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Kleine Mitteilungen 31

Fiir diese fiinf Polyeder lisst sich die Zerlegungsgleichheit mit Wiirfeln direkt be-
statigen. Allgemeiner gilt fiir beliebige totalsymmetrische konvexe Polyeder des ge-
wohnlichen Raumes, dass diese mit Wiirfeln sogar translativ-zerlegungsgleich sind,
so dass die Teilpolyeder, welche die Zerlegungsgleichheit realisieren, nicht nur kon-
gruent, sondern sogar translationsgleich sind ®). Im Falle » > 3 scheinen verwickeltere
Verhiltnisse vorzuliegen. Allgemein fiir n = 2 giiltige und weitergreifende Resultate
hat kiirzlich H. GROEMER gewonnen®). Er zeigte, dass bei einer Parkettierung des
Raumes durch gleichmaissig beschrinkte Polyeder, die mit einem konvexen Polyeder
P lediglich homothetisch sind, wieder auf die Zentralsymmetrie von P selbst und
seiner Seitenflichen geschlossen werden kann. Ob hier im Falle #» > 3 noch die trans-
lative Zerlegungsgleichheit von P mit einem Wiirfel W besteht, ist fraglich. Herrn
GROEMER verdanken wir den Hinweis?), dass schon DELAUNAY vierdimensionale
konvexe Polyeder angegeben hat, welche die Parkettierungseigenschaft aufweisen
und deren zweidimensionale Kanten Dreiecke sind. Vgl. hierzu auch eine Vermerkung
von COXETERS®). Diese Tatsache zeigt, dass die hoher dimensionalen Paralleloeder
nicht in dem Sinne totalzentralsymmetrisch sind, dass die Kanten aller Dimensionen
diese gleiche Symmetrie besitzen, wie der Unterzeichnete filschlicherweise annahm.

Bei dem hier vorgelegten Problem handelt es sich nun darum zu entscheiden, ob
der oben formulierte Satz betreffend die Zerlegungsgleichheit von Parkettierungs-
polyedern mit Wiirfeln richtig ist oder nicht. H. HADWIGER

Kleine Mitteilungen

Einige Dreiecksungleichungen

Bei ¢ =1, 2, 3 seien ay, h;, m; und o; die Seiten, Hohen, Schwerelinien und Winkel
eines Dreiecks mit » und R als In- und Umkreisradius. Es gilt die Abschidtzung

V3 21 Y3
Y < o< YT
Fs XSt @
von KuBora [1]?) (linke Seite)/LEUENBERGER [2] (rechte Seite). Letzterer gab in Amer.
Math. Monthly 1960, S. 692, erstmals

M=V My @

an. M, (x) bedeutet das k-te Potenzmittel der Grossen x,, und (2) ist der rechten Seite von
(1) dquivalent. Schliesslich zeigte MaAkowskI [3], dass

My =V M0 l
und

B (3)
M_ (k) = J‘/;*M- (@)

8) Vgl. hierzu H. HADWIGER, Mittelpunkispolyeder und translative Zerlegungsgleichheit; Math. Nachr. 8,
53-58, 1953.
" 8) Uber Zerlegungen des euklidischen Raumes; Math. Z. 79, 364-375, 1962,
7) Brief vom 26. 10. 1962,
8) J. de Math. 41, 125, 1962.
9) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 33.
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dquivalente Ungleichungen sind. Damit folgerte er aus (2) die Giiltigkeit von

M= M ). 4

Satz 7: (3) gilt auch fiir & = 2.
Beweis: My(h) < My(a) )/3/2 folgt unmittelbar aus der trivialen Ungleichung

3 3

2 2

2 by = E m;
1=1 =1

und der wohlbekannten Beziehung

M.
k-

[
ENEN
M.

Damit gilt nach (3) B
M, (h) < VT?’M,C(a) fiir || = 2. (5)

Die Frage, fiir welche £ wohl (3) iiberhaupt gilt, ist natiirlich im allgemeinen noch offen.
Dagegen bestitigen wir eine Vermutung von MAKOwsKI [3] in

Satz 2: Genau fiir & < log9 — log4
log4 — log3

gilt

M,(a) < RY3. (6)
Beweis: Wegen a; = 2 Rsina; ist My(a) < R}/3 mit M(sina) < |/3/2 dquivalent, so
dass wir nur abzukldren haben, fiir welche £ die letzte Ungleichung gilt. Sei £ > 2; fiir
kleinere % ist (6) bekannt und folgt dann iiberdies aus einer bekannten Potenzmittel-
eigenschaft ohne weiteres.

a) Dreieck stumpfwinklig, «, > 90°, womit a, + a3 < 90°. Gilt simultan «;, — ¢ > 90°
und o, + & < 90°, so ist

3
D, sinfa; < sink (o, — &) + sin’(a, + ) + sinka,,
i=1
b) Dreieck rechtwinklig, o; = 90°, o, = a. Es folgt
1 + sin*fa + cos*a < 1 + sin?a + cos?a = 2. Max. fiir oy = 90°.

c) Dreieck spitzwinklig, «; < 90°, a, < 90°, o, + ay > 90°. Die notwendigen Bedin-
gungen fiir ein relatives Maximum von

f((ll, 052) = Sink al + Sinkmz "I“ Sink(al + az)

in einem inneren Punkte sind

Ooo{ = k sin* 1, cosa, + & sin®*~1 (o, + ap) cos(o; + o) = 0
1
Of ink—1 ink—1
™ = k sin*~la, cosa, + & sin (ot + ap) cOS(oty + &) = O,
das heisst
sinf—1q, cosa, = sinf~la, cOsay = sinf—1 [mw — (a; + ap)] cos[mw — (&, + &p)].  (7)

Mit z = arc tg J/k — 1 nimmt f(x) = sin*—1x cosx in (0, z) monoton zu und in (z, 7/2)
monoton ab, womit (7) im interessanten k-Bereich a; = 60° fiir das Maximaldreieck liefert.
Da zudem a) durch b) verbessert wird, kann durch direkte Rechnung gepriift werden,
wann das gleichseitige Dreieck vom Randextremum bei b) abgelost wird. Das grosst-
mogliche £ fiir die Giiltigkeit von (6) erhalten wir offenbar aus 3 sin* n/3 = 2, was uns wie
behauptet £ = (log9 — log4)/(log4 — log 3) liefert. J. BERKES, Szeged
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Bemerkung zu zwei Arbeiten von A. MAkowskI und J. BERKES

Auf der Seite a, eines Dreiecks mit Umkreisradius R stehe die Hohe #,, wiahrend w,
den Gegenwinkel von a; halbiere. Bedeutet M,(v) das k-te Potenzmittel der Grossen
x; (1 =1, 2, 3), so zeigte A. MAKowsKI [1]!) in dieser Zeitschrift, dass

My(h) = ~V23‘ My(a) und M_u(h) = Kf M_y(a)

dquivalente Aussagen sind. Die Giiltigkeit der Ungleichungen wird dabei einzig fiir die
beiden diskreten Ordnungszahlen £ = 0 und % = 1 dargetan. Nun ist es aber sehr einfach,
ihr Bestehen in einem ganzen Infervall nachzuweisen:

Fir 1< |k |2 gilt My(h) < V3 M, (a). (1)

Dank Makowskis Resultat brauchen wir es nur fiir 1 < %k < 2 zu beweisen.
Ist s der halbe Dreiecksumfang, so gilt [2]

2
w; = s (s — ay)

2 wfgﬁ

My(w) < 1/3 - V3 My,

und damit
oder

2

Unter Beachtung der Verschiedenheit der Ordnungszahlen und wegen %; < w; liegt damit
die Begriindung von (1) schon vor, da M, (¥) = M, (») fiir m < » wohlbekannt ist.

Expliziter als bei Makowsk! wird neuerdings die Frage, fiir welche £ die Ungleichung
(1) iberhaupt gelte, in vorstehender Arbeit von BERKES aufgeworfen. In Satz 1 zeigt dieser,
dass | 2 | = 2 gesetzt werden darf. Einerseits ist dieses Resultat natiirlich ein Spezialfall
unserer Ungleichung (1), andererseits kann aber auch diese gerade dank Satz 2 von
BerkEs nochmals wie folgt erweitert werden:

Es gilt

V3 log9 — log4

/3 - < 7”7 "o
My(h) = )~ My(a) fir | k| <0 07003

=5, = K ~ 2,8188. (2)

Nach BERKEs erlangt nimlich My(a) < R /3 genau fiir £ < K Giiltigkeit?).

Aus D W= (2 R+ ) alal
1< ]
folgt wegen

1
3xy:«fxy+2xy§~2«

sofort SH= % (2 R+ (3 a)’

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 34.

?) Der Vollstandigkeit halber sei bemerkt, dass fiir £ > K die Relation M (a) <2 R (2/3)1/k < 2 R (3) gilt.
Dem Beweis des Satzes 2 von BERKES entnimmt man dieses Resultat miihelos, da fiir 2 >> K das (gleich-
schenklige) Extremaldreieck nahezu den Umkreisdurchmesser als Schenkel aufweist. Damit ist die von %
abhingige Abschitzung (3) aber auch scharf,

4+ +2xy (*)
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und damit aber fiir 2 < K nach Satz 2 von BERKES

: T \k
w (V3 k
Zi=(G) X,
was mit My(h) = My(a) V 3/2 gleichbedeutend ist. Nach der zu Beginn angefiihrten
Aquivalenzbeziehung von MAKowsKI haben wir den Beweis von (2) vollstindig erbracht.
Dabei zeigen (*) und Satz 2 von BERKES, dass Gleichheit nur im reguldren Dreieck besteht.
Erwiinscht wire nach wie vor eine systematische Untersuchung fiir beliebiges %, welche

vielleicht zu Vergleichszwecken neben den Hohen die Winkelhalbierenden beiziehen
wiirde. F. LEUENBERGER, Feldmeilen

LITERATURVERZEICHNIS

[1] A. MakowsKl1, Some Geometric Inequalities, E1. Math. 77 (1962), 40-41.
[2] Aufgaben fiir die Schule, Losung zu Nr. 3, El. Math. 77 (1962), 45-46.

Erginzende Bemerkungen zu der Arbeit von A. MAKOWSK1')
«Some geometric inequalities»

Das Potenzmittel n#-ter Ordnung dreier positiver Zahlen x,, x,, x4 ist durch den Ausdruck

1 W 1/n
(——Zx,.) , falls n # 0
M(n, x;) = 3

(T #,)113, falls = 0

fiir alle reellen Zahlen # definiert. M (n, x,) ist bekanntlich in — oo < # < oo eine positive,
stetige und monoton wachsende Funktion der Variablen #, und es ist lim M(n, x,) =

Max #; lim M(n,x,) = Min #,. n—>e0
N> — OO

In der genannten Abhandlung vergleicht Makowsk! die Potenzmittel der Seiten a;
und der Hohen £, eines Dreiecks, mit dem Ergebnis

M(n,h) < /3 M(n, ;) fir n=0,1 und — 1.

Es erhebt sich die Frage, ob bzw. unter welchen Bedingungen diese Ungleichung auch
noch fiir andere Ordnungen # gilt. In der Tat lisst sich zeigen, dass obige Ungleichung
fiir gewisse Dreiecke sogar fiir jedes reelle » besteht. Zunidchst beweisen wir folgenden
Satz: Sind a,; die Seiten, /;die Hohen und F der Inhalt eines Dreiecks, dann gilt die Doppel-
ungleichung

aM(n,a) < Mn,h) <pMn,a,
mit o = 2 FMin [([/a;)~%"%; (Maxa; Mina,)~']und g = 2 F Max [([]a;)~%?; (Maxa; Mina,)~]
fiir jedes reelle .
Beweis: Wegen h; = 2 Fa;~ (i =1, 2, 3) ist

Men ) _ M(n2Fa)  M(na) 25
M= Mna) = M) =T TMena) T M a) M= na) -
Aus dieser Darstellung ergeben sich unmittelbar folgende Eigenschaften von g(n):
4(— n) = q(n). (1)
4(0) = im, qn) = o @)
2F

¢(o0) = lim q(n) = ‘Maxa; Minag,

1) EL Math. 17 (1962), 40-41.
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Ausserdem ldsst sich zeigen, dass der Wertevorrat von ¢(n) zwischen ¢(0) und ¢(o0) liegt.
Zum Nachweis dieser Eigenschaft ziehen wir die Darstellung

2F M a;a:4,)
n) = .
1" = TTa; * ~ Min, ay

heran, die aus der Identitit M(n, a,~) = ([] a;)~* M(n, a; a,, ,) folgt. Die Dreiecksseiten
seien der Grosse nach geordnet, etwa a, < a, < a4, und wir setzen zunichst voraus, dass
die Ungleichung a, a; < a3 bestehe. Dann ist M(n, a; a;,,) =< a; M(n, a;), also q(n) <
2 F /[T a; = q(o0).

Wegen

(a} — ay ay) (a3 — ay a5) (a§ — ay ay) + 2 (a;0,.3)° =T a;- X ad
folgt aus a, a; < a3 andererseits
M3, a;a;,,)
2 (a;a;.,)3 =1l a;- X a? also M(3f a:)+1
Setzen wir 4; = a%/® mit » = 0, dann geniigen die Grossen 4; ebenfalls der Ungleichung
A, A3 < A%, so dass entsprechend

MG, 43 4yy,) = (JT A1

= (Il a;)t.

ist. Somit wird

M(n, a; ai_H) . M(3,AiAi+1) 3in =~ 1/n — 1/3
M(n, a,) B [ A M] = UL AP = (T &)*F,
2F

e g o /3 =

also gn) 2 77— (I a)'/* = 4(0),
fiir » = 0 und wegen (1) sogar fiir alle n. Es gilt also ¢(0) =< q(n) = ¢q(o0) fiir alle #, falls
a, a; < ai.
Ist dagegen a, a; = a3, dann ldsst sich analog zeigen, dass ¢(0) = g(n) = g(oo) ist fiir alle #.
Jedenfalls gilt also a < ¢g(#) < f mit a = Min [g(0); g(o0)] und g = Max [¢(0); g(o0)], q.e.d.

Wir ziehen nun noch eine Folgerung aus dem eben bewiesenen Satz, indem wir die
bekannte Ungleichung

1
=
heranziehen. Daraus folgt zundchst § < Max [1; (7 a;)?'3 (Maxa; Mina;)~1] }/3/2.

Wenn nun af < a, a, ist, das heisst, wenn die «mittleres Dreiecksseite héchstens
gleich dem geometrischen Mittel der beiden extremen Dreiecksseiten ist, dann ist

(I1 a;)*"® (Maxa; Mina;)~'< 1 und damit § < [/372 Fiir solche Dreiecke gilt also die Un-
gleichung M(n, h;) < M(n, a;) }/3/2 fiir jedes reelle . O. REUTTER, Ochsenhausen

2F < — V3 (IT a)*

Kleiner Beitrag zur elementaren Dreiecksgeometrie

Als Mittelschullehrer muss man sich immer wieder wundern, dass einfachste Grossen-
verhidltnisse im Dreieck nicht bekannt zu sein scheinen. So sollen in dieser Note zwei
Sachverhalte zur Sprache kommen, welche erneut!) die Diskrepanz zwischen den Winkel-
und Seitenhalbierenden aufzeigen.

Als erstes behaupten wir:

Das Quadrat iiber dem halben Umfang ist mindestens so gross wie die
Quadratsumme der Winkelhalbierenden, aber hickstens so gross wie die-
jenige der Seitenhalbierenden:

wag 52§2m?. (1)

1) Vgl. dazu unter anderem F. LEUENBERGER, Zum Mordellschen Beweis einer Ungleichung von Erpds,
ElL Math. 17 (1962), 15-17.
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Der erste Teil von (1) wurde in anderem Zusammenhang %) bewiesen, der zweite kann auch
einfach nachgewiesen werden. Es seien a; die Dreiecksseiten und M, (») bedeute das k-te
Potenzmittel der Grossen x;. Dann gilt

fiir 2 < 2 mit Gleichheit nur im gleichseitigen Dreieck. Speziell also
Ximiz % M%a) = s2.

Etwas weiter ausholen miissen wir, um folgenden Tatbestand einzusehen:

Das arithmetische Mittel der Winkelhalbierenden ist héchstens so gross
wie die Summe aus Um- und Inkreisradius, das heisst

M (w) < R+ 7. (2)

Die Seitenhalbierenden kénnen nicht an die Stelle der Winkelhalbierenden gesetzt werden !
Strebt namlich die Basis eines gleichschenkligen Dreiecks bei konstanter Schenkellinge
gegen 0, so kann M,(m) beliebig nahe an R 4+ R/3 herangebracht werden, wihrend 7 im
Grenzfall verschwindet. Die Abschidtzung (2) ist eine Verschiarfung von ' w, < 4 R + 7,
einer Formel, welche die «Stellvertretung» noch gestattet?) hat.

/
/

&,
/ /
AN * /I /
s H o
S~ — ///‘

Beweis von (2):

Der Figur entnimmt man ¢ 4,00, = (a3 — a,)/2 und ersichtlich gilt
_ 04,
Wy = PlQl =7 + aa—‘;*'&;:" - (a)

cos --2-
2

Gelaufige Uberlegungen liefern

04, _ 4R Vf@ﬁi:ff;); ay
- %3 "'2‘ Og as + as

was wegen der Ungleichung zwischen dem geometrischen und arithmetischen Mittel
hochstens

cos
s 2 *

o ¢4
L Y

S8 o % o
2R . cos ZRVtg 2 tg 3 2

2
betragen kann.
2) F. LEUENBERGER, Bemerkung zu zwei Arbeiten von A. MAKowskr und J. BERkES, dieses Heft S. 33.

3) F. LEUENBERGER, Gegensitzliches Verhalten der arithmetischen und geometrischen Mittel, El. Math.
16 (1961), 127-129.



Kleine Mitteilungen 37

Nochmalige Anwendung dieser Ung]eichung fiithrt zu

tg %2 _:; o R - cos 1.
Vtg tg Cos L = - 18tg tg 2 ZVZ cos =

R O('2 ®3 2 %1
< —2 52 .
=2 (9 tg - tg > + 4 cos 2 ) . (b)

Wird (b) in (a) eingesetzt und addiert man die entsprechenden Resultate fiir w, und wj,,
so gewinnt man

Zwig?)r{—R[ (Ztg O;zt ) Zcoszai]‘

1<
Hieraus folgt wegen

1<p 1
und
ZYCOS2 % _ v+ 4R
2 2R
vorerst
Zwi = 3rv+ ; R + ?{vir34AR

Ersetzt man im dritten Summanden » noch durch den mindestens so grossen Ausdruck
R/2, so ist der Beweis von (2) abgeschlossen. In (a) gilt Gleichheit fiir alle w; nur, wenn
@, = @y = ay, in (b) herrscht sie simultan genau dann, wenn &, = o, = %,;. Bekanntlich gilt
auch » = R/2 nur im gleichseitigen Dreieck.

Zur Schirfe von Y w; < 3 R + 3 v darf festgestellt werden, dass bei ganzzahligen,
positiven Koeffizienten von R und » keine bessere Abschidtzung (von oben) gefunden
werden kann. Dass 2 R 4 57 unsinnig wire, dokumentieren wir etwa so, dass wir die
Gegenecke einer festen Dreiecksseite gegen den Mittelpunkt derselben konvergieren lassen:
2 w; > 8 R/3 bei v > 0. F. LEUENBERGER, Feldmeilen

Sums of Products of Multinomial Coefficients
The familiar formula for the sum of the squares of the binomial coefficients of a given
order
n
20 =6 g
v n
r=0

suggests that it may be possible to find similar results for the multinomial coefficients.
Put

(g, Mgy e.ny my) = VAT P2 He

We consider first the sum

Spa=Q, (s 1)?
r+s+t=n
Clearly
, ! 2 " m\2 k k\2
ot el = S0 50
n3 ,fj‘;: risl(n—v—s)! k;:) k ;;7’
" m\2 (2 k & (= n)e (— n)r (1/2) 2k 1
zk:O(k) (k)=,§)‘ RVRVE! 250

Y (a), =a(@a+ 1)...(a+ k—1).
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so that
—n,—mn,1/2; 4
Sn,s = 3F2 1 1

in the usual notation of generalized hypergeometric series?).
In the next place we have

Sp 4= 2 (v, s, ¢t, u)2 = Z 2 2 (v, s, t, u)?

thstttu=n idk=n rts=] t+tu=~k
- 2202 0= 2 60
C BP0 S
so that
Se= () T L (3)

It does not seem possible to sum the hypergeometric series occurring in the right
members of (2) and (3). If however we modify the sum somewhat, more satisfactory results
can be obtained.

Since

(x + y + z)'n p— 2 (r’ S, t) x’r ys zt, (x + y + Z)2n —— 2 (1,/' S,, i/) x’r’ ysl ztl
rst+t=n v st =2n

it follows by taking the product that
(n, n, n) = 2 (r,s, t) (v, s", 1),
where the summation is over all non-negative 7, s, ¢, 7, s’, #’ such that
r4+s+t=m v+’ +t"=2n rvr+v =5+ =t+1t=mn.
We therefore get

(r,s,t) (m—7r,m—s,n—1t) = (nnn). (4)
r+s4t=n

In the next place if we take the product of the expansions of

@+y+z+w), F+y+z+w)?
we find similarly that

rs,t,uy(m—r,n—s,n—2t,n—u)=nmnnn). (5)
rt+s+ttu=mn

If however we take the productof (¥ + 9+ 2+ w)?", (¥ + ¥y + 2+ w)?" we get

(r.,s,t,Luy(m—r,n—s,n—t,n—u)=(nmnmnmn. (6)
r+s+t+u=2n

It is now clear how to obtain the following general formula. Let 2 =1 and
1 <7 =k — 1 and consider the product of the multinomial expansions of

(FrF oot 2™, (F 4.+ o)

%) W. N, BaiLEY, Generalized hypergeometric series, Cambridge, 1935,
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Then
kn)!

(SpeverSg) (B —Sp,0e,m—55) = (m,..., 0) = _((“75)’“ (7)

S{t.. Fsp=rn ’

For 2 = 2, » = 1, (7) reduces to (1).
As an example of a slightly different formula that can be proved in a similar way we
mention

(SpeesSp)m4+n—s1,....m+n—s,)=(m+mn,...,m+n). (8)
S1+ ... +sp=Fkn

The formula
(SpeeesSp)m+n—s4,...,m4+n—3s)=(m+n,...,m+mn), (9)
s14+ .ot sp=mm 4 (k—-1m

where 0 < v < k&, includes both (7) and (8).
We may also state the formula

2 (Spseves Sg) (my + My — Sq, e, My -+ 1y — 53) = (Mg + nq, ..., my, + 1), (10)
where the summation is over all non-negative s,,..., s, such that

) sl+'..+sk:nl+.'.+nk'
Returning to

Sn,a = 2 (7’: S, t)z
rt+s+t=n

it is evident that S, ; is the coefficient of ¥ y" 2# in the expansion of
F+y+a"etzrtay)=0Bryz+ D 22"
If we let T, ; denote the coefficient of 4™ y™ 2" in the expansion of

() y)r=(ty+ a9+ a2z 222+ 32z +y 2",
it follows that

n
n .
Sna= 2, () 3" Toa- (1)
r=0
Similarly
Sa= X st
r+s+t4tu=mn

is the coefficient of (¥ ¥ z w)" in the expansion of
F+y+z+w)Yzwtrzwt+rywtry)=(4zyrw —{-szyz)”.
If T, , denotes the coefficient of (¥ y z w)" in the expansion of (2 4%y z)" it follows that
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The general formula of this kind can be stated without difficulty.
We remark that it follows from the identity
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