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Das Keplersche Ei *)
1. In den Buchern von H Wieleitner, Spezielle ebene Kurven (Leipzig 1908),

S 152 und G Loria, Spezielle algebraische und transzendente ebene Kurven, I Band,
(Leipzig, 2, 1910), S 380, wird das Keplersche Ei behandelt, eine Kurve, die vom
Punkt P der Figur 1 beschrieben wird, wenn P sich auf dem Kreis um M mit Radius a
bewegt Ihre Polargleichung ist eisichtlich r — 2 a cos3<p, ihre Cartesische Gleichung
(x2 + y2)2 - 2 a xB 0 Sie ist also eine Quartik Ist ÖN 3/4 ÖD, so ist PN die
Kurvennormale Die Flache der Kurve ist 5/8 tt a2, der Rauminhalt des von ihr
erzeugten Drehkörpers bei Drehung um x-Achse 2 • 4 tz a3/5 3, dessen Oberflache
313 n a2/140 Der Kurvenumfang dagegen hangt von einem elliptischen Integral ab
Der Hochpunkt hegt bei cp tt/6

+y
P

M + x
N

P

s-r

Figur 1 Figur 2

Wieleitner und Loria verweisen beide auf Johannes Kepler, Astronomia nova
(Prag 1609), S 337 Schlagt man nun in der neuen, von Max Caspar geschaffenen
lateinischen Ausgabe in Johannes Kepler, Gesammelte Werke, Band III (München
1937), S 297-300, oder m der ebenfalls von Max Caspar geschaffenen deutschen

Ausgabe von Johannes Kepler, Neue Astronomie (München 1929), S 277-281 nach,
so ist man erstaunt, dort em ganz anderes Keplersches Ei zu finden Dass dies nicht
das m den beiden Kurvenbuchern angegebene Ei sein kann, folgt schon daraus, dass

es von zwei, jenes aber von einer Konstanten abhangt Jenes ist aber auch nicht irgend

*) Nach einem Vortrag im Internationalen mathematikgeschichthchen Kolloquium im Mathematischen
Forschungsinstitut Oberwolfach (Schwarzwald) vom 20 September 1961
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ein partikulärer Fall von diesem. Wie Wieleitner und Loria zu ihrer Behauptung
kamen, entzieht sich meiner Kenntnis. Mit dem wahren Keplerschen Ei sollen sich

nun die folgenden Zeilen beschäftigen.

2. Bei seinen unablässigen Versuchen, die wahre Bahn des Planeten Mars zu
finden, die dann endlich mit der Ellipse zum Ziele führten, stiess Kepler auf seine

Eikurve, indem er (Figur 2) in Ptolemäischer Art den Planeten P auf einen kleinen
Epizykelkreis (A, e) setzte, während A sich auf dem Deferentenkreis (S, a^>e) um die
wahre Sonne S bewege sollte. Die Bewegung von P auf dem Epizykel sollte dabei
gleichförmig sein und ii Uhrzeigersinn erfolgen: a sollte proportional der Zeit sein,
nämlich:

2 nt /1Na= -r—, (1)

wenn T die Umlaufzeit von P auf dem Epizykel und zugleich von A um S ist, so dass

sich die Werte 0 und n von a und dieselben Werte der wahren Anomalie oder des

Polarwinkels cp entsprechen.
Der Punkt A aber sollte sich entgegen dem Uhrzeigersinn so um S drehen, dass

der Planet P den von Kepler gefundenen Flächensatz

r2dcp=C dt (2)

erfüllt. Aus dem Dreieck SPA der Figur 2 folgt für den Radiusvektor SP r

r2 a2 + e2 + 2 a e cosa (3)

aus (2) aber mit (1)

Aus (3) und (4) kommt

r2 dcp d<x X den. (4)

99 " J ~a2 Te2 -f 2~a~7~cos ol
~~ ~a2^^ arC tg \a~+e~ tg 2 /o " '

0

Die Bedingung cp tz für a tz, ergibt A a2 — e2 und damit wird nach (4)

r_ 2n(a2 - e2) _2nb2 ^O __ ^ _ _ ^ # (Oj

Aus (5) folgt

tK 9. !Lz± te " ^^ ts — (7)Lg 2 a + e
g 2 a + e * T ' [n

Löst man diese Beziehung nach cosa auf und setzt in (3) ein, so erhält man

r.= -------- (8)
a2 + e2 - 2 ae coscp

v ;

e
a2 + *2 w

a2 __ *2 />2

p -^=4=- ö
(10)

]/a2 + e2 c

oder, wenn man noch

und
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(vgl. (6)) setzt, als Gleichung des Keplerschen Eies:

r2,2 ___ _ P\
1 — £ COS (p

Diese Gleichung hängt mit der Gleichung der Planetenellipse

;_ P
1 — e coscp

durch die Punktverwandtschaft

cp cp ; x Vx2 + y2 ]Jx2 y*

75

(11)

(12)

(13)
p " p v" ' y ' y p

zusammen, auf Grund deren man das Keplersche Ei sofort konstruieren kann.

3. Wir wollen aber die Gleichung (11) für sich untersuchen und 8 Punkte des

Eis bestimmen, mit deren Hilfe man es sofort zeichnen kann.
Aus (11) folgt

e p sm q? £ p {— 2 cos Cp + £ (3 — cos2 <p)}

2 (1 - £ coscp)*<2 ' 4 (1 - £ coscp)512

Der Winkel xp der Kurventangente mit dem Radiusvektor ergibt sich aus

2 (— 1 + £ cos cp) _
a2 + e2 — 2 a e coscp

£ sin9? a e smcp
tg v>

y>

(14)

(15)

+y^_>

R P.

M+x
A

r-igur 3

Wir bestimmen nun die 6 schönsten Kurvenpunkte (Figur 3)1). Zuerst die beiden
Scheitel A (r a — e, cp tz) und A' (r a + e, cp 0); sodann die Punkte Px und
Q1 mit r — ± p cp tz\2 und

a2 + e2
_ __

cl
a e a etgy>:

x) Um einen Vergleich der Figuren 1 und 3 zu ermöglichen, ist in Figur 3 die positive Richtung der
Polarachse nach links gewählt.
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(woraus \p leicht zu konstruieren ist), weiter die Punkte P2 und Q2 mit r b,

<£ P2FM + cp2, wo cos9?2 e\a und tgcp2 — bje tg(p2, also ip2 9?2 ist, so dass

P2 Hochpunkt, Q2 Tiefpunkt ist; endlich die Punkte P3 und Q% mit r c,

<£ P3FM + <p3, wo COS993 e sin^, das heisst 993 tz\2 — % und tgip — 2 ctg^ ist.
In Figur 3 sind die Strecken (vgl. (6) und (10))

b )la2-e2, c )/a2~+e2, p — (16)

und der Winkel % aus

tg.-a- -"* « (17)

gezeichnet und damit die 8 Punkte mit ihren Tangenten.
Im übrigen ergeben sich noch für die Fläche F des Eies, den Rauminhalt V und

die Oberfläche 0 seines Drehkörpers bei Drehung um die Polarachse die Ausdrücke

F^n(a2-e2) =Tzb2 Tz -_*_!_ -, (18)
(/l - £2

y^4nb^
3 c

n n 64 1 c2 \-ae]/3 n c2 a e\ lnr.0 - - In r, - + 2 are tg r 20

Die Bogenlänge dagegen ist ein elliptisches Integral.
4. Wir fragen jetzt nach dem Kraftgesetz, gemäss dem das Keplersche Ei durchlaufen

wird. Auf Grund des Flächensatzes (2) ergibt sich in der analytischen Mechanik
der Binetsche Ausdruck für die auf den Planeten mit der Masse m wirkende Kraft

?=mw=: -mC2z2(z" + z) nr, (21)

wo nr der Einheitsvektor in der Richtung des Radiusvektors und z l\r ist. Nun ist

l/l — £ COSQ9 ,ooxz= v

->— • (22)

Berechnet man z" und setzt in (21) ein, so kommt also

1 -£2 _x 3

4/>4
Z + 4

Wir wollen nun umgekehrt die Bahnkurven des Kraftgesetzes (23) bestimmen. Die
Bahndifferentialgleichung lautet:

Wir entnehmen aus der analytischen Mechanik sogleich das Energieintegral
r z

z'2 + z2 - 2 f z2 (z" + z)dr + h 2 f (z" + z) dz + A

2 / (-4-~- ^3 + l*) dz + h - ^f _-» + l „• -f A (25)

(A Integiationskonstante).

f=-«C»{ \ J --1+ ; z3\nr. (23)
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Es folgt

(2*^!___JL-e»___4j.4-z,> #=_ „(..-2A)
_y2 ^ ' • v /— r_£l|/4 A. _ ___ f __ _ (_• _ 2 *)¦

cos (y — 9?0) p~= (<p0 Integrationskonstantt)

^
oder mit

2* £
und wählt e' so, dass mit (18)

|/l"- £/2 )/l~^
ist,

(26)

r2 F (27)
1 + £ COS<p

wobei 9?0 0 gewählt ist.
Die Differentialgleichung (24) hat also, wenn man von den Drehungen um den

Brennpunkt F2) absieht, oo1 Keplersche Eier als Lösungen, deren Konstanten p' und e'
durch (26) zusammenhängen. Die Grösse b'2 ist also für alle Keplerschen Eier konstant,
und damit haben sie alle dieselbe Fläche.

Ferner umhüllen die Keplerschen Eier die Kurve

y2 (x2 + y2) b* (28)

Diese hat die x-Achse als Doppelasymptote, die Punkte 0/+& als Waage- und die
Punkte ± b j/2 (j/2~- 1) | ± b\j)J2-i als Wendepunkte. Sie berührt die Eikurven,
zu denen nach (27) auch alle zur Geraden PXQX symmetrischen gehören, in den

Punkten P3 und Q3.

Für die Zeit gilt nach (7) die Gleichung

*v=-_-_:-*_. ^
also eine viel einfachere als die berühmte Keplersche.

Bei zwei verschiedenen Eikurven gilt, weil sie dasselbe b2 besitzen, die Gleichung
CT CT 2tzo2, also lautet das «3. Keplersche Gesetz»

CT const 2 n b2 (30)

5. Zuletzt noch vier Bemerkungen.
/. Das Keplersche Ei ist eine halbe algebraische Kurve. Sein Spiegelbild in bezug

auf P1Q1 gehört mit dazu. Denn aus

r2 (1 =p e cj-cp) p2, x2 + y2-p2=Tt-xfa2 + y2

folgt für beide Vorzeichen

(X2 + y2 _ £2)2 _ £2 %2 (%2 + y2) (31)

2) F ist auch fur das Kepleische Ei ein sogenannter ausserordentlicher Brennpunkt.
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dieselbe x | y-Gleichung einer bizirkularen Quartik Die Punkte 0 | + p smd Doppelpunkte

dieser Quartik
2 In Gleichung (27) muss, wenn wir statt p' und e' wieder p und e schreiben, e < 1

sein, nur dann sind a und e reell und endlich Wir betrachten diese Gleichung noch
allgemeiner mit vonemarder unabhängigen Parametern p und s

Fur e ± 1 wlI"d die Kurvengleichung

bzw —-£ (32)
]/2 cos ^ |/2 sin-

Dies ist die sogenannte Trisekante mit dem Fernpunkt der %-Achse als drittem
Doppelpunkt und den Asymptoten y i p j/2. Das Kraftgesetz lautet dann nur
noch

t—2^"' <33>

Fur e > 1 erhalt man eine Kurve

{- (e2 - 1) x2 + y2} (*2 + y2) - 2 p2 (x2 + y2) + £4 ee 0 (34)

mit dem Asymptoten y +; |/e2 — 1 # und den Wendepunkten

ß db 2 gibt Wendedoppelpunkte Die Doppelpunktstangenten sind y +1 ^ ± z/2x
3 Wir betrachten die genannte Gleichung auch noch mit — p2 statt p2 Sie

lautet dann

r ± ^
_ - mit e > 1 (35)

)/e cosg? — 1

Die endlichen Doppelpunkte sind isolierte Punkte, die Asymptoten lauten wieder

y -+ ye2 — 1 x ± tga # cosa —

Die Wendepunkte folgen aus

Sie sind reell fur 1 < e ^ 2 und fallen fur e 2 zusammen in den Punkten cp 0,

4 Schliesslich ist noch bemerkenswert, dass eine nähere Untersuchung folgendes
lehrt Wünscht man Planetenbahnen, bei denen nur elementare Funktionen, das heisst

algebraische und elementare transzendente Funktionen ms Spiel kommen, so gibt es

nur zwei wirklich elementare Falle a) Die Keplerelhpsen und b) Die Keplerschen
Eier, und zwar entweder als nach einmaligem Umlauf geschlossene Kurven oder als

solche mit «Penhelbewegung», die sich entweder nach mehrmaligem Umlauf oder

nie schhessen. Bei den Keplerelhpsen sind dabei die infolge einer elastischen
Anziehungskraft N — ~ A2 r nx entstehenden mit einbezogen Kuno Fladt, Calw
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