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Nichtlineare Programmierung *)
Herrn Prof. Dr B L van der Waerden zum 60. Geburtstag (2. Februar 1963) gewidmet

Unter mathematischer Programmierung versteht man die Anwendung mathematischer

Methoden auf Planungsprobleme der Unternehmensforschung, wie sie etwa
bei der Preis-, Produktions- und Reklameplanung einer Firma auftreten. Man
unterscheidet im wesentlichen zwischen der linearen Programmierung mit ihren Erweiterungen

wie ganzzahliger, parametrischer, stochastischer, dynamischer Programmierung

und der nichthnearen Programmierung.
Bei einem linearen Programm handelt es sich bekanntlich um die folgende

Aufgaben :x)

Die lineare (Ziel-) Funktion

ist zum Maximum zu machen unter den Nebenbedingungen

Eajl^^bj (l l>2,...,m), (2)

Xi^0 (* 1,2, ...,**). (3)

Um die Restriktionen (2) in Gleichungsform zu bringen, führt man m nichtnegative
« Schlupfvariable » y' ein und ersetzt (2) durch

EaJtxt + yJt y,^0 (j 1, 2, m). (2')
t i

In unmittelbar verstandlicher Matrix-Vektorschreibweise ist Problem I dann
äquivalent dem folgenden Problem:

Zu maximieren ist p'x unter den Nebenbedingungen

II A x + y b, (4)

x^>0, y^O. (5)

*) Die vorliegende Darstellung entspricht einer kurzen Zusammenfassung des kurzlich erschienenen
Werkes uber Nichtlineare Programmierung von Kunzi und Krelle (vgl. Literaturverzeichnis).

*) Vgl. hiezu auch den früheren Artikel über Lineare Programmierung (El. Math. XVI, 1-12 (1961)).
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Man hat jetzt m Gleichungsrestriktionen mm + n vorzeichenbeschränkten Variablen
xif yjt die formal nicht mehr unterschieden werden müssen.

Ein Punkt, der in dem durch die Nebenbedingungen gegebenen zulässigen Bereich
liegt, ohne notwendig optimal zu sein, heisst zulässige Lösung. Der zulässige Bereich
des Problems I stellt ein konvexer Polyeder dar. Die Ecken dieses Polyeders, an denen
von den m + n Ungleichungen (2), (3) mindestens n in Gleichungsform erfüllt sind,
entsprechen denjenigen zulässigen Lösungen (x, y) von II, den sogenannten
Basislösungen, bei denen von den m + n Variablen höchstens soviele von Null verschieden
sind, wie (4) Gleichungen aufweist, nämlich m. Hieraus folgt anschaulich, dass das
Problem II stets zulässige Basislösungen aufweist, wenn die Nebenbedingungen nicht
unverträglich sind. Mehr noch: Wenn das lineare Programm eine Lösung aufweist, so
wird das Maximum der Zielfunktion stets auf einer Basislösung erreicht. Man kann
sich somit bei der Lösung von II auf die Basispunkte des Systems (4), (5) beschränken.
Genau diesen Weg beschreitet das Simplex-Verfahren von G.B. Dantzig, das wegen
seiner Eleganz und Zweckmässigkeit zum wichtigsten Hilfsmittel der linearen
Programmierung wurde: Man geht aus von einer zulässigen Basislösung von (4), (5); die
Werte der positiven (Basis-) Variablen sind durch die Werte der verschwindenden,
nichtbasischen Variablen eindeutig festgelegt. Hierauf tauscht man eine Basisvariable
gegen eine nichtbasische Variable aus, derart, dass die zu dem neuen Satz von
verschwindenden Variablen gehörende Basislösung wieder zulässig ist und einen höheren
Wert für die Zielfunktion ergibt. Auf Problem I übertragen bedeutet das, dass man
sich von einer Ecke des zulässigen Bereiches aus längs einer Kante in Richtung
wachsender Zielfunktion zu einer anliegenden Ecke bewegt. Das Simplexverfahren
enthält die Auswahlregeln für die auszutauschenden Variablen, die Transformationsvorschriften

für den Übergang zur nächsten Basislösung, sowie ein Kriterium, das

angibt, ob die Optimallösung erreicht ist bzw. ob sich die Zielfunktion auf dem
zulässigen Bereich unbeschränkt erhöhen lässt. Der Algorithmus existiert heute in
mehreren Varianten, deren jede bestimmte rechentechnische Vorteile aufweist.

Es sei daran erinnert, dass sich dem Maximumproblem I in nichttrivialer Weise
ein Minimumproblem in Form des Dualen zuordnen lässt:

III

Minimiere

JJbjUj (6)

unter den Nebenbedingungen

EoLjtUj^p, (i~l,2,...,n), (7)

Uj^O (j l,2,...,m). (8)

Wenn das eine der beiden Probleme eine optimale Lösung aufweist, so auch das
andere, und die Extremwerte der beiden Zielfunktionen sind gleich. Das Simplexverfahren,

angewandt auf das eine Problem, liefert implizit auch die Lösung des andern.
Als klassisches ökonomisches Beispiel für das Zustandekommen eines linearen

Programms führt man meist die Produktionsplanung eines Betriebes an: Angenommen,

eine Firma könne n Produkte mit den Mengen %,..., xn herstellen, für die sie
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(nach Abzug der Stuckkosten) die Nettopreise px, pn je Einheit losen kann Fur
die Produktion benotigt man m nicht in beliebiger Menge vorhandene Produktionsfaktoren,

und zwar pro Einheit des ^-ten Produktes die Menge aJt des Produktionsfaktors

i Die Produktionsfaktoren stehen nur bis zu den Hochstmengen bx, ,bm
zur Verfugung Gesucht wird das optimale Produktionsprogramm Diese Aufgabe
wird offensichtlich durch das Programm I gelost

In jüngster Zeit hat die nichtlineare Programmierung wachsende Bedeutung
erlangt, da sie häufig wirklichkeitsnahere Losungen ermöglicht Wenn beispielsweise
die «Preise» p% nicht mehr konstant smd, sondern einem von x abhangigen Nachfragegesetz

gehorchen, so hört die Zielfunktion (1) auf, linear zu sein
Das allgemeine nichtlineare Programm wurde etwa dann bestehen, eine

Zielfunktion

*(*) (9)

zu minimieren unter den Nebenbedingungen

/,(*)< 0 (;-l, ,m) (10)

x > 0 (11)

Man muss jedoch vorerst noch die Einschränkung treffen, dass sowohl F(x) wie f (x)
konvexe Funktionen smd Damit ist sichergestellt, dass der durch die Nebenbedingungen

gegebene zulassige Bereich konvex ist, und dass jedes lokale Minimum der
Zielfunktion in diesem Bereich, das durch differentielle Kriterien gefunden werden kann,
zugleich das gesuchte globale Minimum darstellt

Das Theorem von Kuhn und Tucker, das eine zentrale Rolle in der konvexen
Programmierung spielt, gibt notwendige und hinreichende Bedingungen fur die

Optimallosung von IV, und zwar mittels einer verallgemeinerten Lagrangefunktion L,
die unter Verwendung von m Multiplikatoren ult um, kurz u, nach der Vorschrift

tn

L(x,u)^F(x)+^u3f3(x) (12)
1 i

gebildet wird Danach stellt em Vektor x dann und nur dann eine Losung von IV dar,
wenn er zusammen mit einem Vektor u folgende Bedingungen erfüllt

4 >_ 0, x > 0 *' Lx =- 0 (13)

Lu<0, u>0, u'Lu 0 (14)

Hierbei bedeutet Lx den Spaltenvektor der partiellen Ableitungen von L nach den

xt, genommen an der Stelle (x, u), analog fur Lu Substituiert man aus (12), so besagt
Lu < 0 zusammen mit x > 0 nur, dass die Losung im zulassigen Bereich liegen muss
Die übrigen Bedingungen dagegen charakterisieren die Losung wesentlich Sie

besagen anschaulich, dass im Optimalpunkt x der negative Gradientvektor der
Zielfunktion (der in Richtung des steilsten Abfalles von F(x) weist) darstellbar sein muss
als nichtnegative Imearkombmation der nach aussen weisenden Normalen derjenigen
berandenden Hyperflachen f3(x) 0 bzw x% 0, auf denen x hegt.
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Wenn in IV die Restriktionen (11) fehlen oder bereits unter (10) aufgenommen
sind, so dass die xit formal wenigstens, nicht vorzeichenbeschränkt sind, so wird die
Bedingung (13) ersetzt durch

L, 0. (15)

Zoutendijk, Rosen, Kelley und andere haben verschiedene Verfahren
vorgeschlagen, die es erlauben, die Lösung eines allgemeinen konvexen Programmes
beliebig genau anzunähern. Da diese Verfahren jedoch alle einen ziemlichen Aufwand
erfordern, beschränken wir uns hier auf den Spezialfall quadratischer Zielfunktion
und linearer Restriktionen, für den exakte Lösungsverfahren vorliegen. Es sei also

F(x) p'x + | x' Cx Q(x) eine quadratische Funktion. C ist eine n-reihige
symmetrische Matrix, die wegen der geforderten Konvexität von F(x) positiv
semidefinit sein muss. Ferner sei fj(x) a'j x — bj. Fassen wir die m Zeilenvektoren ol'j zu
einer (m • n)-Matrix A zusammen, so besteht das quadratische Programm, ein Sonderfall

von IV, darin,

Q(x) p'x+±-x'Cx (16)

zu minimieren unter den Nebenbedingungen

Ax^b, (17)

x>:0. (18)

Die Lagrangefunktion für dieses Problem lautet

tn 1

L(x,u) Q(x) +£uj(a'Jx--bj) p' x + -i- x' C x + u' (Ax -b). (19)
7«1

Setzen wir zur Abkürzung Lx ¦= v, Lu — y, so ist offenbar v p + Cx + A 'u, y
— Ax + b. Die Bedingungen für die optimale Lösung lauten dann:

VI

Ax +y b, (20)

Cx-v + A'u =-p, (21)

:0, v^O, u^O, y^O. (22)

und
x' v + y' u 0. (23)

Dabei entsprechen (22) und (23) den eigentlichen Kuhn-Tucker-Bedingungen (13),

(14), während (20) und (21) den Definitionsgleichungen für y und v entsprechen. Ein
w-Vektor x stellt also dann und nur dann eine Lösung für V dar, wenn er zusammen
mit einem tt-Vektor v und m-Vektoren u, y den obigen Bedingungen geneigt. Diese
Schreibweise der Kuhn-Tucker-Bedingungen für den quadratischen Fall geht auf
Barankin und Dorfman zurück.

Die Bedingungen VI bilden ein lineares System. Bedingung (23) lässt sich
kombinatorisch so aussprechen, dass von je zwei nichtnegativen Variablen x{ und vt bzw.

Uj und yi mindestens eine Null sein muss. Es kommen somit als Anwärter darauf, auch
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(23) zu genügen, nur solche Losungen des Systems VI m Frage, bei denen höchstens
soviele Variable positiv smd, wie VI Gleichungen aufweist, namhch m + n, das sind
aber gerade die zulassigen Basislosungen von VI Um unter den zulassigen
Basislosungen von VI eine ausfindig zu machen, die auch (23) genügt, hegt der Versuch
nahe, m abgewandelter Form auf das Simplexverfahren der linearen Programmierung
zurückzugreifen, da sich dieses mit den Baislosungen eines linearen Systems beschäftigt

Das Verfahren von Wolfe zeigt eine Möglichkeit hierfür Es besteht grob dann,
dass man in (20) und (21) zunächst Abweichungen m Form künstlicher Schlupf-
variablen zulasst und diese dann mittels des SimplexVerfahrens zu Null reduziert,
jedoch so, dass (23) im ganzen Verlauf des Verfahrens erfüllt ist Man geht so vor, dass

man VI ersetzt durch das erweiterte System

VII

Ax -\ y + Dxw — b,

C x — v + A' u + D2z — p,

x>0, v^O, u>0, y>0, w>0, z^O
Hierbei smd Dx und D2 m- bzw n reihige Diagonalmatrizen mit den Elementen + 1

oder — 1, je nachdem ob die rechte Seite der entsprechenden Gleichung positiv oder
negativ ist Fur VII kann man sofort eine zulassige Basislosung angeben, namhch
diejenige mit x 0, y 0, v 0, u — 0 Man verwendet die Simplexmethode, um,
ausgehend von dieser Basislosung, die Linearform

m

Ewj

zu minimieren unter den Nebenbedingungen VII Die vt und u3 dürfen dabei nicht in
die Basis genommen werden, sie behalten den Wert Null Als Resultat erhalt man
eine Basislosung von VII mit w 0, alle w3 smd aus der Basis verschwunden

In einer zweiten Phase minimiert man, ausgehend von der am Schluss der ersten
Phase erhaltenen Basislosung, die Linearform

n

i i
unter den Nebenbedmgungen VII und mit der Zusatzvorschrift, dass vt nicht in die
Basis genommen werden darf, wenn xt sich bereits in der Basis befindet, und umgekehrt

ebenso fur u3 und y Damit ist sichergestellt, dass fur alle auftretenden
Basislosungen Bedingung (23) erfüllt ist Die w3 behalten m der zweiten Phase den Wert
Null, sie dürfen also auch nicht m die Basis zurückkehren

Wenn das Minimum, das man auf diese Weise iuxE zt erreicht, den Wert Null hat,
so hat man am Ende der zweiten Phase eine Basislosung von VII mit w 0, z 0
und damit auch eine Losung von VI erhalten Da überdies (23) erfüllt ist, ist man am
Ziel, der #-Teü lost das Programm V Dieser Fall tritt aber nur mit Sicherheit em,
wenn entweder p 0 oder C streng defimt ist Ist diese Voraussetzung nicht erfüllt,
so benotigt man noch eine dritte Phase Man ersetzt m den ersten beiden Phasen den
Vektor p m VII durch u p, wobei u eine zusatzhche Variable ist, die nicht in die
Basis genommen werden darf, sondern den Wert Null behalt Das entspncht p 0,
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und die zweite Phase endet infolgedessen mit z 0. In der dritten Phase maximiert
man die triviale Linearform u, wieder unter der Zusatzvorschrift und mit w 0,
z 0. Es ergibt sich eine Folge von Basislösungen mit monoton wachsendem u. Man
wählt eine konvexe Linearkombination zweier aufeinanderfolgender Basislösungen
derart, dass die gleiche Linearkombination der zugehörigen u-Werte eins ergibt; der
#-Teil der Linearkombination löst V.

Einen anderen Weg, den Bedingungen VI und (23) mittels der Simplextechnik
beizukommen, zeigt das Verfahren von Barankin und Dorfman. Während Wolfe
(23) immer erfüllt sein lässt und dafür zunächst Abweichungen vom Hauptsystem VI
in Kauf nimmt, sind bei barankin und Dorfman die Bedingungen VI immer streng
erfüllt. Man geht aus von einer zulässigen Basislösung von VI, die nicht notwendig (23)
erfüllt, und reduziert über eine Folge von Basislösungen die nichtlineare Zielfunktion
T x' v + y' u zu Null. Die Transformationsformeln für den Übergang von einer
Basislösung zur nächsten sind die gleichen wie beim Simplexverfahren der linearen
Programmierung. Lediglich die Auswahlregel für die in die Basis zu nehmende
Variable ist wegen der Nichtlinearität von T komplizierter. Man kann allerdings
Beispiele konstruieren, bei denen das Verfahren von Barankin und Dorfman steckenbleibt,

weil sich keine Simplextransformation mehr durchführen lässt derart, dass T
abnimmt, obwohl immer noch T > 0. Frank und Wolfe haben diese Schwierigkeit
beseitigt, indem sie T geeignet linearisierten.

Ein Verfahren von Beale verwendet den Simplexmechanismus direkt, ohne den

Umweg über VI. Man startet mit einer zulässigen Basislösung des Systems Ax + y
b, x ;> 0, y 2> 0. Die m + n Variablen x und y seien zu einem Vektor z zusammenge-
fasst. Mittels der Gleichungsrestriktionen lassen sich die m positiven Basisvariablen,
etwa zn+1 bis zn+m, sowie Q darstellen als Funktion der unabhängigen, in der
Basislösung verschwindenden Variablen zx bis zn:

n

Zg Ä dt. +E dsh zh (g n+l, ,n+ m),
Ä "» 1

Q c00+colz1+ ...+conzn

+ tao + Cii*i+ + clnzn)-zx

+ (Cno + Cnl *l + • • • + CHH Zn) • Zn {c{j Cj {)

Die Klammerausdrücke entsprechen den partiellen Ableitungen | dQjdzh.
Falls alle Ableitungen ;> 0 sind, so ist die Basislösung optimal. Andernfalls erhält

man eine der Variablen mit negativer Ableitung, etwa zv und zwar solange, bis eine
der abhängigen Variablen oder | dQldzt verschwindet. Im ersten Falle ersetzt die
neue verschwindende Variable zx als unabhängige Variable; zx ist basisch geworden.
Die zu dem neuen Satz von unabhängigen Variablen gehörende Basislösung liefert
einen geringeren @-Wert. Im zweiten Fall führt man eine freie, das heisst nicht
vorzeichenbeschränkte Variable ux ein, die mit den bisherigen unabhängigen Variablen
gemäss

1 dQ
Ut ™ -_^ dn +E C'

A-l
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verknüpft ist. ux ersetzt zx als unabhängige Variable; zx wird abhängig von ux und z2

bis zn. Setzt man den neuen Satz von unabhängigen Variablen gleich Null, so hat
man wieder eine Basislösung; allerdings hat sich die Anzahl der Basisvariablen um
eins erhöht, da zx in die Basis kam, ohne dass eine der bisherigen Basisvariablen zum
Verschwinden gebracht worden wäre. In beiden Fällen kann man zur Transformation
der dgh und, bei geeignetem Vorgehen, auch zur Transformation der c{j auf die neue
Basislösung die Formeln des Simplexverfahrens verwenden.

Wenn sich unter den unabhängigen Variablen freie Variable befinden, so müssen
am Optimalpunkt die Ableitungen nach den freien Variablen verschwinden. Wenn
die Ableitung nach einer freien Variablen positiv ist, so kann man Q noch erniedrigen,
indem man die freie Variable negativ werden lässt, was bei den eigentlichen Variablen
zh wegen der Vorzeichenbeschränkung nicht möglich ist. Wenn man noch die
zusätzliche Vorschrift einführt, dass wenn immer möglich eine freie unabhängige
Variable in die Basis genommen, das heisst positiv oder negativ gemacht werden soll,
so lässt sich zeigen, dass man nach endlich vielen Schritten zu einem Satz von
unabhängigen Variablen gelangt, bei dem die Ableitungen von Q nach den 2-Variablen
nichtnegativ und die nach den freien Variablen null sind. Damit hat man das Optimum

erreicht.
Entsprechend zu den dualen linearen Programmen kann man auch ein quadratisches

Programm dualisieren, allerdings nicht mit der gleichen Symmetrie wie im
linearen Fall. Einem gegebenen quadratischen Primärprogramm,

p> x + _I x> c x (16)

zu minimieren unter den Nebenbedingungen

A x < b (17)

VIII

IX

wird zugeordnet das Dualprogramm,

-^x'Cx-b'u (24)

zu maximieren unter den Nebenbedingungen

Cx + A'u^-p, (25)

u>0. (26)

Es gelten die gleichen Sätze wie im linearen Fall: Wenn das eine Problem eine

Lösung aufweist, so auch das andere, und die beiden Extremalwerte sind gleich. Wenn
beim einen Problem die Zielfunktion über dem zulässigen Bereich nicht beschränkt
ist, so ist beim anderen Problem der zulässige Bereich leer.

Wenn C streng definit und somit nichtsingulär ist, so kann man mittels der

Gleichungsrestriktionen x aus dem dualen Programm eliminieren:

x(u) ^-C^iA' u + p).
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IX lautet dann:

-h'u-u'Gu (24')

ist zu maximieren unter den Nebenbedingungen

u>0. (26)

Dabei ist zur Abkürzung h AC~1p + b und G \AC~XA' gesetzt, x stellt dann
und nur dann eine Lösung von VIII dar, wenn x x(u), wobei u eine Lösung von X
darstellt. H. P. Künzi und W. Oettli, Zürich
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Arithmetical Notes, XIII. A Sequel to Note IV*)
1. Introduction

First we introduce some terminology and notation. For any positive integer n,

n^px'i..-pr*r, (1.1)

where px, pr are the prime divisors of n, let t(n) denote the maximal multiplicity of

n, that is, t(n) max (ex, er), t(l) 0. For arbitrary positive integers k, let nk
denote the ß-segment of n, meaning the number nk n\m where m is the largest &-th

power divisor of n. Further, let tk[n) denote the maximal multiplicity of the ^-segment
oin,tk(n) t(nk).

In this note we prove elementary estimates for the distribution of two sequences of
integers, Ukit and Vktt, defined as follows. Let t denote a fixed positive integer; define
Ukft to be the set of all n for which tk(n) < t and VkJ to be the set of alln for which
tk(n) — t. The result obtained for Uktt is given in Theorem 1 and that for Vktt in
Theorem2. It will be noted that Uktk is the set of all positive integers while UkX is the
set of k-th powers. More generally, Ukft is the set of all n whose ß-segment is a t-iree
integer (an integer whose largest 2-th power divisor is 1). Note moreover that the sets

Vktt contain no Ä-th power integers.
We mention here a single special case of Theorem 1. Let Hk(x) denote the number

of n ^ x contained in Ek Ukf%, that is, Hk(x) is the number of those n, not exceeding
x, whose ß-segment is square-free. Then for k > 2,

*) This research was supported in part by the National Science Foundation grant G-19012.
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