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Autoevoluten

Als « Autoevolute» wird eine Kurve bezeichnet, die mit ihrer Evolute zusammenfillt,
also ihre eigene Evolute ist. Die vorliegende Note will einige typische, bisher an-
scheinend nicht bekannte Beispiele von ebenen Kurven mit dieser merkwiirdigen
Eigenschaft vorfithren. Den Betrachtungen liegt dabei die euklidische Ebene zugrunde.
Auf Autoevoluten in der elliptischen oder hyperbolischen Ebene, auf der Kugel oder
im Raum soll vielleicht bei anderer Gelegenheit eingegangen werden.

1. Wir denken uns eine ebene Kurve ¢ durch ihre vom Richtungswinkel 7 abhingige
Tangentengleichung

xsint — vy cos T = h(t) (1)

beschrieben. Die Stiitzfunktion h(t) gibt den Ursprungsabstand der Tangente ¢ an und
legt — stetige Differenzierbarkeit vorausgesetzt — die Kurve ¢ als Einhiillende der
Geradenschar (1) fest. Die abgeleitete Gleichung

% cos T+ ysint=h'(7) (2)

stellt eine durch den Beriithrungspunkt von ¢ gehende und zu ¢ normale Gerade ¢’ dar,
also die Kurvennormale. Die Hiillkurve der Geradenschar (2) ist demnach die Evolute
¢’ von ¢. — Ausrechnung der Koordinaten x und y aus (1) und (2) wiirde fiir die Kurve
¢ eine kartesische Parameterdarstellung liefern, die hier jedoch nicht benétigt wird.

Soll nun die Evolute ¢’ mit der Grundkurve ¢ zusammenfallen, so muss offenbar
jede Normale mit einer dazu senkrechten (fritheren oder spdteren) Tangente identisch
sein; es muss daher fiir alle 7

K@) =h(x+p) oder W(t)=—h(x—p) mit f=7 (mod2z) (3a,b)

gelten. Die Frage nach den Autoevoluten der euklidischen Ebene lduft demnach auf
die Losung der beiden Funktionalgleichungen (3) hinaus. Es handelt sich dabei um
die einfachsten Formen linearer Hystero-Differentialgleichungen mit konstanter Ver-
zégerung. Der Wissensstand iiber derartige Gleichungen ist einem zusammenfassen-
den Bericht von W.HA=RN [1]?) zu entnehmen.

Fiir uns geniigt die Einsicht, dass elementare Losungen in Gestalt von Exponential-
funktionen existieren und dass sich durch deren Linearkombination beliebig viele
weitere Losungen aufbauen lassen.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 128.
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2. Setzen wir eine Elementarlosung der Gleichung (3a) mit
h=¢T (4)

an, so ergibt sich fiir die Konstante r die Bedingung

r=2¢eh, 51‘2- (mod 2 ) (5)
oder ausfithrlicher, mit f = n/2 — 2k n:
lnr—i—(Zk—%)nr:O, kganz. (6)

Reelle Losungen dieser Gleichung sind nur fiir 2> 0 vorhanden und kénnen etwa
mittels eines Iterationsverfahrens berechnet werden. Sie sind fiir die niedrigsten
Werte von % in Tabelle I zusammengestellt.

cota =p=0,07441

Tabelle 1

I I p

0,27441
0,16427
0,12183
0,09841

Frord

TR TR

P wWN -
98338

Figur 1

Logarithmische Spirale als Autoevolute
(¢ = 1 aus Tabelle I).

Diese reellen Losungswerte 7 fithren auf gewisse logarithmische Spiralen, deren
Kurswinkel « durch cot o = » bestimmt ist. Auf diese speziellen Autoevoluten haben
bereits J. BINET und spéter wiederum G. SCHEFFERS hingewiesen [2].

M.ALLE [3] glaubte sogar bewiesen zu haben, dass derartige logarithmische
Spiralen die einzigen Autoevoluten iiberhaupt wiren; sein Irrtum wird aufs deutlich-
ste durch die nachfolgenden Beispiele widerlegt.

Die Funktionalgleichung (3b) liefert bei analoger Behandlung nichts wesentlich
Neues, sondern bis auf das Vorzeichen die gleichen r-Werte, also die zu den bereits
genannten logarithmischen Spiralen gegensinnig-kongruenten.

3. Die transzendente Gleichung (5) besitzt fiir jedes #, unabhingig von der Exi-
stenz einer reellen Losung, unendlich viele Paare konjugiert-komplexer Losungen,
darunter das Paar r = 4 7. Setzen wir 7 = ¢ + ##n, so schreibt sich die Bedingung (5):

g+in=e9t"F = ¢1f (cosn B+ isinnf).
Sie verlangt mithin — auch fiir # = ¢ — ¢ % — die Auflésung des Gleichungssystems

g=1¢*cosfn, n=esinfn, ﬁ:—*:% (mod 2 7). (7)
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Die Einfiihrung des Hilfswinkels = fn fiihrt diese Aufgabe auf eine einzige Gleichung

zuriick, nimlich auf
) w g cot

B

die gesuchten Grossen ergeben sich dann mit

sin w ; (8)

@
B
Zur Auflésung der Schliisselgleichung (8) kann ein Iferattonsprozess dienen, der aus
einem hinreichend guten Ndherungswert w, mittels

n = g=n-cotw. 9)

cot wy = ;}1—« In ( (10)

Wy -)
o f sin wq

einen verbesserten Naherungswert w, ableitet und, in der gleichen Weise fortfahrend,
im allgemeinen schnell zum Ziel fiihrt.

Tabelle I1
-2 1,44317 0,02596 —0,44317 —0,05858 4,57
-1 1,79471 0,07457 -0,79471 : -0,09384 2,57
0 4,86835 1,02133 —3,86835 | —0,26402 0,5-7(Abb.4)
k n q m P B
2 0,44337 0,07212 0,55663 0,12957 |-3,5'=
3 0,63871 0,02590 0,36129 0,07168 |—5,5'x«
4 0,73409 0,01311 0,26591 0,04931 |-7,5-7(Abb.3)
Tabelle I1I
-3 0,69357 - 0,01790 0,30643 - 0,05841 6,5'm
-2 0,56069 —0,04074 0,43931 : -0,09274 4,571
-1 0,26576 - 0,15097 0,73424 | —0,20557 2,5-7(Abb.2)
k n q m p i
1 2,31698 —0,17857 —1,31698 0,13559 {—-1,5‘~n
2 1,56905 —0,04100 —0,56905 0,07205 |-3,5 '~
3 1,36287 -0,01792 - 0,36287 0,04939 |- 5,5 -7 (Abb.5)

Wir setzen wieder § = 7/2 — 2 k. Der Ausgangswert w, = f wiirde iiber w = f§
auf die triviale und unbrauchbare Losung 7 = ¢ fithren. Die benachbarten nichttri-
vialen Losungen erhalten wir ausgehend von wy = f + 27. Die zugehérigen numeri-
schen Werte von #» und ¢ sind fiir die niedrigsten Indizes % in Tabelle II und III zu-
sammengestellt.

Zu den in den Tabellen fehlenden Indizes & = 1 bzw. 0 existieren keine entspre-
chenden Losungen. Analoge Tabellen kénnten natiirlich noch mit den Ausgangswerten
wg = B + 47 usf. berechnet werden. Auf die Auswertung der Funktionalgleichung
(3b) darf hingegen wiederum verzichtet werden.

4.Durch Linearkombination zweier zu konjugiert-komplexenWertenr, , = g +- i n
gehorigen Elementarlosungen erhidlt man bei Verwendung konjugiert-komplexer
Koeffizienten ¢, , = 1/2 (@ + 4 b) + 0 reelle Autoevoluten «2. Stufe». Ihre Stiitzfunktion
h(7) hat die Bauart

h(t) = —12~

1

(@+ib) @+ 4 o (a—ib) 9T = A (a cosnT — bsin n 7). (11)
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Durch Drehung des Koordinatensystems und MaBstab4dnderung lisst sich die Stiitz-
funktion auf die vereinfachte Form

h(r) =e"sinnt (12)

bringen, die der folgenden Untersuchung zugrundegelegt sein mag. Die Konstanten
seien zundchst beliebig, also vorldufig nicht durch (7) eingeschriankt; ausgeschlossen
seien jedoch ¢ = 0,7 =0und #» = 4 1.

Setzen wir A=lem, g=mp, (13)
so ldsst sich die Tangentengleichung (1) umformen zu
xéinr-—-ycosr=e’"‘” (cos m T sin T — sin m T cos T). (14)

Hieraus ist abzulesen, dass die Tangente ¢ mit dem Richtungswinkel T den «Leitpunkt»
M mit den Koordinaten

X=e""cosmr, Y=e""sinmz (15)

enthilt. Dieser Leitpunkt durchlduft mit variablem 7 eine logarithmische « Leitspirale»
! mit der Polargleichung R = o7 (16)

Hieraus folgt eine einfache kinematische Erzeugung der durch die Stiitzfunktion
(12) beschriebenen Kurve c: dieselbe entsteht als Einhiillende einer beweglichen
Geraden /, die sich mit der konstanten Winkelgeschwindigkeit + 1 um einen ihr an-
gehérenden Punkt M dreht, wihrend dieser mit der konstanten Winkelgeschwindig-
keit m auf einer logarithmischen Spirale wandert.

Im Hinblick darauf, dass diese kinematische Erzeugung im Grenzfall ¢ = O (der
durch eine kreisférmige Leitkurve / gekennzeichnet ist) in bekannter Weise auf die
Zykloiden fiihrt — und zwar auf Epizykloiden bei | # | < 1, auf Hypozykloiden bei
| #| > 1 -, liegt es nahe, die Kurven (12) im allgemeinen Falle ¢ + 0 «Spiraloiden»
zu nennen, wobei analog zwischen «Epispiraloiden» (| #» | < 1) und «Hypospiraloiden»
(] » | > 1) unterschieden werden kann. Eine weitere Rechtfertigung fiir die vorge-
schlagene Namensgebung ist in der leicht zu beweisenden Tatsache zu erblicken, dass
das Polkurvenpaar fiir die Bewegung des durch das Linienelement (M, ?) repridsen-
tierten starren Systems von zwei logarithmischen Spiralen gebildet wird, die an die
Stelle des Rollkreispaares bei den Zykloiden treten. Im iibrigen haben die Spiraloiden
viele bemerkenswerte Eigenschaften mit den Zykloiden gemeinsam, wie eine nidhere
Betrachtung gezeigt hat [4]. Schon rein &dusserlich fillt der verwandte, durch die
kinematische Erzeugung bedingte periodische Bau auf: Jede Spiraloide setzt sich aus
unendlich vielen untereinander dhnlichen Elementarbégen zusammen, die in Spitzen
aneinandergeheftet sind; die Linge des Periodenintervalls fiir v ist z/n, der ent-
sprechende Zentriwinkel des Elementarbogens betrigt daher ma/n. Die Spiraloide
gestattet demnach eine diskontinuierliche Gruppe von Drehstreckungen

e* =@+ 49, R* = R:¢f*, Jganz, o="17 (17)

n

Fiir uns ist von besonderem Interesse, dass jede Spiraloide zu threr Evolute dhnlich
ist. Dies ist unmittelbar aus der Bauart der Evolutenstiitzfunktion

W (t) =el* (ncosnt + gsin n7) (18)
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zu erkennen, die wiederum vom Typ (11) ist. In dieser Eigenschaft, jedoch durch ihre
«natiirliche Gleichung» ¢ = p(r) beschrieben, finden die Spiraloiden eine fliichtige
Erwihnung bei V.A.Puiseux [5]. Jene Spiraloiden, die zu ihrer Evolute nicht bloss
dhnlich, sondern sogar kongruent sind, bestimmten neuerdings C. A. CROMMELIN und
W. vaAN DER WOUDE [6]. Jene Spiraloiden schliesslich, die mit ihrer Evolute zdentisch
sind, ergeben sich fiir solche Konstanten ¢ und #, die der Bedingung (7) geniigen.
Einige typische Formen solcher Autoevoluten 2. Stufe zeigen die Figuren 2-5.

A
Ak
1 :
Figur 2
Autoevolute 2. Stufe
(Epispiraloide & = — 1 aus Tabelle III)
Figur 3

Autoevolute 2. Stufe
(Epispiraloide 2 = 4 aus Tabelle II)

Figur 4

Autoevolute 2. Stufe
(Hypospiraloide k = 0 aus Tabelle 1I)

Figur 5

Autoevolute 2. Stufe
(Hypospiraloide & = 3 aus Tabelle III)

5. Reelle Autoevoluten hoherer Stufe kénnen nunmehr durch Linearkombination
von reellen Elementarldsungen aus Abschnitt 2 und sekundiren Losungen aus Ab-
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schnitt 4 aufgebaut werden, wobei natiirlich nur solche Komponenten zusammen-
passen, die zur gleichen Verzégerung f§ gehoren; sie sind in den Tabellen I, IT und III
unter dem gleichen Index % zu finden.

Fiir eine Autoevolute 3. Stufe lisst sich die Stiitzfunktion nach geeigneter Drehung
und MaBstabseichung des Koordinatensystems auf die Gestalt

h(r) =€+ ael"sinnt (19)

bringen. Ein typisches Beispiel, mit 4 = 1 und den zu % = 2 gehorigen Werten aus
Tabelle I und ITI gebildet, zeigt Figur 6. Wegen » > 0 und g < 0 weist die Kurve im

XSiNT -y 08T =
= ¢ "%+ a-esinnt

P-Q”m
q=-00100, n=155005
by = 45°

Figur 6
Autoevolute 3. Stufe (¥ = 2 aus Tabelle I und III)

positiven Parameterbereich (wo der erste Gleichungsterm iiberwiegt) den Charakter
einer logarithmischen Spirale auf, im negativen hingegen (wo der zweite Term zur
Geltung kommt) mehr das Verhalten einer Hypospiraloide (| #» | > 1) mit deren nach
aussen gekehrten Spitzen. — Zur Konstruktion wurde auch hier auf Grund der Sub-
stitution (13) jene Lestspirale | herangezogen, die der Tangentenpunkt M mit den
Koordinaten

X=¢€%sint+eTcosmr, Y=—¢€"cost+eTsinmr (20)

durchliuft, wihrend sich die Tangente gleichférmig um ihn dreht. Diese Leitspirale
lisst sich durch Addition entsprechender Radienvektoren zweier logarithmischen
Spiralen unschwer ermitteln. Dies geschah in 45°-Schritten, auf welche sich die Num-
mern in der Figur beziehen. Entsprechend der Verzogerung f = — 7 #/2 wird dann je-
weils die Tangente mit der Nummer » (t = »/4) von der Tangente mit der Nummer
v — 14 (= Normale zu ¢,) im Berlihrungspunkt geschnitten.
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Eine Autoevolute 4. Stufe besitzt eine Stiitzfunktion, die allgemein folgendermassen
geschrieben werden kann:

h(t) = ay 9" sin (n,T — Ay) + ag €87 sin (nyr — A,). (21)

Das in Figur 7 wiedergegebene Beispiel verwendet die zu 2 = — 2 gehorigen Werte
aus Tabelle IT und III, kombiniert mittels a4, = 1, @, = 3 und 4, = 4, = n/2. Wegen

= Q36069, g, (040K
ny= 144317 g,= 002506

=j, g=1 -
i

Figur 7
Autoevolute 4. Stufe (¢ = — 2 aus Tabelle II und III)

¢, > 0 und ¢, < 0 nihert sich die Kurve mit wachsendem 7 dem Aussehen einer
Hypospiraloide (| #, | > 1), mit abnehmendem v hingegen dem Verhalten einer Epi-
spiraloide (| 7, | < 1). Zur Konstruktion wurde wieder vom Tangentenpunkt M

X = a, €7 cos (myT + A;) + ay € cos (mgT + Ay), 22
2
Y = a, €% sin (m,7 + A;) + @y €™ sin (mgT + Ay)

durchlaufene, in der Figur punktiert eingetragene Leitspirale benutzt, die durch
Superposition zweier (gegenldufigen) logarithmischen Spiralen gewonnen werden
kann. Die hervorgehobenen Punkte markieren wie in Figur6 die 45°-Schritte von 7.
Beim Zeichnen von Autoevoluten wird man natiirlich die Kenntnis der Kriitmmungs-
mittelpunkte ausniitzen und passende Kriitmmungskreise heranziehen.
W.WUuNDERLICH, Wien
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Uber gewogene Mittelwerte,
insbesondere gewogene geometrische Mittel

Fiir die einfache Quadratfunktion
f(x) =cx®, c¢=const. (1)

gilt die einfache, aber wenig bekannte Beziehung
- 1
FEEEE) = o (F0m) + 2 (Fx) Fom)) ™ + Fl) =

- 5 (PR Vi) ) ), wx (1)

das heisst dem arithmetischen Mittel zweier Argumente entspricht der Durchschnitt
zwischen arithmetischem und geometrischem Mittel der beiden beziiglichen Funk-
tionswerte.

Weiter findet man fiir die einfache Potenzfunktion #». Grades

f(x) =cx", c¢= const. (I11)
die Beziehung

FE) - 55 2 () (o Pl e 3 (1)

Der zweite Faktor hinter dem Summenzeichen ist ein gewogenes geometrisches
Mittel. Setzen wir fiir f(x;) = a, f(x,) = b, so haben wir fiir das gewogene geome-
trische Mittel die Gestalt

g=(atb)ll", n=t=0. V)
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