier

$$r_t^E = \left[ w^{(p-1)/2} \right]^{(2 k-1) t} \equiv (-1)^{(2 k-1) t} \pmod{p}$$
.

Somit ist  $r_{2s}^E \equiv 1$  und  $r_{2s+1}^E \equiv -1 \pmod{p}$  und die entsprechenden Permutationen sind gerade bzw. ungerade, was zu beweisen war.

H. Meili, Winterthur

Weitere Lösungen sandten W. Börner (Jena) und L. Carlitz (Duke University, Durham, N.C., USA).

# Neue Aufgaben

Aufgabe 448. Es sind jene logarithmischen Spiralen zu ermitteln, die ihre eigenen Affinevoluten darstellen.

W. Wunderlich, Wien

Aufgabe 449. Die Dezimalbruchentwicklungen des Cosinus eines Winkels und des doppelten Winkels lauten

$$\cos \alpha = 0$$
,  $abbb...$   
 $\cos 2 \alpha = 0$ ,  $baaa...$ ,  $a \neq b$ .

Man bestimme a und b.

W. Lüssy, Winterthur

**Aufgabe 450.** Es sei  $1 < a_1 < a_2 \ldots < a_k$  eine Folge natürlicher Zahlen  $\leq n$ , von denen keine durch eine andere Zahl der Folge teilbar ist. Die Folge sei in dem Sinn «maximal», dass keine weiteren Zahlen  $\leq n$  hinzugefügt werden können. (Ein Beispiel für n = 12 ist 4, 6, 7, 9, 10, 11). Man zeige:

$$\min k = \pi(n) = \text{Anzahl der Primzahlen } \leq n.$$
 (1)

$$\min_{i=1}^{k} \sum_{j=[n/2]+1}^{k} 1/j.$$
 (2)

P. Erdös

Aufgabe 451. Auf einer schiefen Ebene lässt man eine massive Kugel und eine massive Pseudosphäre längs einer Fallinie abrollen.  $v_K$  und  $v_P$  seien die Rollgeschwindigkeiten in dem Punkt, dessen Höhenunterschied zum Ausgangspunkt h beträgt.  $v_{HK}$  bzw.  $v_{HP}$  seien die Rollgeschwindigkeiten für die entsprechenden Hohlkörper (Wandstärke  $\rightarrow$  0). Man berechne die Verhältnisse  $v_K: v_{HK}, v_P: v_{HP}, v_P: v_K, v_{HP}: v_{HK}$ . K. Wanka, Wien

Aufgabe 452. Durch die Eckpunkte  $A_i$  (i=1,2,3,4) eines konvexen Vierecks werden in der Ebene vier Geraden bestimmt.  $M_{i+2}=M_k$  ( $i+2\equiv k\pmod 4$ ) sei der Fusspunkt des von einem Punkt P der Ebene auf  $A_i$   $A_{i+1}$  gefällten Lotes. Man bestimme den geometrischen Ort der Punkte P, für die  $\overline{M_1}$   $\overline{M_2}=\overline{M_3}$   $\overline{M_4}$ . (Ähnliche Aufgaben ergeben sich, indem man dem Viereck  $M_1$   $M_2$   $M_3$   $M_4$  andere Eigenschaften vorschreibt.)

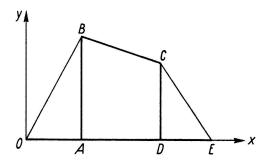
I. BREJCHA, Brno

# Aufgaben für die Schule

Es wird kein Anspruch auf Originalität der Aufgaben erhoben; Autoren und Quellen werden im allgemeinen nicht genannt. Die Daten für Aufgaben aus der Darstellenden Geometrie sind durchweg so festgelegt, dass der Ursprung des Koordinatensystems in der Mitte des linken Randes eines Blattes vom Format A4 gewählt werden soll, x-Achse nach rechts, y-Achse nach vorn, x-Achse nach oben, Einheit 1 cm. Anregungen und Beiträge sind zu senden an Prof. Dr. Willi Lüssy, Büelrainstrasse 51, Winterthur.

1. Die Potenzkurve  $y = k x^n$  hat die Eigenschaft, dass die Strecke der Tangente zwischen den Koordinatenachsen durch den Berührungspunkt im Verhältnis -1:n geteilt wird. (X P: P Y = -1:n) Zeige, dass auch die Umkehrung dieses Satzes richtig ist.

Bericht 43



2. Die Punkte der Figur haben folgende Koordinaten: A(x; 0) B(x; b) C(x + a; c) D(x + a; 0) E(w; 0).

Das Trapez ist das Profil einer Werkzeugkiste, die auf der Brücke OE eines Wagens steht. Sie soll durch ein Seil OBCE gegen Verschiebungen in der x-Richtung gesichert werden. Wie ist x zu wählen, damit das Seil nicht locker werden kann? Wie kann das Resultat ungeschultem Personal vermittelt werden?

$$x = \frac{(w-a) b}{b+c}$$
. Die Winkel bei O und E müssen gleich sein.

3. Der Kreis  $x^2 + y^2 = r^2$  schneidet die x-Achse in B(-r; 0). Der Punkt A wandert auf dem Kreis. Man projiziert A nach C auf der x-Achse, C nach D auf BA, und D nach P auf AC. Bestimme die Gleichung des geometrischen Ortes von P und die von dieser Kurve eingeschlossene Fläche.

4. Graphisch darzustellen:

$$\varrho = \sqrt{\frac{\sin 3 \varphi}{\cos \varphi}}$$
 (Polarkoordinaten).

Die Kurve besitzt Schleifen, berechne die Fläche einer Schleife.

$$\phi = n \frac{\pi}{3}$$
 Wendetangenten,  $\varphi = \frac{\pi}{2}$  Asymptote,  $f = 0.75 - \ln \sqrt{2}$ .

- 5. An welcher Stelle ist die Kurve mit der Gleichung  $y = \arctan x$  am stärksten gekrümmt?
  - Die Aufgabe führt auf die Gleichung

$$3 x^6 + 5 x^4 - 2 x^2 - 2 = 0.$$
  
 $x^2 = 0.69152, x = \pm 0.8316, y = \pm 0.6937 + n \pi.$ 

### Bericht

### Die Studientagung des Vereins Schweizerischer Mathematik- und Physiklehrer am 1.12.62 in Biel

Eine ausserordentlich grosse Zahl von Mitgliedern des VSM hat der Einladung zur Bieler Studientagung Folge geleistet. Das darf wohl als deutliches Zeichen des grossen Interesses gewertet werden, das in weiten Kreisen den Bestrebungen der beiden Lehrmittelkommissionen (der welschen und der deutschen Schweiz) entgegengebracht wird, durch Modernisierung des bisherigen Unterrichtswerkes, bzw. durch Schaffung neuer Leitfäden die notwendigen Hilfsmittel für einen zeitgemässen Mathematikunterricht zu schaffen.

Der Präsident des Vereins, Prof. W. Sörensen, übergab zuerst das Wort Herrn Prof. A. Pfluger von der ETH, der für die Lehrmittelkommission der deutschen Schweiz über die Neugestaltung des Stoffes «Algebra-Analysis» sprach. Da eine Darstellung der allge-