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Elementargeometrische Sitzeals Abbilder von Gruppenoperationen

Bei dem auf F. KLEIN zuriickgehenden dynamischen Unterrichtsstil in der Geo-
metrie wird der Abbildungsbegriff als Hauptbeweismittel eingesetzt. Auf der Unter-
stufe steht dabei die einzelne Abbildung im Vordergrund. Das Zusammensetzen von
Abbildungen fiihrt spdter zum Gruppenbegriff und es steht dann das Rechnen mit
Abbildungen aus einer bestimmten Gruppe als weiteres Beweisverfahren zur Verfii-
gung. Hierher gehoren zum Beispiel die Beweise elementargeometrischer Sitze durch
Spiegelungsrechnen [1, 4]1).

Vom axiomatischen Standpunkt aus erscheint ein Zuriickgehen auf metrische
Spiegelungen sehr sinnvoll. Fiir den Unterricht ist es aber unzweckmissig. Es zeigt
sich namlich, dass der gruppengeometrische Beweis eines Satzes um so umstandlicher
und unnatiirlicher wird, je weiter der betreffende Satz von der Kongruenzgruppe
entfernt liegt. Die Beweise gewinnen dagegen an Durchsichtigkeit, wenn man mit
charakteristischen Abbildungen aus jener Gruppe operiert, welcher der Satz selbet
angehort. So wird etwa eine affine Aussage am natiirlichsten durch Rechnen mir
Affinititen bewiesen. Zahlreiche Sdtze der Elementargeometrie erscheinen auf diese
Weise als direkte Abbilder einfacher Gruppenoperationen. Die nachfolgenden Be-
trachtungen sollen diesen Sachverhalt an einigen Beispielen aufzeigen.

Die Gruppe der perspektiven Ahnlichkeiten

Eine perspektive Ahnlichkeit X ist gekennzeichnet durch das Zentrum S und
durch eine von Null verschiedene Zahl %, das sogenannte Ahnlichkeits- oder Strek-
kungsverhiltnis. Je nachdem » grésser oder kleiner als O ist, liegen einander entspre-

chende Punkte A und A auf derselben oder auf verschiedenen Seiten von S (Fig. 1).
Fiir x = — 1 stimmt 2" mit der 180°-Drehung um S iiberein; man spricht in diesem
Falle gelegentlich auch von einer Punktspiegelung an S.

Die perspektiven Ahnlichkeiten bilden eine Gruppe U. Die Zusammensetzung zweier
Elemente X, und X, aus 4 bezeichnen wir mit 2| o X, (zuerst 2, dann X}). S, sei
das Zentrum und x»; das Streckungsverhiltnis von X.

Dass X, o X, wiederum eine perspektive Ahnlichkeit ist, lasst sich folgender-
massen einsehen. Zunichst ist die Verbindungsgerade s der beiden Zentren S; und S,
eine Fixgerade bei X, o X,, denn diese Gerade bleibt sowohl bei X, als auch bei X,

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis am Schlusse.
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fest (Figur 2). Wird dann ein Punkt 4 der Abbildung X' = X, o X, unterworfen, so
ergibt sich die Kette

A——»A*»)E.

z, z,
Bei einer perspektiven Ahnlichkeit sind korrespondierende Geraden stets parallel.
Diese Eigenschaft iibertrdgt sich von 2 und X, auch auf das Produkt X, o X,. Die
Verbindungsgerade @ von 4 und A bleibt daher bei dieser Abbildung ebenfalls fest.

Figur 1 Figur 2

Der Schnittpunkt F von s und a ist somit ein Fixpunkt. Aus der Figur 2 entnimmt
man, dass

SiEr L SE

S,F ~ ™ 5, F+

ist. Wi1 schliessen daraus, dass der Punkt F durch die beiden Verhiltniszahlen %, und
#, allein bestimmt ist. Dies heisst nun aber, dass sdmtliche Verbindungsgeraden

korrespondierender Punkte P und P durch F = F = S laufen. S ist das Zentrum von
2. Da x gleich dem Verhiltnis korrespondierender Strecken bei X' ist, schliesst man

sofort auf die Beziehung
H = %1 * %2 . (])

Fiir die Lage von S auf der Geraden s gilt
= 17" 4 wobei d =8, 8,. 2
Es ist ndmlich
S, F* =%, & und damit Sy F*= 8§, F* —d=x,58—d.
Nun ist aber 8, § = x», S, F*, woraus
¥ —d=1y (%, 8—d)

folgt. Durch Auflésen dieser Vektorgleichung nach & erhilt man die Beziehung (2).
Die Gruppe U ist nicht kommutativ; man erkennt dies daran, dass (2) in %, und »,

nicht symmetrisch ist.
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Zur Gruppe U gehéren auch die Translationen. Dies sind perspektive Ahnlich-
keiten mit unendlichfernem Zentrum; » hat bei Translationen stets den Wert + 1.

Fiir die Punkte 4, A*, A gelten die Beziehungen

S;4* . S, 4 sS4
54 T suy T sg T

Die Relation (1) besagt nun, dass

S, 4* S, 4 sS4
S,4 S, A* 51

— 41,

Losen wir die Figur von der Gruppenoperation 2; 0 X, in U los, so enthilt sie die Aus-

sage, dass in dem von der Transversalen s geschnittenen Dreieck 4 4* A die beiden
Produkte aus drei nichtaufeinanderfolgenden Seitenabschnitten gleich gross sind.
Dieser in der Geometrie etwas abseits stehende Satz von MENELAOS erscheint hier
. als Kern des Operierens in der Gruppe U (Figur 2).

Unterwirft man zwei Punkte 4 und B der Abbildung 2 o 2, so erhdlt man die
Figur 3. Sie stellt eine affine Form der Konfiguration von DESARGUES dar.

Wir betrachten nun speziell 3 Abbildungen 2, X,, 2; aus ¥, fiir die

2yt My Mg = —1 “(3)

ist. Dann ist also 2, o 2, 0 2, eine Punktspiegeluhg. Diese Abbildung besitzt einen
einzigen im Endlichen gelegenen Fixpunkt, ndmlich das Spiegelungszentrum F.
Der Punkt F wird tiber die folgende Kette in sich selbst iibergefiihrt

S sei jetzt das Zentrum von X, o X, (Figur 4); das Ahnlichkeitsverhiltnis dieser
Abbildung hat den Wert x = %, %,. Aus (3) folgt die Beziehung

1 1

xs:::-—ANh_:—_-._.

xy g x
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Das Zentrum S, liegt daher im 4. harmonischen Punkt zu F, F und S. Es lasst sich
unter Verwendung der Figur des vollstindigen Vierecks mit den Eckpunkten S,,

S,, F und F konstruieren. Nun ist aber

S, F* . SF . S, F
S,F T SR g FE T M

Die Relation (3) ist daher dquivalent mit

S,F* S,F S,F _

SlF'SzF*'Szj:‘_—l'

Darin steckt die Aussage, dass drei inzidente Eckentransversalen im Dreieck F F* F
dessen Seiten stets so schneiden, dass die Produkte aus drei nichtaufeinanderfolgenden
Abschnitten entgegengesetzt gleich gross sind. Dies ist der Satz von CEVA.

Die Punktspiegelung an F ist eine involutorische Abbildung. Die Bedingung (3)
lasst sich daher auch in folgender Gestalt formulieren:

(L1020 Zs)2=1T wobei Zy0 2,02, +13%). (4)
I ist das Zeichen fiir die Identitit.

Diese Gruppenrelation in 9 ist 4quivalent mit dem Satz von CEvA fiir das Dreieck,
dessen Ecken im Fixpunkt F von X, o X, o 2; sowie in dessen Bildern bei 2| und
2, o X, liegen.

Mit 2, 02,02, sind iibrigens auch die Abbildungen 2,0 X502, und
25 0 X, 0o X, Punktspiegelungen. Diese durch reines Gruppenrechnen leicht beweis-
bare Tatsache entspricht einer geometrisch evidenten Symmetrie in der Figur des
Satzes von CEVA.

Die Gruppe der perspektiven Affinititen mat fester Achse f

Eine perspektive Affinitdt @ mit der Achse f ist gekennzeichnet durch das Affini-
tatsverhiltnis o (¢ + 0) und die Affinitatsrichtung. Die letztere sei festgelegt durch
den Winkel o, gemessen im positiven Sinne von der Achse f aus (Figur 5).

y —
x_ % !
(%,-1)
4,4 1Py } !
g = i
4,4 |
< 4‘ ly |y
A f N | z

o T G
/7:45‘ /é \v //’45
Figur 5 Figur)6
Die perspektiven Affinititen mit der festen Achse f bilden eine Gruppe . Man kann

dies auf analoge Weise zeigen, wie im Falle der Gruppe 2. Ebenso rasch fiihrt aber
auch ein analytischer Beweis zum Ziele. Legt man den Rechnungen ein rechtwink-

%) Diese Schreibweise erinnert an die Spiegelungszyklen, die von THoMSEN eingehend untersucht
wurden. Vgl. [1] und [9].
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liges Koordinatensystem gemadss Figur 6 zu Grunde, so lauten die Gleichungen einer
perspektiven Affinitat @, bei der A(x, y) in A(%, y) iibergeht

T=%x+ (6—1) ctgay, J=0y. (5)

Es seien jetzt @, und @, zwei derartige Abbildungen; bei @ gehe 4 in A* iiber und
@, befordere A* nach 4. Die Abbildungsgleichungen lauten dann gemiss (5):

Ix*=x+(0'1—l) ctgay y & X =%+ (0, — 1) ctgo, y*
1 ’ 2 P’

| = o1y y= gy y*
Der geometrischen Zusammensetzung zur Abbildung @; o @, entspricht rechnerisch
die Substitution der Gleichungen von @, in jene von @,. Man findet

D

X=x+ (07 — 1) ctgoy vy + 07 (65 — 1) ctgo, y
@1()@2] 1 1 1 2 2 .

l y=0102%
Diese Gleichungen sind vom Typus der Gleichungen (5); @, o @, ist daher wiederum

eine perspektive Affinitdt mit der Achse f. Bezeichnen wir sie mit @ und ihre charak-
teristischen Grossen mit ¢ und «, so folgt durch Vergleich, dass

g = 01 * 02 "
(0 — 1) ctga = (0; — 1) ctgoy + 0y (03 — 1) ctgo, .

Hieraus gewinnt man jetzt leicht die Zusammensetzungsrelationen fiir die Affini-
tatsverhdltnisse und fiir die Richtungen:

0 = 07" 0g,

(6
(0,0 — 1) tga, tga, )

(6 — 1) tgay + 0, (0, — 1) tgoy ~

tga =

Die Beziehung fiir tga ist in den Grossenpaaren (o,, tgoy) und (o,, tga,) nicht sym-
metrisch; die Gruppe ® ist somit nicht kommutativ. Fiir die Punkte 4, 4*, 4 in der
Figur 7 gelten die Beziehungen

A . R4 . F4
F,A 7Y F,A* 7% R

Die erste Gleichung von (6) besagt daher, dass

F,4* F,A FA4
F, 4 F,A* fr4g

ist. Dies ist neuerdings der Satz von MENELAOS; er erscheint diesmal fiir das durch

die Transversale f geschnittene Dreieck 4 A* A. Er steckt also auch als wesentlicher
Bestandteil der Zusammensetzung in der Gruppe 3). Unterwirft man zwei Punkte
A und B der Abbildung @, o D,, so erhilt man wiederum eine affine Form der Kon-
figuration von DESARGUES. Sie ist in der Figur 8 wiedergegeben. Die in den Gruppen
A und @ sich abzeichnende Nachbarschaft der beiden Sidtze von MENELAOS und

3) Vergleiche [b], Seite 66.
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DESARGUES zeigt sich auch bei anderen Gelegenheiten. So sind verschiedene Beweise
des Satzes von DESARGUES bekannt, bei denen der Satz von MENELAOS benutzt
wird4). Aus den vorliegenden Betrachtungen liesse sich iibrigens leicht ein Beweis
dieser Art gewinnen.

Figur 7 Figur 8

Der Zusammenhang zwischen den Gruppen W und G

Das gleichzeitige Auftreten der Sdtze von MENELAOS und DESARGUES in den
Gruppen U und ® ist nicht zufilliger Natur. Die beiden Gruppen stehen einander im
Lichte der projektiven Geometrie sehr nahe. Durch eine geeignete projektive Abbil-
dung £ lisst sich die Figur 7 in die Figur 2 iiberfithren?®); 2 muss die Gerade f der
Figur 7 auf die unendlichferne Gerade der Figur 2 abbilden. ® ist projektiv-dquivalent
mit der Untergruppe 2’ jener Abbildungen aus U, die das Ahnlichkeitszentrum auf
einer festen Geraden s haben. Den Gruppen 2’ und ® entspricht in der projektiven
Geometrie die Gruppe P der Perspektivitdten (oder perspektiven Kollineationen) mit
fester Achse f, die gleichzeitig ihre Zentren auf einer festen Geraden s haben. Es sei

p, die Perspektivitit mit der Achse f, dem Zentrum S; und der Charakteristik
2= (A* 4 5, Fy);
p, die Perspektivitit mit der Achse f, dem Zentrum S; und der Charakteristik

Xo = (A A* Sp Fy).

Die Zusammensetzung y = y, O y, ist wiederum eine Perspektivitdt mit der Achse f
und die drei Zentren S,, S, und S liegen kolinear. Es folgt dies ohne weiteres aus der
Struktur des Zusammensetzens in den Gruppen % und G.

Es miissen nun fiir die Gruppe  Zusammensetzungsrelationen bestehen, die jene
von U’ (ndmlich die Gleichungen (1) und (2)) und jene von & (ndmlich die Gleichun-
gen (6)) als Spezialfille enthalten. Sie sollen kurz hergeleitet werden.

Wie in %’ sei die Verbindungsgerade von S, und S, wiederum mit s bezeichnet.
T sei der Schnittpunkt von f und s (Figur 9). Ist nun g, eine beliebige, mit 7 nicht
inzidente Gerade, so folgt

it %s = (A* A Sy F)) (A A% Sy Fy) = (A% Ay So Fo) (Ao A So Fy) .
4) Vergleiche [6], Chapter XIII. Triangles in perspective.

5) Mit Ausnahme der Punkte F entsprechen sich dabei die gleichbezeichneten Punkte in den beiden
Figuren,
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Nun gilt aber bekanntlich fiir 5 Punkte auf einer Geraden die Relation
(A% Ay Sy Fo) (Ag A% So Fo) (g Ay Sy Fo) = + 1 (7)
woraus man schliesst, dass
x=(AASF) = (A4 SeFo) = 11" 2 ®)

ist. Ist f die unendlichferne Gerade, so erhdlt man die Gruppenfigur von U’ und (8)
geht in (1) iber. Ist dagegen s unendlichfern, so liegt die Gruppenfigur von ® vor
und (8) wird zur Beziehung (62).

Die Lage des Zentrums S von p = g, O 9, ist durch die Beziehung

1 —
(SSy S, T) = —* xf; . (9)

gekennzeichnet. Man beweist (9), indem man etwa von

(SSg S;T)(SS, T S*)(SS,5*S, =
ausgeht und diese nach den bekannten Regeln {iber das Rechnen mit Doppelverhilt-
nissen umformt. Man findet

(S S, S, T) = (SS;S*T) 1 (SS*S,T) _ 1—(SS*S, T) i
2ULS) T (S* S, SS,) 1 —(S*S,SS) 1 —(S*STS,)(S*SS, T)°
1

Nun ist aber, da $* das Bild von S sowohl bei y, als auch bei y3! ist,
(S*S S5, 7) = %1,
(SS*S, T)=(S*STS,) = g,

womit (9) bewiesen ist.

Figur 9

In der Gruppe U’ ist y; = x; zu setzen und man hat

(5,6, T)= o5t = =% by §,85= "% g5,

S Sy 1 — %) %, 1 — 2, %,
Dies ist die bereits auf anderem Wege gefundene Beziehung (2). Andererseits ergibt
sich in der Gruppe ® y; = 1/o; und es ist dann

(SS, S, T) = sin (¢ — @) . S.in(-“oc) _ 1—(o) _ oy (03— 1)

sin (a; — og) ~ Sin (— op) 1 — (1o, 0y) 0,0p—1"°
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Mit Hilfe der Additionstheoreme fiir die Winkelfunktionen fiihrt dies auf
tgoy — tga  tgay, _ 0y (0 — 1)

tgo, — tga, tga 6,0 — 1"~

woraus sich durch Auflésen nach tga wiederum die Formel (6%) gewinnen lisst.

Die Gruppe § der gleichsinnigen flichentreuen Affinititen mit zwes
inzidenten Fixgeraden

g und % seien zwei Geraden mit dem im Endlichen gelegenen Schnittpunkt O. Wir
betrachten nun die Gruppe § der gleichsinnigen flichentreuen Affinititen I, bei
denen g und 4 einzeln fest bleiben. Bei einer bestimmten Abbildung I" gehe A auf g

in den Punkt A4 auf g iiber; B und B sei ein solches Punktepaar auf der Geraden 4
(Figur 10). Aus der Flicheninvarianz von [ folgt, dass die Verbindungsgeraden von

A und B sowie von 4 und B parallel sind. Wir kennzeichnen fiir das weitere die

Abbildung I" durch das Verhiltnis 4 = 04 JOA fiir korrespondierende Punkte auf der
Geraden g. In der kommutativen Gruppe § hat man die Zusammensetzungsregel

F‘:Florg mlt 121112-

Dieser Gruppenoperation entspricht geometrisch die Konfiguration der Figur 11;
es ist dies die affine Form der Konfiguration von PAPPUS-PASCALS).

Figur 10 Figur 11

Die Abbildungen aus § besitzen zwei bemerkenswerte Darstellungseigenschaften.
Einerseits lassen sie sich erzeugen als Produkte von zwei perspektiven Affinitdten.
Es sei

@, die perspektive Affinitdit mit der Achse %, dem Verhiltnis ¢; = 1/4 und der
Affinitédtsrichtung parallel zu g;

@, die perspektive Affinitit mit der Achse g, dem Verhiltnis g, = A und der Affini-
tatsrichtung parallel zu A.

Bei @, und @, ist die Affinitdtsrichtung der einen Abbildung parallel zur Achse
der andern und die beiden Verhiltnisse sind zueinander reziprok. Man sieht nun
sofort, dass

I‘(ﬂ) :¢1O®2:¢20¢1 (10)

%) Vergleiche [2], Seite 55. Abbildungen aus der Gruppe F spielen eine Rolle bei der Einfiihrung der
natiirlichen Logarithmen als Flicheninhalte unter der gleichseitigen Hyperbel. Vergleiche dazu (8].
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ist. Tiefer geht nun aber die folgende Darstellungsart einer Abbildung I": Jede Ab-
bildung I' ist als Produkt von zwei Affin-Spiegelungen darstellbar. Unter einer Affin-
Spiegelung versteht man eine involutorische affine Abbildung, die von der Identitit
verschieden ist. Es gibt zwei Typen, ndmlich die affinen Geradenspiegelungen (per-
spektive Affinititen mit ¢ = — 1) und die Punktspiegelungen. Sie sind in der Figur 12
wiedergegeben.

Figur 12 Figur 13

Eine Abbildung /" aus § ist bestimmt durch die drei Punkte O, A, B und deren
Bilder 0, 4, B (Figur 13). Es existiert nun eine Affin-Spiegelung 2, die das Dreieck
OAB in das auf OAB liegende Dreieck OA* B* iiberfiihrt, wobei A* = Bund B* = 4

ist. Die Achse s von X geht durch die Mittelpunkte der Strecken AB und AB. Der
Schnittpunkt der korrespondierenden Geraden A B und A*B* ist ein Fixpunkt von
2, und liegt daher auf s. Durch eine zweite Affin-Spiegelung X, bilden wir jetzt noch

das Dreieck OA*B* auf das Dreieck OAB ab; die Achse ¢ geht durch O und den
Mittelpunkt der Strecke AB. Damit haben wir jetzt die Darstellung

I'=2% o2, (11)

gefunden. Die Abbildung I ist affin-2spiegelig?).

Durch projektive Abbildung der Figur 11 erhalten wir die allgemeine Konfigura-
tion von Pappus-PascaL. Ihr liegt eine Gruppe ' von projektiven Abbildungen zu
Grunde, die gemiss (10) als Produkte von zwei geeigneten Perspektivititen @; und
@, darstellbar sind. Andererseits besagt (11), dass jede Abbildung aus ' das Produkt
von zwei Projektiv-Spiegelungen ist. Es sind dies Perspektivititen mit der Charak-
teristik — 1.

Die Gruppe B* aller Projektivititen in der Ebene ist 3spiegelig; dies will heissen,
dass jede projektive Abbildung der Ebene auf sich selbst als Produkt von drei
Projektiv-Spiegelungen geschrieben werden kann8). Die 2spiegeligen Abbildungen
aus B* sind gruppengeometrisch ausgezeichnet. Sie spielen bei der Untersuchung der
projektiven Automorphismen eines Kegelschnittes eine wichtige Rolle. Unsere beiden
Gruppen § und &' sind in diesem Lichte zu betrachten; es sind dies Gruppen von
Automorphismen fiir einen ausgearteten Kegelschnitt.

Ein anderes Beispiel fiir eine Automorphismengruppe zu einem Kegelschnitt ist
etwa die Gruppe D der Drehungen eines Kreises ¢ um dessen Mittelpunkt. Ist @, die
Drehung um den Winkel «, dann gilt in D

@aO@ﬂ:@a+ﬂ'

7) Affin-2spiegelig will heissen, dass die beiden Involutionen Affinitdten sind.
8) Vergleiche [9], Seite 76.
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Unterwerfen wir zwei Kreispunkte A und B der Abbildung @,, so sind die Verbin-
dungsgeraden 4 B* und 4*B parallel; gleichlange Bogen auf einem Kreis liegen ja
stets axialsymmetrisch. Zeichnet man nun die entsprechenden Parallelen auch fiir
O,und O, , 4, so erhilt man eine affine Form der Figur des Satzes von Pascal (Figur15).
Wir erwidhnen, dass die Abbildungen aus D wiederum 2spiegelig sind; bekanntlich
lasst sich ja jede Drehung als Produkt von axialen Symmetrien, das heisst metrischen
Spiegelungen erzeugen. Es schimmert hier der Pascalsche Satz als Gruppenfigur bes
den Automorphismen eines Kegelschnittes durch. Es sei noch darauf hingewiesen, dass
in den Gruppen & und §’ nur jener Fall der Konfiguration von Paprpus-PAscAL
steckt, bei dem O nicht mit der Pascalschen Geraden inzident ist. Der fehlende
Spezialfall liegt einer andern Gruppe zu Grunde. Nehmen wir die affine Form, so
miissen wir von zwei parallelen Geraden g und 4 ausgehen. Anstelle der Gruppe &
tritt nun die Gruppe © der Scherungen®) mit der Mittelparallelen s als Achse (Figur 14).

Figur 14

Scherungen sind aber wiederum affin-2spiegelig. Wie man leicht feststellt, ldsst sich
jede Scherung mit der Achse s auf unendlichviele Arten als Produkt von zwei Affin-
Spiegelungen mit der Achse s darstellen. M. JEGER, Luzern
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