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Die innere axiale Symmetrie zentrischer Eibereiche
der euklidischen Ebene

1. Einleitung

In mehreren Arbeiten, die in den letzten Jahren erschienen sind, werden Fragen,
die die Messung der zentrischen Symmetrie bzw. Asymmetrie betreffen, behandelt.
Im folgenden soll ein Problem untersucht werden, bei dem sowohl die Axialsym-
metrie, wie die Zentralsymmetrie wesentlich beteiligt sind. Methodisch bleibt die
Untersuchung vollig im Rahmen der Elementargeometrie. Es sei Z ein eigentlicher,
endlicher, zentrischer Eibereich. A4 sei ein axialsymmetrischer Bereich, wobei 4 C Z
gelten soll. Wir bilden das Verhiltnis der Flicheninhalte

2(Z, A) = Ii%) (1.1)
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Mit Hilfe des Auswahlsatzes von BLASCHKE schliesst man sofort, dass a(Z, 4) bei
festem Z fiir (mindestens) einen Bereich 4 = A* ein absolutes Maximum annimmt.

Es sei F(4%)

«(Z) = maxa(Z, A) = F @) (1.2)
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a(Z) kann als ein Mass dafiir angesehen werden, wie gut sich der gegebene Bereich Z
von innen her axialsymmetrisch approximieren ldsst. Fiir alle Bereiche Z, die bereits
axialsymmetrisch sind, zum Beispiel fiir Kreis, Rechteck, Rhombus usw. nimmt
«(Z) den maximal moglichen Wert 1 an. Uber die untere Grenze von «(Z) gilt der
folgende

Satz: Fiir alle eigentlichen, endlichen, zentrischen Eibereiche Z hat das innere axiale
Symmetriemass a(Z) mindestens den Wert 2 (V2 — 1). Dieser minimale Wert wird bei
speziellen Parallelogrammen angenommen.

Figur 1 zeigt ein Parallelogramm der Extremalklasse.

Im folgenden soll der aufgestellte Satz bewiesen werden.

2. Bestimmung einer unteven Schranke fiir o(Z)

a) Es sei Z der vorgegebene Eibereich. Durch sein Symmetriezentrum M sei das
rechtwinklige Achsenpaar p, g gelegt, das mit dem Rand von Z die Schnittpunkte
P, P+, O, Q* bildet (Figur 2). Legt man durch diese die Achsenparallelen, so entsteht
ein Rechteck, durch dessen gegeniiberliegende Ecken die Geraden 7, s gelegt seien. Sie
schneiden den Rand von Z in R, Rt, S, S+.

Das Achteck P R Q S P+ R+ Q% S+ ist ebenfalls beziiglich M zentralsymmetrisch.
Bei jedem Bereich Z existieren spezielle Drehlagen des Achsenkreuzes 9, g, fiir die das
erwiahnte Achteck auch axialsymmetrisch ist beziiglich 4 und g.

Dreht man ndmlich das Achsensystem bei festem Z um den Winkel ¢}, so werden
die Abstidnde

MR = {(9)
MS = g(9),
d(B) = {(9) — g(®)

sowie die Differenz

stetige Funktionen des Drehwinkels ¢. Da ausserdem gilt
i(3)=-a0

folgt, dass bei einer Drehung um 7zt/2 die Funktion 4(#) mindestens einmal verschwin-
den muss, womit die Behauptung bewiesen ist. Ein in dieser Weise entstandenes
Achteck sei als «Hauptachteck» H bezeichnet. Offenbar sind 2 Grenzfille einzu-
schliessen:

1. MR = MS ist gleich der halben Rechtecksdiagonalen. Das Hauptachteck ent-
artet zum Rechteck.

2. MR = MS ist gleich einem Viertel der Rechtecksdiagonalen. Das Hauptacht-
eck entartet zu einem Rhombus.

b) Gemaiss Abschnitt a) sei dem Bereich Z ein Hauptachteck H einbeschrieben.
Die ganze Figur werde jetzt normalaffin in der Richtung der ¢g-Achse gestreckt, so
dass die Bildgeraden 7, und s, zu den Halbierenden der durch $ und ¢ gebildeten
rechten Winkel werden. (Figur 3). Das Verhiltnis der Fliacheninhalte von H und Z
ist gegeniiber der normalaffinen Abbildung invariant. Z gehe dabei in Z,, H in H,
iiber. Hy kann als Durchschnitt zweier Quadrate @, und Q, aufgefasst werden. In den
oben erwihnten Grenzfillen fallen die beiden Quadrate zusammen.
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c) Aus der Konvexitit von Z, folgt, dass dieser Bereich ganz in der Vereinigungs-
menge der Quadrate Qy und @, enthalten sein muss. Teilt man in Figur 3 die 8 an H,
angesetzten rechtwinkligen Dreiecke in der angegebenen Weise in Teildreiecke, und
legt man durch jeden Eckpunkt von H, eine Stiitzgerade an Z,, so erkennt man
leicht, dass durch die Stiitzgeraden mindestens die Hilfte des Flicheninhalts der
8 Dreiecke weggeschnitten wird. Der Flacheninhalt von Z; ist also hochstens gleich
dem Fldcheninhalt von (.

X4

Figur 3
Man erhdlt damit fiir «(Z) die folgende Abschidtzung:

_F(A) o F(H) _ F(Hy) - F(H,)
A =M TFzy = Fa) T Rz = FQ) @1

Falls H, ein regulires Achteck ist, nimmt der letzte Quotient von (2.1) seinen tiefst-

moglichen Wert, namlich 2 ()2 — 1) an. Es gilt also:
«(Z) =2 (VZ —1) (2.2)
Damit ist der erste Teil des Satzes bewiesen.

3. Ein extremaler Bereich

Wir zeigen jetzt an einem Beispiel, dass es extremale Bereiche gibt, fiir die in
(2.2) das Gleichheitszeichen gilt.
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Das Parallelogramm E von Figur 4 sei identisch mit dem Parallelogramm von
Figur 1. Zur Berechnung von «(E) ist die Ermittlung eines optimalen axialsymmetri-
schen Bereiches A* mit A* C E erforderlich. Ist a* eine Symmetrieachse von 4* und
spiegelt man E und A* an a*, so wird sofort ersichtlich, dass
A* mit dem Durchschnittsbereich £ N E¥* zusammenfallen
muss, wenn E* das Spiegelbild von E beziiglich a* darstellt. Es
A TF ist ferner zuldssig, bei der Ermittlung einer optimalen Achse a*
nur diejenigen Achsen a zu beriicksichtigen, die durch das
—1 Symmetriezentrum M laufen. Man zeigt ndmlich leicht, dass

die Spiegelung von E an einer solchen Achse zu einem Durch-
schnittsbereich £ N E, fihrt, der flichenmaissig sicher nicht
kleiner ist als der entsprechende Durchschnittsbereich EN E .,
den eine beliebige, zu a parallele Achse a’ liefert. Einfache wei-
tere Uberlegungen ergeben schliesslich, dass eine optimale
Achse gefunden werden kann, wenn in Figur 4 die Unab-
hingige x von 0 bis + oo lduft. Der Fliacheninhalt F(A4) des
Durchschnittsbereiches 4 = E 0 E, wird jetzt zu einer Funktion
von x.

Die Rechnung ergibt fiir die Hilfsgrossen #, v, w in Figur 4 die
folgenden Resultate:

1— u 1 23 x420) 5
boorEsay s YT amrtoarw YT avs G-

Setzt man noch
£ C =40 (VZ - 1), (3.2)
so erhdlt man

F(4) =

4(v—5)/2)*[(10y/2—14) »2+ (80)/2—111) x + (140)/2— 190)]
- 24+ 22434+ 17542+ 5901 + 700 :

C—
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(3.3)

Aus (3.3) ist sofort ersichtlich, dass F(A4) fiir x = 5 /2 maximal
wird.
Fiir einen maximalen Bereich 4* gilt hier also

Figur 4
F(4*) = C.
Mit (1.2) und (3.2) folgt:
o) = ) = gy = e =202=0 G

Damit ist der eingangs formulierte Satz bewiesen.

4. Schlussbemerkungen

Eine eingehendere Untersuchung lehrt, dass die Klasse der Extremalbereiche aus
einer zweiparametrigen Schar von Parallelogrammen besteht. Diese Parallelogramme
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entstehen aus Quadraten durch normalaffine Abbildung, wenn die Affinitdtsrichtung
zu zwei Quadratseiten den Winkel /8 bildet und fiir das Affinitatsverhiltnis % gilt:

Ez)4y2+1.

Kombiniert man unsern Satz mit einem Ergebnis von BesicovitcH [2], so erhidlt man
eine — vermutlich noch schlechte — untere Schranke fiir das innere axiale Symmetrie-
mass eines beliebigen Eibereiches.

Der vorliegende Beweis wurde im Wintersemester 1960/61 im mathematischen
Seminar in Bern vorgetragen. In der Diskussion ergaben sich verschiedene Verbesse-
rungsvorschldge, insbesondere durch Beitrdge von Herrn H. HADWIGER, die hier
berticksichtigt sind, und die ich auch an dieser Stelle bestens verdanken méchte.

W. NoHL, Bern
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Sur les nombres triangulaires qui sont sommes de deux nombres
triangulaires

Le but de cette note est de démontrer la proposition suivante:

Théoréme. Pour qu'un nombre triangulaire t, = [n (n + 1)]/2 soit une somme de
deux nombres triangulaires > 0, 1l faut et il suffit que le nombre n* + (n + 1) sout
compose.

Démonstration. Dans ma note parue dans les Elemente der Mathematik 76 (1961),
p- 27, j’ai démontré que pour qu'un nombre impair soit d’une seule fagon somme de
deux carrés de nombres naturels non décroissants premiers entre eux, il faut et il
suffit qu'il soit une puissance a l'exposant naturel d’un nombre premier de la forme
4k +1.

Si le nombre £, serait une somme de deux nombres triangulaires > 0, il existerait
des nombres naturels x et y = « tels que ¢, = ¢, + ¢, d’ou

u+1)2+1=02x+1)2+ 2y + 1)2,

cequidonne m = (n+ 1)24+n2= (x+y+ 1)2+ (y — %)%

Si m est un nombre premier, il n’est pas un carré et on a y * x. Les nombres
%+ y + 1 et y — x sont donc naturels et évidemment premiers entre eux (puisque #
est un nombre premier) et ona x+vy+1— (y—x) =2x+ 1> 1, d’ot il résulte
que m est de deux facons somme de deux carrés de nombres naturels non décroissants
premiers entre eux, contrairement & mon théoréme cité plus haut. Le nombre » ne
peut pas donc étre premier et, comme on a évidemment m > 1, m est un nombre
composé. La condition de notre théoréme est donc nécessaire.
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