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Für diese fünf Polyeder lasst sich die Zerlegungsgleichheit mit Wurfein direkt
bestätigen Allgemeiner gilt fur beliebige totalsymmetrische konvexe Polyeder des
gewöhnlichen Raumes, dass diese mit Wurfein sogar translativ-zerlegungsgleich sind,
so dass die Teilpolyeder, welche die Zerlegungsgleichheit realisieren, nicht nur
kongruent, sondern sogar translationsgleich smd5) Im Falle n > 3 scheinen verwickeitere
Verhaltnisse vorzuliegen Allgemein fur n ^ 2 gültige und weitergreifende Resultate
hat kurzlich H Groemer gewonnen6) Er zeigte, dass bei einer Parkettierung des
Raumes durch gleichmassig beschrankte Polyeder, die mit einem konvexen Polyeder
P lediglich homothetisch smd, wieder auf die Zentralsymmetrie von P selbst und
seiner Seitenflächen geschlossen werden kann Ob hier im Falle n > 3 noch die translative

Zerlegungsgleichheit von P mit einem Würfel W besteht, ist fraglich Herrn
Groemer verdanken wir den Hinweis7), dass schon Delaunay vierdimensionale
konvexe Polyeder angegeben hat, welche die Parkettierungseigenschaft aufweisen
und deren zweidimensionale Kanten Dreiecke smd Vgl hierzu auch eine Vermerkung
von Coxeter8) Diese Tatsache zeigt, dass die hoher dimensionalen Paralleloeder
nicht in dem Sinne totalzentralsymmetnsch sind, dass die Kanten aller Dimensionen
diese gleiche Symmetrie besitzen, wie der Unterzeichnete fälschlicherweise annahm

Bei dem hier vorgelegten Problem handelt es sich nun darum zu entscheiden, ob
der oben formulierte Satz betreffend die Zerlegungsgleichheit von Parkettierungs-
polyedern mit Wurfein richtig ist oder nicht H Hadwiger

Kleine Mitteilungen

Einige Dreiecksungleichungen
Bei i 1, 2, 3 seien at, hv mt und at die Seiten, Hohen, Schwerelmien und Winkel

eines Dreiecks mit r und R als In- und Umkreisradius Es gilt die Abschätzung

R y — ^ \ (i)£ä a~ Zr v '

von Kubota [l]9) (linke Seite)/Leuenberger [2] (rechte Seite) Letzterer gab in Amer
Math Monthly 1960, S 692, erstmals

Mx(h) £ ^ Mx(a) (2)

an Mk(x) bedeutet das k-te Potenzmittel der Grossen x%, und (2) ist der rechten Seite von
(1) äquivalent Schliesslich zeigte Makowski [3], dass

und
Mk(h) < ^ Mk(a)

M_k(h)^^-M_k(a)
(3)

6) Vgl hierzu H Hadwigfr, Mittelpunktspolyeder und translative Zerlegungsgleichheit, Math Nachr 8,

53-58, 1953
6) Über Zerlegungen des euklidischen Raumes, Math Z 79, 364-375, 1962
7) Brief vom 26 10 1962
8) J de Math 41, 125, 1962
9) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 33
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äquivalente Ungleichungen smd Damit folgerte er aus (2) die Gültigkeit von

M_x(h)^^M_x(a) (4)

Satz 1 (3) gilt auch fur k 2

Beweis M2(h) ^ M2(a) j/3/2 folgt unmittelbar aus der trivialen Ungleichung

*=i t~i
und der wohlbekannten Beziehung

3 o 3

*=i *=i

Mk(h)^Vl-Mk(a)iur \k | 2 (5)

Damit gilt nach (3)

Die Frage, fur welche k wohl (3) überhaupt gilt, ist natürlich im allgemeinen noch offen
Dagegen bestätigen wir eine Vermutung von Makowski [3] m

Satz 2 log 9- log 4
Genau fur k < tt-5- °„log 4 — log 3

gilt
Mk(a) ^ i? |/3 (6)

Beweis Wegen at 2 i?sinat ist Mk(a) ^ i? j/3 mit Mfc(sma) ^ |/3/2 äquivalent, so
dass wir nur abzuklären haben, fur welche k die letzte Ungleichung gilt Sei k > 2, fur
kleinere k ist (6) bekannt und folgt dann überdies aus einer bekannten Potenzmittel-
eigenschaft ohne weiteres

a) Dreieck stumpfwinklig, olx > 90°, womit a2 + a3 < 90° Gilt simultan olx — e > 90°
und ol2 + e < 90°, so ist

3

y] sm>at < sm*(a1 — e) + sm*(a2 + e) + sm*a3
t i

b) Dreieck rechtwinklig, olx — 90°, <x2 a Es folgt
1 + sinfca 4- cos*a _^ 1 + sm2a + cos2a 2 Max fur a2 90°

c) Dreieck spitzwinklig, ocx < 90°, a2 < 90°, olx + a2 > 90° Die notwendigen
Bedingungen fur em relatives Maximum von

f(<xx, a2) sinAax ~h sm*a2 -\ smAk(a1 + a2)

in einem inneren Punkte smd

-x— k sm*"1^ cosa! + k smi-1 (ax + a2) cos(a1 + a2) 0
ÖOLx

""#. ~ ^ sm&"~la2 cosa2 + k sm*-"1 (ax + a2) cos(a1 -f- a2) 0,

das heisst

sin*"1^ cosai sm*"1^ cosa2 sm*-1 [n — (aa + a2)] cos[jt — (olx + a2)] (7)

Mit # are tg ^k — 1 nimmt /(#) sm*"*1^ cosat m (0, z) monoton zu und m (z, n/2)
monoton ab, womit (7) im interessanten k-Bereich 0Lt 60° fur das Maximaidreieck liefert

Da zudem a) durch b) verbessert wird, kann durch direkte Rechnung geprüft werden,
wann das gleichseitige Dreieck vom Randextremum bei b) abgelost wird Das grosst-
moghehe k fur die Gültigkeit von (6) erhalten wir offenbar aus 3 sm* #/3 2, was uns wie
behauptet k (log9 — log4)/(log4 — log3) liefert. J. Berkes, Szeged
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Bemerkung zu zwei Arbeiten von A. Makowski und J. Berkes

Auf der Seite at eines Dreiecks mit Umkreisradius R stehe die Hohe hv wahrend w1
den Gegenwinkel von at halbiere. Bedeutet Mk(x) das k-te Potenzmittel der Grossen
x% (i — 1, 2, 3), so zeigte A Makowski [l]1) in dieser Zeitschrift, dass

Mk(h) £ ^-Mk(a) und M_k[h) S if" M.k{a)

äquivalente Aussagen smd Die Gültigkeit der Ungleichungen wird dabei einzig fur die
beiden diskreten Ordnungszahlen k 0 und k 1 dargetan. Nun ist es aber sehr einfach,
ihr Bestehen m einem ganzen Intervall nachzuweisen.

Lur 1 £ | k | ^ 2 gilt Mk(h) £ J^- ML(a) (1)

Dank Makowskis Resultat brauchen wir es nur fur 1 ^ k ^ 2 zu beweisen.
Ist s der halbe Dreiecksumfang, so gilt [2]

w2tS s(s - at)
und damit

oder

Mt(w) £ .!_ ^ Mx(a).

Unter Beachtung der Verschiedenheit der Ordnungszahlen und wegen h% ^ wt hegt damit
die Begründung von (1) schon vor, da Mm(x) < Ma(x) fur m < n wohlbekannt ist.

Expliziter als bei Makowski wird neuerdings die Frage, fur welche k die Ungleichung
(1) überhaupt gelte, in vorstehender Arbeit von Berkes aufgeworfen. In Satz 1 zeigt dieser,
dass | k | 2 gesetzt werden darf. Einerseits ist dieses Resultat natürlich em Spezialfall
unserer Ungleichung (1), andererseits kann aber auch diese gerade dank Satz 2 von
Berkes nochmals wie folgt erweitert werden.

Es gilt

Mk(h) ^ ^ Mk(a) fur | k | =_ -)°^ ~ %** K « 2,8188. (2)

Nach Berkes erlangt namhch Mk(a) ^ R j/3 genau fur k ^ K Gültigkeit2)

aus i;Äf=(2Ä)-*27a?a?
folgt wegen

3 x y - x y + 2 x y <; (x2 + y2) + 2 x y (*)

sofort
2>?_,-3 (2Ä)-(2;«f)2

x) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 34.
2) Der Vollständigkeit halber sei bemerkt, dass fur k>K die Relation Mfc(a)< 2 i_ (2/3)1/* < 2 i_ (3) gilt.

Dem Beweis des Satzes 2 von Berkes entnimmt man dieses Resultat mühelos, da fur k > K das
(gleichschenklige) Extremaldreieck nahezu den Umkreisdurchmesser als Schenkel aufweist. Damit ist die von k
abhangige Abschätzung (3) aber auch scharf.
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und damit aber fur k <£ K nach Satz 2 von Berkes

Z»1^)Z<-

(y2.<)1/H> falls n 4=0

was mit Mk(h) ^ Mk(a) j/3/2 gleichbedeutend ist Nach der zu Beginn angeführten
Äquivalenzbeziehung von Makowski haben wir den Beweis von (2) vollständig erbracht
Dabei zeigen (*) und Satz 2 von Berkes, dass Gleichheit nur im regulären Dreieck besteht

Erwünscht wäre nach wie vor eine systematische Untersuchung fur beliebiges k, welche
vielleicht zu Vergleichszwecken neben den Hohen die Winkelhalbierenden beiziehen
wurde F Leuenbfrger, Feldmeilen

LITERATURVERZEICHNIS

fl] A Makowski, Some Geometrie Inequahties, El Math 17 (1962), 40-41
[2] Aufgaben fur die Schule, Losung zu Nr 3, El Math 17 (1962), 45-46

Ergänzende Bemerkungen zu der Arbeit von A. Makowski1)
«Some geometrie inequalities»

Das Potenzmittel n ter Ordnung dreier positiver Zahlen xx, x2, x3 ist durch den Ausdruck

M(n, xt)

\(II xtW, falls « 0

fur alle reellen Zahlen n definiert M(n, ~t) ist bekanntlich in — oo < n < oo eine positive,
stetige und monoton wachsende Funktion der Variablen n, und es ist hm M(n, xt)
Max xt, hm M(n, xt) Mm x%

n~*°°
«_>_. oo

In der genannten Abhandlung vergleicht Makowski die Potenzmittel der Seiten at
und der Hohen ht eines Dreiecks, mit dem Ergebnis

M(n, ht) ^ — \/J M(n, a%) fur n 0, 1 und — 1

Es erhebt sich die Frage, ob bzw unter welchen Bedingungen diese Ungleichung auch
noch fur andere Ordnungen n gilt In der Tat lasst sich zeigen, dass obige Ungleichung
fur gewisse Dreiecke sogar fur jedes reelle n besteht Zunächst beweisen wir folgenden
Satz Sind at die Seiten, h% die Hohen und Fder Inhalt eines Dreiecks, dann gilt die Doppel-
ungleichung

a M(n, at) ^ M(n, ht) ^ ß M(n, a%)

mit a 2FMm[(T/a,)-21*, (Maxa,Mm«.)-1] undß 2FMax[(ZK)-2'3, (Maxat MinaJ"1]
fur jedes reelle n
Beweis Wegen ht 2 F a~x (i 1, 2, 3) ist

^ M(n, ht)
_

M(n 2 F a"1)
^

M{n,a;1) 2 j,
qK }

M(n, at) M(n, at) M(n, at) M(n, at) M(~ n, at) '

Aus dieser Darstellung ergeben sich unmittelbar folgende Eigenschaften von q(n)

q(- n) q(n) (1)

m=^o*{n)-Ul^ (2)

2 F
q(oo) hm q(n) -^— (3)

x) El Math 17 (1962), 40 41
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Ausserdem lasst sich zeigen, dass der Wertevorrat von q(n) zwischen #(0) und q(oo) hegt.
Zum Nachweis dieser Eigenschaft ziehen wir die Darstellung

a(n) __ Ul M(ft,gtflt + 1)
q[n)~ nat M(n,at)

heran, die aus der Identität M(n, a~x) (IJa^"1 M(n, a% at + 1) folgt Die Dreiecksseiten
seien der Grosse nach geordnet, etwa ax ^ a2 ^ a3, und wir setzen zunächst voraus, dass
die Ungleichung ax az ^ af bestehe. Dann ist M(n, at at + x) ^ a2 M(n, at), also q(n) ^
2Fa2/na% q(oo)
Wegen

(a\ - a2 a3) (al - ax a3) (af - ax a2) 4 S K «m)3 II at- £ a*
folgt aus ax as ^ al andererseits

-(«¦»¦«l'Sff«, ZX3 also J_gL|if±t_Lä(i7„t)i/3.

Setzen wir At a™1* mit w ^ 0, dann genügen die Grossen At ebenfalls der Ungleichung
AXAZ <£ _4|, so dass entsprechend

M(3,AtAl + 1)
3

Af(3, _4t) =Uin-i)
ist Somit wird

M(«. «. «^ _ rM(3,_4,_4i + 1) f"^..^^M(n, at)
~ L M(3, _4 J~ J U/ f) " [U l'

2Falso q(n)^Jrar(naty^ q(0),

fur w ^ 0 und wegen (1) sogar fur alle n. Es gilt also #(0) ^ q(n) ^ #(oo) fur alle n, falls
ax a3 ^ af.
Ist dagegen ax a3 ^ a|, dann lasst sich analog zeigen, dass q(0) ^> #(w) ^ #(<*>) ist fur alle n.
Jedenfalls gilt also a < q(n) ^ ß mit a Mm [#(0), q(oo)] und ß Max [#(0), q(oo)], q e d

Wir ziehen nun noch eine Folgerung aus dem eben bewiesenen Satz, indem wir die
bekannte Ungleichung

2F^i )/3 (Z7«t)a'3

heranziehen. Daraus folgt zunächst ß <^ Max [1, (Z7X)2/3 (Maxat Mmat)_1] j/3/2.
Wenn nun af ^ ax a3 ist, das heisst, wenn die «mittlere» Dreiecksseite höchstens
gleich dem geometrischen Mittel der beiden extremen Dreiecksseiten ist, dann ist
(II a*)2/3 (Maxat MinflJ-1^ 1 und damit ß ^ j/3/2 Fur solche Dreiecke gilt also die
Ungleichung M(n, ht) ^ M(n, at) j/3/2 fur jedes reelle n. O. Reutter, Ochsenhausen

Kleiner Beitrag zur elementaren Dreiecksgeometrie
Als Mittelschullehrer muss man sich immer wieder wundern, dass einfachste Grossen-

verhaltnisse im Dreieck nicht bekannt zu sein scheinen. So sollen m dieser Note zwei
Sachverhalte zur Sprache kommen, welche erneut1) die Diskrepanz zwischen den Wmkel-
und Seitenhalbierenden aufzeigen.

Als erstes behaupten wir.
Das Quadrat uber dem halben Umfang ist mindestens so gross wie die
Quadratsumme der Winkelhalbierenden, aber höchstens so gross wie
diejenige der Seitenhalbierenden.

*) Vgl. dazu unter anderem F Leuenberger, Zum Mordelischen Beweis emer Ungleichung von Erdos,
El. Math. 17 (1962), 15-17.
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Der erste Teil von (1) wurde m anderem Zusammenhang2) bewiesen, der zweite kann auch
einfach nachgewiesen werden. Es seien at die Dreiecksseiten und Mk(x) bedeute das k-te
Potenzmittel der Grossen xv Dann gilt

Z< 4 Z< t M%^ 1MM
fur k < 2 mit Gleichheit nur im gleichseitigen Dreieck. Speziell also

2>?-=-|-Mj(_) S«.

Etwas weiter ausholen müssen wir, um folgenden Tatbestand einzusehen

Das arithmetische Mittel der Winkelhalbierenden ist höchstens so gross
wie die Summe aus Um- und Inkreisradius, das heisst

Mx(w) ^ R H r (2)

Die Seitenhalbierenden können nicht an die Stelle der Winkelhalbierenden gesetzt werden'
Strebt namhch die Basis eines gleichschenkligen Dreiecks bei konstanter Schenkellange
gegen 0, so kann Mx(m) beliebig nahe ani?+ R/3 herangebracht werden, wahrend r im
Grenzfall verschwindet Die Abschätzung (2) ist eine Verschärfung von £ wx <; 4 R + r,
einer Formel, welche die «Stellvertretung» noch gestattet3) hat.

Beweis von (2)
Der Figur entnimmt man <£ AxOQx (a3 — a2)/2 und ersichtlich gilt

™i ^ piQi * +
OAx

(a)

Gelaufige Überlegungen liefern

OÄ

cos

0AX AR 1/ a2a%

ot3 — a2 a2 + az \
(s — at) ax
--—- A/ cos /s 2

was wegen der Ungleichung zwischen dem geometrischen und arithmetischen Mittel
höchstens

Ä 1/1-1--. co. 2 -2fi)/tgÄ tg-23 cos 2'

betragen kann.

2) F. Leuevberger, Bemerkung zu zwei Arbeiten von A. Makowski und J. Berkes, dieses Heft S 33
3) F. Leuenberger, Gegensätzliches Verhalten der arithmetischen und geometrischen Mittel, El. Math.

16 (1961), 127-129.
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Nochmalige \nwendung dieser Ungleichung fuhrt zu

cos2 fi|/tg «? tg aA cos^ * |/l8tg «J tg «' 2/2

(9tg K22 tg a23 +4co^a21). (b)< Ä

Wird (b) m (a) eingesetzt und addiert man die entsprechenden Resultate fur w2 und w3,
so gewinnt man

£^3r,R[32(ZtE^tg^)+lZc^^],
Hieraus folgt wegen

2;tg a; tg 5 _ito^«,-»
i<j 1

und

vorerst

2>.__3r + |*+ "+34Ä

Ersetzt man im dritten Summanden r noch durch den mindestens so grossen Ausdruck
R/2, so ist der Beweis von (2) abgeschlossen In (a) gilt Gleichheit fur alle w% nur, wenn
ax — a2 a3, in (b) herrscht sie simultan genau dann, wenn <x.x a2 a3 Bekanntlich gilt
auch r — R/2 nur im gleichseitigen Dreieck

Zur Scharfe von £ wt < 3 R + 3 r darf festgestellt werden, dass bei ganzzahligen,
positiven Koeffizienten von R und r keine bessere Abschätzung (von oben) gefunden
werden kann Dass 2 R + 5 r unsinnig wäre, dokumentieren wir etwa so, dass wir die
Gegenecke einer festen Dreiecksseite gegen den Mittelpunkt derselben konvergieren lassen

£ wt -> 8 R/3 bei r -> 0 F Leuenberger, Feldmeilen

Sums of Products of Multinomial Coefficients

The familiär formula for the sum of the Squares of the binomial coefficients of a given
order

.•SO'-M
suggests that it may be possible to find similar results for the multinomial coefficients

Put
(nx + n2 + + nk)'

(»i.».. .«*)=—VWi, v ¦

We consider first the sum
K,z Z ('»s- V

Clearly

Sn<* rZät[7<s<(nn-r-sy) =ZQ 5Ü
A/«\*/2A\ y (-«)_(-«)_ (1/2)* 22kl)i

'IWi «(«t1| (a + ft-1)
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so that

*^n,3 — 3-^2
n, - n, 1/2, 4

1, 1
(2)

m the usual notation of generahzed hypergeometnc series2).
In the next place we have

Sn.t= Z {'•*.*.«)*= Z Z Z ('>*¦*¦")*
r + s -\-t-\-u n i + k n r + s=*j t + u*=k

- s er s er s &¦- zQ'oen
"

M\2 /2A/2»-2;\ /2 n\ ^r (- n)3 (- n)3 (1/2), (- w),¦15w(v)(-,')-(.")(5- ;»;' 7' (1/2 - w)

so that

5W,4=(M)4F3[ ^ ^ n J. (3)

It does not seem possible to sum the hypergeometnc series occurrmg m the right
members of (2) and (3). If however we modify the sum somewhat, more satisfactory results
can be obtained.

Smce

(x + y + z)n JT (r, s, t) xr ys z*, (x + y + z)2n JT* (rf, s', t') xr' ys' zv
r -f s + * n f' + s' + */ 2«

lt follows by takmg the product that

(n, n, n) JP (r, s, t) (rf, sf, t')

where the summation is over all non-negative r, s, t, r', sr, tf such that

r + s + t n, r' + s' + t' 2 n, r + r/ s + s/ t + f n

We therefore get

yj (r, s, t) (n — r, n — s, n — t) (n, n, n) (4)
r + s + t** n

In the next place if we take the product of the expansions of

(x + y + z + w)n, (x + y + z + w)Sn

we find similarly that

JJ (r, s, t, u) (n — r, n — s, n — t, n — u) — (n, n, n, n) (5)
r + s + H«- »

If however we take the product of (x + y + z + w)2n, (x + y + z + w)2n we get

Yj (r, s, t, u) (n — r, n — 5, n —t, n — u) (n, n, n, n) (6)
r -M + - + ««=2n

It is now clear how to obtain the following general formula. Let k ^ 1 and
1 <; r £ k — 1 and consider the product of the multinomial expansions of

{xl + ...+ xh)**$ (xx + ...+ xkf-*n.
') W. N. Bailey, Generahzed hypergeometnc series, Cambridge, 1935.
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Then

Z, (sv->sk) (n-slt...,n~sk) (n,...,n) -~^k (7)
s\h +sk-rn * '

For k 2, r 1, (7) reduces to (1).
As an example of a shghtly different formula that can be proved m a similar way we

mention

JJ (sx,..., sk) (m + n — sx, m + n — sk) (m + n,..., m + n) (8)
si + +sä kn

The formula

yj (sv..., sk) (m + n — sv. m + n — sk) — (m + n,..., m + n) (9)
sx+ + Sfc rn -f- (k - r) m

where 0 <£ r ^ k, mcludes both (7) and (8).
We may also State the formula

JP (sx,...,sk) (mx + nx-sx,...,mk + nk-sk) (mx + nx,...,mk + nk) (10)

where the summation is over all non-negative sx,..., sk such that

s1 + '"+sk nl+'"+nk.
Returnmg to

S„,3 Z ('' 5> ^
r + s -\-t n

lt is evident that Sn3 is the coefficient of x11 ynzn in the expansion of

(x + y + z)n (y z + z x + x y)n (3 x y z + Y]x2 y)n.

If we let Tn>3 denote the coefficient of xn yn zn in the expansion of

(2j x2y)n (x2y + xy2 ^ x2z + xz2 + y2z + y z2)n,

it follows that

Sn,*=£(")3H-rTr,z. (11)

Similarly
Sn,4= Z (r-s-t-")*

r + s -\-t + u°*n

is the coefficient of (x y z w)n in the expansion of

(x + y + z + w)n (y z w + x z w + x y w + x y z)n (4 z y x w + yjx2 y z)n

If Tw4 denotes the coefficient of (x y z w)n in the expansion of (JT1 x2y z)n it follows that

The general formula of this kind can be stated without difficulty.
We remark that it follows from the identity

(x + w y + w2 z) (x + w2 y + w z) (x + y + z)2 — 3 (y z + z x + x y), (w2 + w + 1 0)

that

2J (n- s - t,s,t) (n- s' - t', s', t') (s + t + s' + t', n - s - s',n - t - t')

3Sn>B-(n,n,n). (13)

L. Carlitz, Duke University, Durham, NX. USA.
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