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Nichtlineare Programmierung *)
Herrn Prof. Dr. B. L. vAN DER WAERDEN zum 60. Geburtstag (2. Februar 1963) gewidmet

Unter mathematischer Programmierung versteht man die Anwendung mathema-
tischer Methoden auf Planungsprobleme der Unternehmensforschung, wie sie etwa
bei der Preis-, Produktions- und Reklameplanung einer Firma auftreten. Man unter-
scheidet im wesentlichen zwischen der linearen Programmierung mit ihren Erweite-
rungen wie ganzzahliger, parametrischer, stochastischer, dynamischer Programmie-
rung und der nichtlinearen Programmierung.

Bei einem linearen Programm handelt es sich bekanntlich um die folgende Auf-
gaben:?)

Die lineare (Ziel-) Funktion
2 p i %i (1)
i=1
I ist zum Maximum zu machen unter den Nebenbedingungen
Zdjixigbj (7.=1,2,-.-,m), (2)
i=1
2,=>0 (¢=12,...,mn). (3)

Um die Restriktionen (2) in Gleichungsform zu bringen, fithrt man m nichtnegative
«Schlupfvariable» y; ein und ersetzt (2) durch

Dlagxi+y, ;=0 (=12...,m). (2"
i=1
In unmittelbar verstindlicher Matrix-Vektorschreibweise ist Problem I dann dqui-
valent dem folgenden Problem:

Zu maximieren ist $'x unter den Nebenbedingungen
II Ax+y=0, 4)
x>0, y=>0. (5)

*) Die vorliegende Darstellung entspricht einer kurzen Zusammenfassung des kiirzlich erschienenen
Werkes iiber Nichtlineare Programmierung von Kiinzi und Krelle (vgl. Literaturverzeichnis).
1) Vgl. hiezu auch den fritheren Artikel {iber Lineare Programmierung (El. Math. XVI, 1-12 (1961)).



2 H. P. Konzt und W. OgrrL1: Nichtlineare Programmierung

Man hat jetzt » Gleichungsrestriktionen in m + » vorzeichenbeschrinkten Variablen
Xis Vis die formal nicht mehr unterschieden werden miissen.

Ein Punkt, der in dem durch die Nebenbedingungen gegebenen zulissigen Bereich
liegt, ohne notwendig optimal zu sein, heisst zuldssige Losung. Der zuldssige Bereich
des Problems I stellt ein konvexer Polyeder dar. Die Ecken dieses Polyeders, an denen
von den m 4 n Ungleichungen (2), (3) mindestens # in Gleichungsform erfiillt sind,
entsprechen denjenigen zuldssigen Losungen (x, y) von II, den sogenannten Basis-
l16sungen, bei denen von den m + n Variablen héchstens soviele von Null verschieden
sind, wie (4) Gleichungen aufweist, ndmlich m. Hieraus folgt anschaulich, dass das
Problem II stets zuldssige Basislosungen aufweist, wenn die Nebenbedingungen nicht
unvertraglich sind. Mehr noch: Wenn das lineare Programm eine Losung aufweist, so
wird das Maximum der Zielfunktion stets auf einer Basislosung erreicht. Man kann
sich somit bei der Lésung von II auf die Basispunkte des Systems (4), (5) beschrinken.
Genau diesen Weg beschreitet das Simplex-Verfahren von G.B.DANTzIG, das wegen
seiner Eleganz und Zweckmissigkeit zum wichtigsten Hilfsmittel der linearen Pro-
grammierung wurde: Man geht aus von einer zulidssigen Basislosung von (4), (5); die
Werte der positiven (Basis-) Variablen sind durch die Werte der verschwindenden,
nichtbasischen Variablen eindeutig festgelegt. Hierauf tauscht man eine Basisvariable
gegen eine nichtbasische Variable aus, derart, dass die zu dem neuen Satz von ver-
schwindenden Variablen gehorende Basislésung wieder zuldssig ist und einen héheren
Wert fiir die Zielfunktion ergibt. Auf Problem I iibertragen bedeutet das, dass man
sich von einer Ecke des zuldssigen Bereiches aus lings einer Kante in Richtung
wachsender Zielfunktion zu einer anliegenden Ecke bewegt. Das Simplexverfahren
enthilt die Auswahlregeln fiir die auszutauschenden Variablen, die Transformations-
vorschriften fiir den Ubergang zur nichsten Basislosung, sowie ein Kriterium, das
angibt, ob die Optimallosung erreicht ist bzw. ob sich die Zielfunktion auf dem zu-
ldassigen Bereich unbeschrinkt erhéhen ldsst. Der Algorithmus existiert heute in
mehreren Varianten, deren jede bestimmte rechentechnische Vorteile aufweist.

Es sei daran erinnert, dass sich dem Maximumproblem I in nichttrivialer Weise
ein Minimumproblem in Form des Dualen zuordnen lasst:

Minimiere

III | unter den Nebenbedingungen

ZajtuJZP, (1::1,2,...,”), (7)
j=1
w, >0 (=12, ...,m). (8)

Wenn das eine der beiden Probleme eine optimale Losung aufweist, so auch das
andere, und die Extremwerte der beiden Zielfunktionen sind gleich. Das Simplexver-
fahren, angewandt auf das eine Problem, liefert implizit auch die Losung des andern.

Als klassisches 6konomisches Beispiel fiir das Zustandekommen eines linearen
Programms fiihrt man meist die Produktionsplanung eines Betriebes an: Angenom-
men, eine Firma kénne » Produkte mit den Mengen x,,. .., x, herstellen, fiir die sie
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(nach Abzug der Stiickkosten) die Nettopreise #,, .. ., p, je Einheit l6sen kann. Fiir
die Produktion benétigt man m nicht in beliebiger Menge vorhandene Produktions-
faktoren, und zwar pro Einheit des i-ten Produktes die Menge a;; des Produktions-
faktors 7. Die Produktionsfaktoren stehen nur bis zu den Héchstmengen b,,..., 5,
zur Verfiigung. Gesucht wird das optimale Produktionsprogramm. Diese Aufgabe
wird offensichtlich durch das Programm I gel6st.

In jiingster Zeit hat die nichtlineare Programmierung wachsende Bedeutung er-
langt, da sie hdufig wirklichkeitsndhere Losungen ermoglicht. Wenn beispielsweise
die «Preise» p, nicht mehr konstant sind, sondern einem von x abhédngigen Nachfrage-
gesetz gehorchen, so hort die Zielfunktion (1) auf, linear zu sein.

Das allgemeine nichtlineare Programm wiirde etwa darin bestehen, eine Ziel-
funktion

I (x) 9)

7 zu minimieren unter den Nebenbedingungen
a [ilx) <0 (G=1,...,m), (10)
x> 0. (11)

Man muss jedoch vorerst noch die Einschrankung treffen, dass sowohl F(x) wie f;(x)
konvexe Funktionen sind. Damit ist sichergestellt, dass der durch die Nebenbedingun-
gen gegebene zulidssige Bereich konvex ist, und dass jedes lokale Minimum der Ziel-
funktion in diesem Bereich, das durch differentielle Kriterien gefunden werden kann,
zugleich das gesuchte globale Minimum darstellt.

Das Theorem von KUuHN und TUCKER, das eine zentrale Rolle in der konvexen
Programmierung spielt, gibt notwendige und hinreichende Bedingungen fiir die
Optimall6sung von IV, und zwar mittels einer verallgemeinerten Lagrangefunktion L,
die unter Verwendung von m Multiplikatoren #,,. .., #,, kurz u, nach der Vorschrift

Lix, ) = F(x) + 3 ; 1) (12)
i=1

gebildet wird. Danach stellt ein Vektor # dann und nur dann eine Loésung von IV dar,
wenn er zusammen mit einem Vektor u folgende Bedingungen erfiillt:

L >0, >0, & L,=0; (13)
L, <0, u>0;, uw L, =0. (14)

Hierbei bedeutet L, den Spaltenvektor der partiellen Ableitungen von L nach den
x,, genommen an der Stelle (x, u), analog fiir L,. Substituiert man aus (12), so besagt
L, < 0 zusammen mit # > 0 nur, dass die Losung im zuldssigen Bereich liegen muss.
Die iibrigen Bedingungen dagegen charakterisieren die Losung wesentlich. Sie be-
sagen anschaulich, dass im Optimalpunkt & der negative Gradientvektor der Ziel-
funktion (der in Richtung des steilsten Abfalles von F(x) weist) darstellbar sein muss
als nichtnegative Linearkombination der nach aussen weisenden Normalen derjenigen
berandenden Hyperflichen f;(x) = 0 bzw. x; = 0, auf denen « liegt.
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Wenn in IV die Restriktionen (11) fehlen oder bereits unter (10) aufgenommen
sind, so dass die x;, formal wenigstens, nicht vorzeichenbeschrinkt sind, so wird die
Bedingung (13) ersetzt durch

L, =0. (15)

ZoUTENDIJK, RoOsEN, KELLEY und andere haben verschiedene Verfahren vorge-
schlagen, die es erlauben, die Losung eines allgemeinen konvexen Programmes be-
liebig genau anzunidhern. Da diese Verfahren jedoch alle einen ziemlichen Aufwand
erfordern, beschrinken wir uns hier auf den Spezialfall quadratischer Zielfunktion
und linearer Restriktionen, fiir den exakte Losungsverfahren vorliegen. Es sei also
F(x) = p'x + 3 ' Cx = Q(x) eine quadratische Funktion. C ist eine #-reihige
symmetrische Matrix, die wegen der geforderten Konvexitdt von F(x) positiv semi-
definit sein muss. Ferner sei f;(x) = a’; x — b;. Fassen wir die m Zeilenvektoren «'; zu
einer (m - n)-Matrix 4 zusammen, so besteht das quadratische Programm, ein Sonder-
fall von IV, darin,

Q) = p'x + 5 &' Cx (16)

v o zu minimieren unter den Nebenbedingungen
Ax <b, (17)
x>0. (18)

Die Lagrangefunktion fiir dieses Problem lautet

m

Lix,u)= Q@)+ w; @z —b) =p' s+ ;&' Cx+ o (Ax—1b).  (19)

i=1

Setzen wir zur Abkiirzung L, = v, L, = — v, so ist offenbar v =p + Cx + 4A'u, y =
— Ax + b. Die Bedingungen fiir die optimale Losung lauten dann:

Ax +y=0, (20)
VI Cx—v+Au =—7, (21)
x>0, v>0, >0, y>0. (22)

und '
2v+9y'u=0. (23)

Dabei entsprechen (22) und (23) den eigentlichen Kuhn-Tucker-Bedingungen (13),
(14), wihrend (20) und (21) den Definitionsgleichungen fiir y und v entsprechen. Ein
n-Vektor & stellt also dann und nur dann eine Losung fiir V dar, wenn er zusammen
mit einem n-Vektor v und m-Vektoren u, y den obigen Bedingungen geneigt. Diese
Schreibweise der Kuhn-Tucker-Bedingungen fiir den quadratischen Fall geht auf
BARANKIN und DORFMAN zuriick.

Die Bedingungen VI bilden ein lineares System. Bedingung (23) lasst sich kombi-
natorisch so aussprechen, dass von je zwei nichtnegativen Variablen x; und v; bzw.
u; und y; mindestens eine Null sein muss. Es kommen somit als Anwirter darauf, auch
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(23) zu geniigen, nur solche Losungen des Systems VI in Frage, bei denen hochstens
soviele Variable positiv sind, wie VI Gleichungen aufweist, namlich m + #; das sind
aber gerade die zuldssigen Basislosungen von VI. Um unter den zuldssigen Basis-
l6sungen von VI eine ausfindig zu machen, die auch (23) geniigt, liegt der Versuch
nahe, in abgewandelter Form auf das Simplexverfahren der linearen Programmierung
zuriickzugreifen, da sich dieses mit den Baislosungen eines linearen Systems beschif-
tigt. Das Verfahren von WOLFE zeigt eine Moglichkeit hierfiir. Es besteht grob darin,
dass man in (20) und (21) zunédchst Abweichungen in Form kiinstlicher Schlupf-
variablen zuldsst und diese dann mittels des Simplexverfahrens zu Null reduziert,
jedoch so, dass (23) im ganzen Verlauf des Verfahrens erfiillt ist. Man geht so vor, dass
man VI ersetzt durch das erweiterte System

( Ax +9y+ D, w = b,
VII , Cx—v+A'u + Doz = — p,
l x>0, v=>0, >0, y>0, w>0, z>0.

Hierbei sind D, und D, m- bzw. n-reihige Diagonalmatrizen mit den Elementen 4 1
oder — 1, je nachdem ob die rechte Seite der entsprechenden Gleichung positiv oder
negativ ist. Fiir VII kann man sofort eine zuldssige Basislosung angeben, nimlich
diejenige mit x =0, y =0, v = 0, # = 0. Man verwendet die Simplexmethode, um,
ausgehend von dieser Basislosung, die Linearform

zu minimieren unter den Nebenbedingungen VII. Die v; und «; diirfen dabei nicht in
die Basis genommen werden; sie behalten den Wert Null. Als Resultat erhidlt man
eine Basislosung von VII mit w = 0; alle w; sind aus der Basis verschwunden.

In einer zweiten Phase minimiert man, ausgehend von der am Schluss der ersten
Phase erhaltenen Basislosung, die Linearform

2%

1=1
unter den Nebenbedingungen VII und mit der Zusatzvorschrift, dass »; nicht in die
Basis genommen werden darf, wenn x; sich bereits in der Basis befindet, und umge-
kehrt; ebenso fiir #; und y;. Damit ist sichergestellt, dass fiir alle auftretenden Basis-
l16sungen Bedingung (23) erfiillt ist. Die w; behalten in der zweiten Phase den Wert
Null; sie diirfen also auch nicht in die Basis zuriickkehren.

Wenn das Minimum, das man auf diese Weise fiir 2’ z; erreicht, den Wert Null hat,

so hat man am Ende der zweiten Phase eine Basislosung von VII mit w =0, 2= 10
und damit auch eine Lésung von VI erhalten. Da iiberdies (23) erfiillt ist, ist man am
Ziel; der x-Teil 16st das Programm V. Dieser Fall tritt aber nur mit Sicherheit ein,
wenn entweder p = 0 oder C streng definit ist. Ist diese Voraussetzung nicht erfiillt,
so bendtigt man noch eine dritte Phase. Man ersetzt in den ersten beiden Phasen den
Vektor ¢ in VII durch # - p, wobei % eine zusitzliche Variable ist, die nicht in die
Basis genommen werden darf, sondern den Wert Null behilt. Das entspricht 4 = 0,
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und die zweite Phase endet infolgedessen mit z = 0. In der dritten Phase maximiert
man die triviale Linearform #, wieder unter der Zusatzvorschrift und mit w = 0,
z = 0. Es ergibt sich eine Folge von Basislésungen mit monoton wachsendem #. Man
wihlt eine konvexe Linearkombination zweier aufeinanderfolgender Basislosungen
derart, dass die gleiche Linearkombination der zugehorigen u-Werte eins ergibt; der
x-Teil der Linearkombination l6st V.

Einen anderen Weg, den Bedingungen VI und (23) mittels der Simplextechnik
beizukommen, zeigt das Verfahren von BARANKIN und DorRFMAN. Wihrend WOLFE
(23) immer erfiillt sein ldsst und dafiir zundchst Abweichungen vom Hauptsystem VI
in Kauf nimmt, sind bei BARANKIN und DorRFMAN die Bedingungen VI immer streng
erfiillt. Man geht aus von einer zuldssigen Basislésung von VI, die nicht notwendig (23)
erfiillt, und reduziert iiber eine Folge von Basislosungen die nichtlineare Zielfunktion
T = %' v+ 9"« zu Null. Die Transformationsformeln fiir den Ubergang von einer
Basislosung zur nichsten sind die gleichen wie beim Simplexverfahren der linearen
Programmierung. Lediglich die Auswahlregel fiir die in die Basis zu nehmende
Variable ist wegen der Nichtlinearitit von T komplizierter. Man kann allerdings
Beispiele konstruieren, bei denen das Verfahren von BARANKIN und DORFMAN stecken-
bleibt, weil sich keine Simplextransformation mehr durchfiihren lisst derart, dass 7'
abnimmt, obwohl immer noch 7" > 0. FRANK und WoLFE haben diese Schwierigkeit
beseitigt, indem sie T geeignet linearisierten.

Ein Verfahren von BEALE verwendet den Simplexmechanismus direkt, ohne den
Umweg iiber VI. Man startet mit einer zuldssigen Basislosung des Systems 4x + y =
b, x >0,y > 0. Die m + » Variablen x und y seien zu einem Vektor z zusammenge-
fasst. Mittels der Gleichungsrestriktionen lassen sich die m positiven Basisvariablen,
etwa z,,, bis z,,,, sowie Q darstellen als Funktion der unabhéngigen, in der Basis-
l6sung verschwindenden Variablen z, bis 2,:

Zo=dp + D dy 7 (g=n+1,...,0+m)),
Py

choo+colzl+ "’+conzn
+ (ot enznt ..ot Cia2) %

+(cno+cn1z1+"'+Cnnzn).zn (cij=cji)‘

Die Klammerausdriicke entsprechen den partiellen Ableitungen % 0Q/0z,.

Falls alle Ableitungen > 0 sind, so ist die Basislésung optimal. Andernfalls erhilt
man eine der Variablen mit negativer Ableitung, etwa z;,, und zwar solange, bis eine
der abhingigen Variablen oder } 0Q/0z, verschwindet. Im ersten Falle ersetzt die
neue verschwindende Variable z; als unabhingige Variable; z, ist basisch geworden.
Die zu dem neuen Satz von unabhingigen Variablen gehdrende Basislosung liefert
einen geringeren Q-Wert. Im zweiten Fall fithrt man eine freie, das heisst nicht vor-
zeichenbeschrinkte Variable #, ein, die mit den blshengen unabhéngigen Variablen
gemiss

1
“1”“{'39""" chhzh
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verkniipft ist. #, ersetzt z; als unabhingige Variable; z; wird abhédngig von %, und z,
bis z,. Setzt man den neuen Satz von unabhingigen Variablen gleich Null, so hat
man wieder eine Basislosung; allerdings hat sich die Anzahl der Basisvariablen um
eins erhoht, da 2, in die Basis kam, ohne dass eine der bisherigen Basisvariablen zum
Verschwinden gebracht worden wire. In beiden Fillen kann man zur Transformation
der d,, und, bei geeignetem Vorgehen, auch zur Transformation der c;; auf die neue
Basislésung die Formeln des Simplexverfahrens verwenden.

Wenn sich unter den unabhidngigen Variablen freie Variable befinden, so miissen
am Optimalpunkt die Ableitungen nach den freien Variablen verschwinden. Wenn
die Ableitung nach einer freien Variablen positiv ist, so kann man Q noch erniedrigen,
indem man die freie Variable negativ werden ldsst, was bei den eigentlichen Variablen
z, wegen der Vorzeichenbeschrankung nicht moéglich ist. Wenn man noch die zu-
sdatzliche Vorschrift einfiihrt, dass wenn immer moglich eine freie unabhingige
Variable in die Basis genommen, das heisst positiv oder negativ gemacht werden soll,
so ldsst sich zeigen, dass man nach endlich vielen Schritten zu einem Satz von unab-
hingigen Variablen gelangt, bei dem die Ableitungen von  nach den z-Variablen
nichtnegativ und die nach den freien Variablen null sind. Damit hat man das Opti-
mum erreicht.

Entsprechend zu den dualen linearen Programmen kann man auch ein quadra-
tisches Programm dualisieren, allerdings nicht mit der gleichen Symmetrie wie im
linearen Fall. Einem gegebenen quadratischen Primdrprogramm,

p’x—{—%—x’Cx (16)

VIII zu minimieren unter den Nebenbedingungen
Ax<b (17)

wird zugeordnet das Dualprogramm,

~ X Cx—bu (24)

X zu maximieren unter den Nebenbedingungen
Cx+ A" u=—9p, (25)
u>0. (26)

Es gelten die gleichen Sitze wie im linearen Fall: Wenn das eine Problem eine
Losung aufweist, so auch das andere, und die beiden Extremalwerte sind gleich. Wenn
beim einen Problem die Zielfunktion iiber dem zuldssigen Bereich nicht beschrankt
ist, so ist beim anderen Problem der zuldssige Bereich leer.

Wenn C streng definit und somit nichtsinguldr ist, so kann man mittels der
Gleichungsrestriktionen x aus dem dualen Programm eliminieren:

¥(u) = —C-1 (A" u+9p).
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IX lautet dann:

—hu—u Gu (24"
X ist zu maximieren unter den Nebenbedingungen
uw > 0. (26)

Dabei ist zur Abkiirzung s=A C-1p 4+ bund G = } A C—1 A’ gesetzt. ¥ stellt dann
und nur dann eine Losung von VIII dar, wenn ¥ = x(u), wobei u eine Losung von X
darstellt. H.P.Ktnz1 und W.OETTLI, Ziirich
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Arithmetical Notes, XIII. A Sequel to Note IV*)

1. Introduction

First we introduce some terminology and notation. For any positive integer #,

ne=pye B, (1.1)
where 9, ..., p, are the prime divisors of », let #(n) denote the maximal multiplicity of
n, that is, ¢(n) = max (e, ..., ¢,), {(1) = 0. For arbitrary positive integers &, let », de-

note the k-segment of #, meaning the number 7, = n/m where m is the largest k-th
power divisor of #. Further, let £,(n) denote the maximal multiplicity of the k-segment
of n, t,(n) = t(n,).

In this note we prove elementary estimates for the distribution of two sequences of
integers, Uy, and V, ,, defined as follows. Let ¢ denote a fixed positive integer; define
Uy, to be the set of all # for which #,(#) < ¢and ¥V}, to be the set of all# for which
ty(n) = £. The result obtained for U, is given in Theorem 1 and that for V;, in
Theorem 2. It will be noted that U, is the set of all positive integers while U, ; is the
set of k-th powers. More generally, U, , is the set of all » whose k-segment is a #-free
integer (an integer whose largest ¢-th power divisor is 1). Note moreover that the sets
V4. contain no k-th power integers.

We mention here a single special case of Theorem 1. Let H,(x) denote the number
of n < x contained in H, = U, ,, thatis, H,(x) is the number of those #, not exceeding
x, whose k-segment is square-free. Then for 2 > 2,

H (x) = (wg%g—) %+ 0 (l/;) , (1.2)

*) This research was supported in part by the National Science Foundation grant G-19012.
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