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Publizicert mit Unterstiitzung des Schweizer:schen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

I£1. Math. Band XVII Nr. 4 Seiten 73-96 Basel, 10. Juli 1962

Das Keplersche Ei*)

1. In den Biichern von H. WIELEITNER, Spezielle ebene Kurven (Leipzig 1908),
S. 152 und G. Lor1a, Spezielle algebraische und transzendente ebene Kurven, I. Band,
(Leipzig, 2, 1910), S. 380, wird das Keplersche Ev behandelt, eine Kurve, die vom

Punkt P der Figur 1 beschrieben wird, wenn P sich auf dem Kreis um M mit Radius a4
bewegt. Ihre Polargleichung ist ersichtlich » = 2 a cos3gp, ihre Cartesische Gleichung
(x2 + 952 — 2ax3 = 0. Sie ist also eine Quartik. Ist ON = 3/4 OD, so ist PN die
Kurvennormale. Die Fliche der Kurve ist 5/8 & a2, der Rauminhalt des von ihr er-
zeugten Drehkorpers bei Drehung um x-Achse 2 -4 a3/5.3, dessen Oberfliche
313 7 a%/140. Der Kurvenumfang dagegen hdngt von einem elliptischen Integral ab.
Der Hochpunkt liegt bei ¢ = /6.

Figur 1 Figur 2

WIELEITNER und LoRIA verweisen beide auf JoHANNES KEPLER, A4 stronomia nova
(Prag 1609), S. 337. Schldgt man nun in der neuen, von Max CASPAR geschaffenen
lateinischen Ausgabe in JOHANNES KEPLER, Gesammelte Werke, Band III (Miinchen
1937), S. 297-300, oder in der ebenfalls von Max CasPARr geschaffenen deutschen
Ausgabe von JoHANNES KEPLER, Neue Astronomie (Miinchen 1929), S. 277-281 nach,
so ist man erstaunt, dort ein ganz anderes Keplersches Ei zu finden. Dass dies nicht
das in den beiden Kurvenbiichern angegebene Ei sein kann, folgt schon daraus, dass
es von zwet, jenes aber von esner Konstanten abhingt. Jenes ist aber auch nicht irgend

*) Nach einem Vortrag im Internationalen mathematikgeschichtlichen Kolloquium im Mathematischen
Forschungsinstitut Oberwolfach (Schwarzwald) vom 20. September 1961,
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ein partikuldrer Fall von diesem. Wie WIELEITNER und LoRIA zu ihrer Behauptung
kamen, entzieht sich meiner Kenntnis. Mit dem wahren Keplerschen E1 sollen sich
nun die folgenden Zeilen beschiftigen.

2. Bei seinen unabldssigen Versuchen, die wahre Bahn des Planeten Mars zu
finden, die dann endlich mit der Ellipse zum Ziele fithrten, stiess KEPLER auf seine
Eikurve, indem er (Figur 2) in Ptolemdischer Art den Planeten P auf einen kleinen
Epizykelkreis (A, e) setzte, wihrend A sich auf dem Deferentenkreis (S, a > e) um die
wahre Sonne S bewege sollte. Die Bewegung von P auf dem Epizykel sollte dabei
gleichférmig sein und ir Uhrzeigersinn erfolgen: « sollte proportional der Zeit sein,
ndmlich:

«=22L, ()

wenn T die Umlaufzeit von P auf dem Epizykel und zugleich von 4 um S ist, so dass
sich die Werte 0 und sz von « und dieselben Werte der wakhren Anomalie oder des
Polarwinkels ¢ entsprechen.

Der Punkt A aber sollte sich entgegen dem Uhrzeigersinn so um S drehen, dass
der Planet P den von KEPLER gefundenen Flichensatz

7 dp = C dt (2)

erfiillt. Aus dem Dreieck SPA der Figur 2 folgt fiir den Radiusvektor SP=v

r2=a%+ e+ 2aecosa, (3)
aus (2) aber mit (1)
rdp =7 du=ida. (4)
Aus (3) und (4) kommt
g A da 21 a—e o\
= / ATy sy —a wetg (T8 ) ©)
b

Die Bedingung ¢ = 7 fiir & = n, ergibt 1 = 42 — ¢? und damit wird nach (4)

27 (a® — e? 2 mb?
c=tzle - 22l (6)
Aus (5) folgt
g _B—e 0 _A-s, Bl
tg‘z—a—ke 2 a+e T (7)

Lost man diese Beziehung nach cose auf und setzt in (3) ein, so erhilt man

(a2 — 32)2

2 __
r“a2+82—2aecos<p ®)
oder, wenn man noch
2ae
& = *a’é“:;;é’ (9)
und
2 __ p2 2
p=28 20 (10)
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(vgl. (6)) setzt, als Gleichung des Keplerschen Eies:

R A
- € COSQ (11)
Diese Gleichung hidngt mit der Gleichung der Planetenellipse
. P -
=1z € COSP (12)
durch die Punktverwandtschaft
7=9, F=~;i; ,;:;‘/xz“‘+‘yz, g =7 )2ty (13)

zusammen, auf Grund deren man das Keplersche Ei sofort konstruieren kann.

3. Wir wollen aber die Gleichung (11) fiir sich untersuchen und 8 Punkte des
Eis bestimmen, mit deren Hilfe man es sofort zeichnen kann.
Aus (11) folgt

y'—Mﬁ”“ffﬁSiI}(p o v _ ep{—2cos g+ (3 — cos? g)} (14)
~ 2(1 — ecosg)¥’ - 4 (1 — ¢ cosgq)™ " :
Der Winkel y der Kurventangente mit dem Radiusvektor ergibt sich aus
— 2 2 _
tgp = ;:;2(»%;;“:05‘7’) __att et ZIae_cos_qi. (15)
® aesing

Figur 3

Wir bestimmen nun die 6 schénsten Kurvenpunkte (Figur 3)!). Zuerst die beiden
Scheitel A (r =a —e,p =n) und A’ (r = a + ¢, ¢ = 0); sodann die Punkte P, und
Qumitr = 4 p, ¢ = xw/2 und
a2 4 el c?
BY=" "4, = ae

1) Um einen Vergleich der Figuren | und 3 zu ermdglichen, ist in Figur 3 die positive Richtung der
Polarachse nach links gewihlt.
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(woraus u leicht zu konstruieren ist), weiter die Punkte P, und @, mit 7 =,

L P,FM = 4 @,, wo cosp, = efa und tge, = ble = tgg,, also y, = @, ist, so dass

P, Hochpunkt, Q, Tiefpunkt ist; endlich die Punkte P; und Q; mit 7»=c¢,

L P3FM = 4 s, Wo cospg = € = siny, das heisst 3 = 7/2 —y und tgy = — 2 ctgy ist.
In Figur 3 sind die Strecken (vgl. (6) und (10))

—1/.2 2 1.2 L 2 _ b
b=J)a®—e, ¢ l/a +e2, P - (16)
und der Winkel y aus
X . ¢ 0 -
tg 5 = S dag=e (17)

gezeichnet und damit die 8 Punkte mit ihren Tangenten.
Im iibrigen ergeben sich noch fiir die Flache F des Eies, den Rauminhalt 7 und
die Oberflache O seines Drehkorpers bei Drehung um die Polarachse die Ausdriicke

2
Fen(@—e)=nb=an -—1717?:2_, (18)
4
V — f;f‘ , (19)
ombt 1 - ael3 2 .
=y ey TR a

Die Bogenlidnge dagegen ist ein elliptisches Integral.

4. Wir fragen jetzt nach dem Kraftgesetz, gemiss dem das Keplersche Ei durch-
laufen wird. Auf Grund des Flichensatzes (2) ergibt sich in der analytischen Mechanik
der Binetsche Ausdruck fiir die auf den Planeten mit der Masse m wirkende Kraft

f=mw=-mC222(2" + 2)n,, (21)

wo 1, der Einheitsvektor in der Richtung des Radiusvektors und z = 1/r ist. Nun ist

;- Vi—ecosg (22)

p

Berechnet man z” und setzt in (21) ein, so kommt also
1 — &2
i
Wir wollen nun umgekehrt die Bahnkurven des Kraftgesetzes (23) bestimmen. Die
Bahndifferentialgleichung lautet:

f=—m(C? { -zl 4 i 23} 1, . (23)

2
R ! (24)

Wir entnehmen aus der analytischen Mechanik sogleich das Energieintegral

z'2+zz=:—~2/zz(z”+z)dr+h::2/ﬂ(z”+z)dz+h

z
. : ml,.jfi _3 3 R T L 3 2,
“,2/(‘4{)4 z +4z)dz+h—_ ap FE L EER (2

(h Integrationskonstante).
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Es folgt
2zdz)? 1 — g2 d(z>2— 2h
¢ i o BT 4+4h22, de= — 1(_ % A )
V4 R A Y )L
p
2 _
cos (p — @o) = — i _Zlh - (o Integrationskonstante)
l/4 B2 — —“%fs“_
oder mit
20 = }51'5
und wihlt &’ so, dass mit (18)
A - B2 26
Y1 —¢? Y1 — e (20)
ist,
o P* (27)

wobei ¢, = 0 gewihlt ist.

Die Differentialgleichung (24) hat also, wenn man von den Drehungen um den
Brennpunkt F2) absieht, co! Keplersche Eier als Losungen, deren Konstanten ' und &’
durch (26) zusammenhingen. Die Grosse 4’2 ist also fiir alle Keplerschen Eier konstant,
und damit haben sie alle dieselbe Fliche.

Ferner umbhiillen die Keplerschen Eier die Kurve
Y2 (x® +y?%) = 0%, (28)

Diese hat die x-Achse als Doppelasymptote, die Punkte 0/+ & als Waage- und die
Punkte 4 b VZ»(VZ—:TH + bi/l»/qf——il_ als Wendepunkte. Sie berithrt die Eikurven,
zu denen nach (27) auch alle zur Geraden P;(Q; symmetrischen gehoren, in den
Punkten Pz und Q,.
Fiir die Zeit gilt nach (7) die Gleichung
Tt a+te

. 4T e 9
th—_d——eth’ (29)

also eine viel einfachere als die berithmte Keplersche.
Bei zwei verschiedenen Eikurven gilt, weil sie dasselbe 42 besitzen, die Gleichung
CT = C'T" = 27 b2, also lautet das «3. Keplersche Gesetz»

CT = const = 27 b2 . (30)

5. Zuletzt noch vier Bemerkungen.
7. Das Keplersche Ei ist eine kalbe algebraische Kurve. Sein Spiegelbild in bezug
auf P;Q,; gehért mit dazu. Denn aus

22(1F ecorg) =p2, 2+t —pr=Fexfadty?
folgt fiir beide Vorzeichen
(% 4 y% — %)% = € 2% (x* + »?) (31)

2) F ist auch fiir das Keplersche Ei ein sogenannter ausserordentlicher Brennpunkt.
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dieselbe x | y-Gleichung einer bizirkularen Quartik. Die Punkte O | 4+ # sind Doppel-
punkte dieser Quartik.

2. In Gleichung (27) muss, wenn wir statt ' und &’ wieder $ und ¢ schreiben, ¢ < 1
scin, nur dann sind @ und e reell und endlich. Wir betrachten diese Gleichung noch
allgemeiner mit voneinar.der unabhédngigen Parametern $ und e.

Fiir e = 4 1 wird die Kurvengleichung
p

— bzw. ~—:~P pat
}/2 cos 3 [/ 2 sin -

y = (32)

Dies ist die sogenannte T7risekante mit dem Fernpunkt der x-Achse als drittem
Doppelpunkt und den Asymptoten y = 4 p )/2. Das Kraftgesetz lautet dann nur

noch
3m C?

f= - —?4“»73— r: (33)
Fiir ¢ > 1 erhilt man eine Kurve
(@D 2+ 9} @+ 9% =247 (2 4+ 37 + p4 =0 34

mit dem Asymptoten y = + }/e? — 1 » und den Wendepunkten

i/ 3 1 g2 — 1
7=PV’*8T:1—', COS(pzi*‘e—{l—V—{*g_“}.

e = + 2gibt Wendedoppelpunkte. Die Doppelpunktstangentensindy F p = + z/2x.
3. Wir betrachten die genannte Gleichung auch noch mit — 2 statt p% Sie
lautet dann

r= 4+ P mit e>1. (35)
Jecosp — 1

Die endlichen Doppelpunkte sind isolierte Punkte, die Asymptoten lauten wieder

1

y =+ ;;~1x=;ttgax, cosa = —-.

Die Wendepunkte folgen aus

3 1 21

Sie sind reell fiir 1 < ¢ < 2 und fallen fiir ¢ = 2 zusammen in den Punkten ¢ = 0,
r= 4 p.

4. Schliesslich ist noch bemerkenswert, dass eine ndhere Untersuchung folgendes
lehrt: Wiinscht man Planetenbahnen, bei denen nur elementare Funktionen, das heisst
algebraische und elementare transzendente Funktionen ins Spiel kommen, so gibt es
nur zwei wirklich elementare Fille: a) Die Keplerellipsen und b) Die Keplerschen
Eier, und zwar entweder als nach einmaligem Umlauf geschlossene Kurven oder als
solche mit «Perihelbewegung», die sich entweder nach mehrmaligem Umlauf oder
nie schliessen. Bei den Keplerellipsen sind dabei die infolge einer elastischen Anzie-
hungskraft N = — A2 » n, entstehenden mit einbezogen. Kuno FrLapr, Calw
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