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Die innere axiale Symmetrie zentrischer Eibereiche
der euklidischen Ebene

1 Einleitung
In mehreren Arbeiten, die in den letzten Jahren erschienen sind, werden Fragen,

die die Messung der zentrischen Symmetrie bzw Asymmetrie betreffen, behandelt
Im folgenden soll ein Problem untersucht werden, bei dem sowohl die Axialsym-
metne, wie die Zentralsymmetrie wesentlich beteiligt sind Methodisch bleibt die
Untersuchung völlig im Rahmen der Elementargeometrie Es sei Z ein eigentlicher,
endlicher, zentrischer Eibereich A sei ein axialsymmetrischer Bereich, wobei A CZ
gelten soll Wir bilden das Verhältnis der Flächeninhalte
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Figur 1 Figur 2

Mit Hilfe des Auswahlsatzes von Blaschke schhesst man sofort, dass a(Z, A) bei
festem Z fur (mindestens) einen Bereich A A* em absolutes Maximum annimmt.

Es sei f(a*\
*(Z) max a(Z, A) -^' (1.2)
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a(Z) kann als em Mass dafür angesehen werden, wie gut sich der gegebene Bereich Z
von innen her axialsymmetrisch approximieren lasst Fur alle Bereiche Z, die bereits
axialsymmetrisch smd, zum Beispiel fur Kreis, Rechteck, Rhombus usw nimmt
a(Z) den maximal möglichen Wert 1 an Über die untere Grenze von a(Z) gilt der
folgende

Satz: Fur alle eigentlichen, endlichen, zentrischen Eibereiche Z hat das innere axiale

Symmetriemass ol(Z) mindestens den Wert 2 (|/2 — 1) Dieser minimale Wert wird bei

speziellen Parallelogrammen angenommen
Figur 1 zeigt em Parallelogramm der Extremalklasse
Im folgenden soll der aufgestellte Satz bewiesen werden

2 Bestimmung einer unteren Schranke fur ol(Z)

a) Es sei Z der vorgegebene Eibereich Durch sein Symmetriezentrum M sei das

rechtwinklige Achsenpaar p, q gelegt, das mit dem Rand von Z die Schnittpunkte
P, P+, Q, Q+ bildet (Figur 2) Legt man durch diese die Achsenparallelen, so entsteht
em Rechteck, durch dessen gegenüberliegende Ecken die Geraden r, s gelegt seien Sie
schneiden den Rand von Z in R, R+, S, S+

Das Achteck P R Q S P+ R+ Q+ S+ ist ebenfalls bezuglich M zentralsymmetrisch
Bei jedem Bereich Z existieren spezielle Drehlagen des Achsenkreuzes p, q, fur die das
erwähnte Achteck auch axialsymmetrisch ist bezüglich p und q

Dreht man namhch das Achsensystem bei festem Z um den Winkel #, so werden
die Abstände

MR f{ff)

MS~=- g(0),
sowie die Differenz

dm w) - gm

stetige Funktionen des Drehwinkels & Da ausserdem gilt

d(*)=-d(0)
folgt, dass bei einer Drehung um n\2 die Funktion d(d) mindestens einmal verschwinden

muss, womit die Behauptung bewiesen ist Em in dieser Weise entstandenes
Achteck sei als «Hauptachteck» H bezeichnet Offenbar smd 2 Grenzfalle emzu-
schhessen

1 MR MS ist gleich der halben Rechtecksdiagonalen Das Hauptachteck
entartet zum Rechteck

2 MR MS ist gleich einem Viertel der Rechtecksdiagonalen Das Hauptachteck
entartet zu einem Rhombus

b) Gemäss Abschnitt a) sei dem Bereich Z em Hauptachteck H einbeschrieben
Die ganze Figur werde jetzt normalaffm in der Richtung der q-Achse gestreckt, so
dass die Bildgeraden r0 und s0 zu den Halbierenden der durch p und q gebildeten
rechten Winkel werden (Figur 3) Das Verhältnis der Flacheninhalte von H und Z
ist gegenüber der normalaffinen Abbildung invariant Z gehe dabei m Z0, H m HQ

uber HQ kann als Durchschnitt zweier Quadrate QQ und Q'Q aufgefasst werden In den
oben erwähnten Grenzfallen fallen die beiden Quadrate zusammen
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c) Aus der Konvexität von Z0 folgt, dass dieser Bereich ganz in der Vereinigungsmenge

der Quadrate Q0 und Q'Q enthalten sein muss. Teilt man in Figur 3 die 8 an H0
angesetzten rechtwinkligen Dreiecke in der angegebenen Weise in Teildreiecke, und
legt man durch jeden Eckpunkt von H0 eine Stützgerade an Z0, so erkennt man
leicht, dass durch die Stützgeraden mindestens die Hälfte des Flächeninhalts der
8 Dreiecke weggeschnitten wird. Der Flächeninhalt von Z0 ist also höchstens gleich
dem Flächeninhalt von QQ.

n<7

Q Q

M

M P

Figur 3

Man erhält damit für a(Z) die folgende Abschätzung:

a(Z) - max-^dl > F{H) - F^ > ^ (2 1)a(Z) - max p{Z) £ p(Z) - ^^ _ F{Q^ [IA)

Falls H0 ein reguläres Achteck ist, nimmt der letzte Quotient von (2.1) seinen tiefst-
möglichen Wert, nämlich 2 (/2 — 1) an. Es gilt also:

a(Z) ^ 2 (j/2 - 1) (2.2)

Damit ist der erste Teil des Satzes bewiesen.

3. Ein extremaler Bereich

Wir zeigen jetzt an einem Beispiel, dass es extremale Bereiche gibt, für die in
(2.2) das Gleichheitszeichen gilt.
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W

Das Parallelogramm E von Figur 4 sei identisch mit dem Parallelogramm von
Figur 1. Zur Berechnung von ol(E) ist die Ermittlung eines optimalen axialsymmetrischen

Bereiches _4* mit A* QE erforderlich. Ist a* eine Symmetrieachse von _4* und
spiegelt man E und _4* an a*, so wird sofort ersichtlich, dass
_4* mit dem Durchschnittsbereich EHE* zusammenfallen

muss, wenn E* das Spiegelbild von E bezüglich a* darstellt. Es
ist ferner zulässig, bei der Ermittlung einer optimalen Achse a*
nur diejenigen Achsen a zu berücksichtigen, die durch das

Symmetriezentrum M laufen. Man zeigt nämlich leicht, dass

die Spiegelung von E an einer solchen Achse zu einem
Durchschnittsbereich E O Ea führt, der flächenmässig sicher nicht
kleiner ist als der entsprechende Durchschnittsbereich E n Ea>,

den eine beliebige, zu a parallele Achse a' liefert. Einfache weitere

Überlegungen ergeben schliesslich, dass eine optimale
Achse gefunden werden kann, wenn in Figur 4 die
Unabhängige x von 0 bis -f- oo läuft. Der Flächeninhalt F(A) des

Durchschnittsbereiches A — E O Ea wird jetzt zu einer Funktion
von x.

Die Rechnung ergibt für die Hilfsgrössen u, v, w in Figur 4 die
folgenden Resultate:

n_

iu ——,_ ; v
x + 7

Setzt man noch

so erhält man

2 (3 x + 20)
x2 + 10* + 20

C 40 (p - 1),

F(A)

x + 5
(3.1)

(3.2)

Figur 4

f- 4^- 5|/2 )2[(l0j/2- 14)*2 + (80[/2- 111)*+ (1401/2-190)3~-"- *4+22*3 + 175*2+ 590*+ 700

(3.3)

Aus (3.3) ist sofort ersichtlich, dass F(A) für x 5 |/2 maximal
wird.

Für einen maximalen Bereich _4* gilt hier also

F(A< C

Mit (1.2) und (3.2) folgt:

aW F(E) ~ F(E) - 20 -zlK* -1)-

Damit ist der eingangs formulierte Satz bewiesen.

(3.4)

4. Schlussbemerkungen

Eine eingehendere Untersuchung lehrt, dass die Klasse der Extremalbereiche aus
einer zweiparametrigen Schar von Parallelogrammen besteht. Diese Parallelogramme
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entstehen aus Quadraten durch normalaffine Abbildung, wenn die Affinitätsrichtung
zu zwei Quadratseiten den Winkel jz/S bildet und für das Affinitätsverhältnis k gilt:

k ^|/472TT.
Kombiniert man unsern Satz mit einem Ergebnis vonBESicoviTCH [2], so erhält man
eine - vermutlich noch schlechte - untere Schranke für das innere axiale Symmetrie-
mass eines beliebigen Eibereiches.

Der vorliegende Beweis wurde im Wintersemester 1960/61 im mathematischen
Seminar in Bern vorgetragen. In der Diskussion ergaben sich verschiedene
Verbesserungsvorschläge, insbesondere durch Beiträge von Herrn H. Hadwiger, die hier
berücksichtigt sind, und die ich auch an dieser Stelle bestens verdanken möchte.

W. Nohl, Bern
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Sur les nombres triangulaires qui sont sommes de deux nombres

triangulaires

Le but de cette note est de demontrer la proposition suivante:

Theoreme. Pour qu'un nombre triangulaire tn — [n (n + l)]/2 soit une somme de

deux nombres triangulaires > 0, il faut et il suffit que le nombre n2 + (n + l)2 soit

compose.
Demonstration. Dans ma note parue dans les Elemente der Mathematik 16 (1961),

p. 27, j'ai demontre que pour qu'un nombre impair soit d'une seule facon somme de

deux carres de nombres naturels non decroissants premiers entre eux, il faut et il
suffit qu'il soit une puissance ä l'exposant naturel d'un nombre premier de la forme
4& + 1.

Si le nombre tn serait une somme de deux nombres triangulaires > 0, il existerait
des nombres naturels x et y 2_ % tels que tn tx + ty, d'oü

(2 n + l)2 + 1 - (2 x + l)2 + (2 y + l)2,

ce qui donne m (n + l)2 + n2 (x + y + l)2 + (y — x)2.

Si m est un nombre premier, il n'est pas un carre et on a y + x. Les nombres

x + y+lety — x sont donc naturels et Evidemment premiers entre eux (puisque m
est un nombre premier) etona^ + y+1 — (y — %) 2#+l>l, d'oü il resulte

que m est de deux facons somme de deux carres de nombres naturels non d6croissants

premiers entre eux, contrairement ä mon theoreme cite* plus haut. Le nombre m ne

peut pas donc etre premier et, comme on a evidemment m > 1, m est un nombre
compose\ La condition de notre th6oreme est donc necessaire.
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