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Autoevoluten

Als «Autoevolute)) wird eine Kurve bezeichnet, die mit ihrer Evolute zusammenfällt,
also ihre eigene Evolute ist. Die vorliegende Note will einige typische, bisher
anscheinend nicht bekannte Beispiele von ebenen Kurven mit dieser merkwürdigen
Eigenschaft vorführen. Den Betrachtungen liegt dabei die euklidische Ebene zugrunde.
Auf Autoevoluten in der elliptischen oder hyperbolischen Ebene, auf der Kugel oder
im Raum soll vielleicht bei anderer Gelegenheit eingegangen werden.

1. Wir denken uns eine ebene Kurve c durch ihre vom Richtungswinkel r abhängige
Tangentengleichung

x sin r — y cos r h(x) (1)

beschrieben. Die Stützfunktion h(r) gibt den Ursprungsabstand der Tangente t an und
legt - stetige Differenzierbarkeit vorausgesetzt - die Kurve c als Einhüllende der
Geradenschar (1) fest. Die abgeleitete Gleichung

x cos r + y sin r h'(r) (2)

stellt eine durch den Berührungspunkt von t gehende und zu t normale Gerade t' dar,
also die Kurvennormale. Die Hüllkurve der Geradenschar (2) ist demnach die Evolute
c' von c. - Ausrechnung der Koordinaten x und y aus (1) und (2) würde für die Kurve
c eine kartesische Parameterdarstellung liefern, die hier jedoch nicht benötigt wird.

Soll nun die Evolute c' mit der Grundkurve c zusammenfallen, so muss offenbar
jede Normale mit einer dazu senkrechten (früheren oder späteren) Tangente identisch
sein; es muss daher für alle t

h'{x) h(r + ß) oder h'{r) - A (t ~ $ mit ß -y (mod2n) (3a, b)

gelten. Die Frage nach den Autoevoluten der euklidischen Ebene läuft demnach auf
die Lösung der beiden Funktionalgleichungen (3) hinaus. Es handelt sich dabei um
die einfachsten Formen linearer Hystero-Differentialgleiehungen mit konstanter
Verzögerung. Der Wissensstand über derartige Gleichungen ist einem zusammenfassenden

Bericht von W.Hahn fl]1) zu entnehmen.
Für uns gentigt die Einsicht, dass elementare Lösungen in Gestalt von Exponentialfunktionen

existieren und dass sich durch deren Linearkombination beliebig viele
weitere Lösungen aufbauen lassen.

l) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 128.
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2. Setzen wir eine Elementarlösung der Gleichung (3a) mit

h err

an, so ergibt sich für die Konstante r die Bedingung

Sß ß ^ (mod2rc)

oder ausführlicher, mit ß n/2 — 2 k n:

ln r + \2k —j)nr 0, ßganz.

(4)

(5)

(6)

Reelle Lösungen dieser Gleichung sind nur für k > 0 vorhanden und können etwa
mittels eines Iterationsverfahrens berechnet werden. Sie sind für die niedrigsten
Werte von k in Tabelle I zusammengestellt.

co+x~p-0,27441
Tabelle I

k r p ß

1

2
3
4

0,27441
0,16427
0,12183
0,09841

- 1,5- n
- 3,5'7i
- 5,5 • n
-7,5-jt

Figur 1

Logarithmische Spirale als Autoevolute
(k — 1 aus Tabelle I).

Diese reellen Lösungswerte r führen auf gewisse logarithmische Spiralen, deren
Kurswinkel a durch cot a r bestimmt ist. Auf diese speziellen Autoevoluten haben
bereits J.Binet und später wiederum G. Scheffers hingewiesen [2].

M.ALLi [3] glaubte sogar bewiesen zu haben, dass derartige logarithmische
Spiralen die einzigen Autoevoluten überhaupt wären; sein Irrtum wird aufs deutlichste

durch die nachfolgenden Beispiele widerlegt.
Die Funktionalgleichung (3b) liefert bei analoger Behandlung nichts wesentlich

Neues, sondern bis auf das Vorzeichen die gleichen r-Werte, also die zu den bereits
genannten logarithmischen Spiralen gegensinnig-kongruenten.

3. Die transzendente Gleichung (5) besitzt für jedes ß, unabhängig von der
Existenz einer reellen Lösung, unendlich viele Paare konjugiert-komplexer Lösungen,
darunter das Paar r ± Setzen wir r q + in, so schreibt sich die Bedingung (5):

q + in « e{q + in)ß « eßß (cos nß + isinnß).

Sie verlangt mithin - auch für f — q — i n - die Auflösung des Gleichungssystems

q^eß9cosßnt n*=eß*$mßn, ß _= -i (mod2tt). (7)
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Die Einführung des Hilfswinkels co ßn führt diese Aufgabe auf eine einzige Gleichung
zurück, nämlich auf

(8)•£ **«** sin o>;

die gesuchten Grössen ergeben sich dann mit

q n • cot co.
co

» -*-! (9)

Zur Auflösung der Schlüsselgleichung (8) kann ein Iterationsprozess dienen, der aus
einem hinreichend guten Näherungswert co0 mittels

cot cox — ln 1

n
QJ°—|

1
co0 \ß sm a)0 ] (10)

einen verbesserten Näherungswert cox ableitet und, in der gleichen Weise fortfahrend,
im allgemeinen schnell zum Ziel führt.

Iabelle II
-2
-1

0

1,44317
1,79471
4,86835

0,02596
0,07457
1,02133

-0,44317
-0,79471
- 3,86835

- 0,05858

- 0,09384
- 0,26402

4,5 -n
2,5 -n
0,5-jt (Abb.4)

k n q m P ß

2
3

4

0,44337
0,63871
0,73409

0,07212
0,02590
0,01311

0,55663
0,36129
0,26591

0,12957
0,07168
0,04931

— 3,5 '7i
- 5,5 - 7i

-7,5-tt(Abb.3)

Tabelle III
-3
-2
-1

0,69357
0,56069
0,26576

- 0,01790

- 0,04074
-0,15097

0,30643
0,43931
0,73424

- 0,05841

- 0,09274

- 0,20557

6,5 • n
4,5-7.
2,5 -7i (Abb. 2)

k n q m P ß

1

2
3

2,31698
1,56905
1,36287

-0,17857
- 0,04100
-0,01792

- 1,31698

- 0,56905

- 0,36287

0,13559
0,07205
0,04939

-1,5 71

-3,5 -7%

- 5,5 -7i(Abb. 5)

Wir setzen wieder ß n\2 — 2kn. Der Ausgangswert co0 ß würde über co ß
auf die triviale und unbrauchbare Lösung r i führen. Die benachbarten nichttrivialen

Lösungen erhalten wir ausgehend von o>0 ß ± 2n. Die zugehörigen numerischen

Werte von n und q sind für die niedrigsten Indizes k in Tabelle II und III
zusammengestellt.

Zu den in den Tabellen fehlenden Indizes k 1 bzw. 0 existieren keine
entsprechenden Lösungen. Analoge Tabellen könnten natürlich noch mit den Ausgangswerten
&>o — ß ± 4 Tz usf. berechnet werden. Auf die Auswertung der Funktionalgleichung
(3b) darf hingegen wiederum verzichtet werden.

4. Durch Linearkombination zweier zu konjugiert-komplexenWerten rx 2 q ± in
gehörigen Elementarlösungen erhält man bei Verwendung konjugiert-komplexer
Koeffizienten c1>2 1/2 (a ± i b) 4= 0 reelle Autoevoluten «2. Stufe». Ihre Stützfunktion
h(r) hat die Bauart

h(x) ^~(a + ib) s<* + <»>T + l(a-ib) e{q~tn)r ¦. eßr (a cos nx — b sin nr). (ii)
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Durch Drehung des Koordinatensystems und Maßstabänderung lässt sich die
Stützfunktion auf die vereinfachte Form

h{x) eqrsmnx (12)

bringen, die der folgenden Untersuchung zugrundegelegt sein mag. Die Konstanten
seien zunächst beliebig, also vorläufig nicht durch (7) eingeschränkt; ausgeschlossen
seien jedoch q 0, n 0 und n ± !•

Setzen wir /H ovn 1 — m, q — mp, (13)

so lässt sich die Tangentengleichung (1) umformen zu

x sin t — y cos r empT (cos mx sin x — sin mx cos t) (14)

Hieraus ist abzulesen, dass die Tangente t mit dem Richtungswinkel x den «Leitpunkt»
M mit den Koordinaten

I ^WTcoswr, Y ^mTsinwr (15)

enthält. Dieser Leitpunkt durchläuft mit variablem x eine logarithmische «Leitspirale»
l mit der Polargleichung „ _ Pq> fi.

Hieraus folgt eine einfache kinematische Erzeugung der durch die Stützfunktion
(12) beschriebenen Kurve c: dieselbe entsteht als Einhüllende einer beweglichen
Geraden t, die sich mit der konstanten Winkelgeschwindigkeit + 1 um einen ihr
angehörenden Punkt M dreht, während dieser mit der konstanten Winkelgeschwindigkeit

m auf einer logarithmischen Spirale wandert.
Im Hinblick darauf, dass diese kinematische Erzeugung im Grenzfall q 0 (der

durch eine kreisförmige Leitkurve / gekennzeichnet ist) in bekannter Weise auf die
Zykloiden führt - und zwar auf Epizykloiden bei | n | < 1, auf Hypozykloiden bei
| n | > 1 -, liegt es nahe, die Kurven (12) im allgemeinen Falle q * 0 «Spiraloiden»
zu nennen, wobei analog zwischen «Epispiraloiden» (| n | < 1) und «Hypospiraloiden»
(| n | > 1) unterschieden werden kann. Eine weitere Rechtfertigung für die
vorgeschlagene Namensgebung ist in der leicht zu beweisenden Tatsache zu erblicken, dass

das Polkurvenpaar für die Bewegung des durch das Linienelement (M, t) repräsentierten

starren Systems von zwei logarithmischen Spiralen gebildet wird, die an die
Stelle des Rollkreispaares bei den Zykloiden treten. Im übrigen haben die Spiraloiden
viele bemerkenswerte Eigenschaften mit den Zykloiden gemeinsam, wie eine nähere

Betrachtung gezeigt hat [4]. Schon rein äusserlich fällt der verwandte, durch die
kinematische Erzeugung bedingte periodische Bau auf: Jede Spiraloide setzt sich aus
unendlich vielen untereinander ähnlichen Elementarbögen zusammen, die in Spitzen
aneinandergeheftet sind; die Länge des Periodenintervalls für x ist n\n, der
entsprechende Zentriwinkel des Elementarbogens beträgt daher mn\n. Die Spiraloide
gestattet demnach eine diskontinuierliche Gruppe von Drehstreckungen

<p*~<p + Mt £* £.e*A\ Aganz, d ^. (17)

Für uns ist von besonderem Interesse, dass jede Spiraloide zu ihrer Evolute ähnlich
ist. Dies ist unmittelbar aus der Bauart der Evolutenstützfunktion

ä'(t) e9 T (n cos n x + q sin n x) (18)
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zu erkennen, die wiederum vom Typ (11) ist. In dieser Eigenschaft, jedoch durch ihre
«natürliche Gleichung» q q(x) beschrieben, finden die Spiraloiden eine flüchtige
Erwähnung bei V.A.Puiseux [5]. Jene Spiraloiden, die zu ihrer Evolute nicht bloss

ähnlich, sondern sogar kongruent sind, bestimmten neuerdings C. A. Crommelin und
W. van der Woude [6]. Jene Spiraloiden schliesslich, die mit ihrer Evolute identisch
sind, ergeben sich für solche Konstanten q und n, die der Bedingung (7) genügen.
Einige typische Formen solcher Autoevoluten 2. Stufe zeigen die Figuren 2-5.

\

Figur 2

Autoevolute 2. Stufe
(Epispiraloide k — — 1 aus Tabelle III)

Figur 3

Autoevolute 2. Stufe
(Epispiraloide k 4 aus Tabelle II)

m^s.M^-f.

«

/Figur 4

Autoevolute 2. Stufe
(Hypospiraloide k — 0 aus Tabelle II)

Figur 5

Autoevolute 2. Stufe
(Hypospiraloide k 3 aus Tabelle III)

5. Reelle Autoevoluten höherer Stufe können nunmehr durch Linearkombination
von reellen Elementarlösungen aus Abschnitt 2 und sekundären Lösungen aus Ab-
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schnitt 4 aufgebaut werden, wobei natürlich nur solche Komponenten zusammenpassen,

die zur gleichen Verzögerung ß gehören; sie sind in den Tabellen I, II und III
unter dem gleichen Index k zu finden.

Für eine Autoevolute 3. Stufe lässt sich die Stützfunktion nach geeigneter Drehung
und Maßstabseichung des Koordinatensystems auf die Gestalt

Hx) + ai smnx (19)

bringen. Ein typisches Beispiel, mit a 1 und den zu k 2 gehörigen Werten aus
Tabelle I und III gebildet, zeigt Figur 6. Wegen r > 0 und q < 0 weist die Kurve im

xsfnv-ycosv*
>. V

~*\

r -3T v-_y\ /
/
••

W

Ä
1 N. /

H
Qm1

r~ 0,16427

-%&mt n-%56905
_fr«4r

Figurö
Autoevolute 3. Stufe (k - 2 aus Tabelle I und III)

positiven Parameterbereich (wo der erste Gleichungsterm überwiegt) den Charakter
einer logarithmischen Spirale auf, im negativen hingegen (wo der zweite Term zur
Geltung kommt) mehr das Verhalten einer Hypospiraloide (| n | > 1) mit deren nach
aussen gekehrten Spitzen. - Zur Konstruktion wurde auch hier auf Grund der
Substitution (13) jene Leitspirale l herangezogen, die der Tangentenpunkt M mit den
Koordinaten

X ert sin % + eqt cos wt, Y — efT cos x + eq% sin mx (20)

durchläuft, während sich die Tangente gleichförmig um ihn dreht. Diese Leitspirale
lässt sich durch Addition entsprechender Radienvektoren zweier logarithmischen
Spiralen unschwer ermitteln. Dies geschah in 45°-Schritten, auf welche sich die Nummern

in der Figur beziehen. Entsprechend der Verzögerung/? — 7n\2 wird dann
jeweils die Tangente mit der Nummer v (x vnfi) von der Tangente mit der Nummer
v ___ 14 (-s Normale zu tv) im Berührungspunkt geschnitten.
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Eine Autoevolute 4. Stufe besitzt eine Stützfunktion, die allgemein folgendermassen
geschrieben werden kann:

h(x) ax eqiT sin (nxx — Xx) + a2 eq%x sin (n2x — A2). (21)

Das in Figur 7 wiedergegebene Beispiel verwendet die zu k — 2 gehörigen Werte
aus Tabelle II und III, kombiniert mittels ax 1, a2 3 und Ax A2 tz/2. Wegen

n<-(l56069, qi—0,040H
nr 1,44317, q,-0,02506

/

Figur 7

Autoevolute 4. Stufe (£ — 2 aus Tabelle II und III)

qx > 0 und q2 < 0 nähert sich die Kurve mit wachsendem x dem Aussehen einer

Hypospiraloide (| % | > 1), mit abnehmendem r hingegen dem Verhalten einer
Epispiraloide (| n21 < 1). Zur Konstruktion wurde wieder vom Tangentenpunkt M

X ax eqiT cos (wxr + Ax) -f- a2 eq%x cos (w2t + A2),

Y ax eqiX sin (wxt + Xx) + a2 eq%T sin (m2x + A2)
(22)

durchlaufene, in der Figur punktiert eingetragene Leitspirale benutzt, die durch
Superposition zweier (gegenläufigen) logarithmischen Spiralen gewonnen werden
kann. Die hervorgehobenen Punkte markieren wie in Figur 6 die 45°-Schritte von r.
Beim Zeichnen von Autoevoluten wird man natürlich die Kenntnis der Krümmungsmittelpunkte

ausnützen und passende Krümmungskreise heranziehen.
W. Wunderlich, Wien
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Über gewogene Mittelwerte,
insbesondere gewogene geometrische Mittel

Für die einfache Quadratfunktion

f(x) c x2, c const. (1)

gilt die einfache, aber wenig bekannte Beziehung

/ (^±^-) - | (/(„,) + 2 (/(„,) /(*,))«• + /(*,))

l(^^ + F/w7w), *.**_. di)

das heisst dem arithmetischen Mittel zweier Argumente entspricht der Durchschnitt
zwischen arithmetischem und geometrischem Mittel der beiden bezüglichen
Funktionswerte.

Weiter findet man für die einfache Potenzfunktion n. Grades

f(x) c xn, c const. (III)
die Beziehung

/(^l^iö^W/W)1". *. + **. dv)

Der zweite Faktor hinter dem Summenzeichen ist ein gewogenes geometrisches
Mittel. Setzen wir für f(xt) a, /(%) 6, so haben wir für das gewogene geometrische

Mittel die Gestalt

g =_ (*»-* 6«)i/« n _£ t _> 0 (V)
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