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Kleine Einführung in die Topologie
Kurz gefasst konnte man die Topologie, im Gegensatz zur metrischen Geometrie,

stetige Geometrie nennen Eine Abbildung eines geometrischen Gebildes auf em
anderes heisst topologisch, wenn sie em-eindeutig und m beiden Richtungen stetig ist
Urbild und Bild einer topologischen Abbildung heissen homoomorphe Gebilde Die
Homoomorphie spielt m der Topologie dieselbe Rolle, wie die Kongruenz in der
euklidischen Geometrie Aufgabe der Topologie ist es, diejenigen Eigenschaften eines
geometrischen Gebildes aufzufinden, welche es mit seinen homoomorphen Gebilden

gemein hat Offensichtlich smd die Massverhaltnisse vom Standpunkt der Topologie
aus belanglos Wir erwähnten die Stetigkeit, was ist das überhaupt, wenn wir von
Massverhaltnissen absehen Auch diese Frage zu beantworten, gehört zur Aufgabe
der Topologie Bevor wir nun auf diese Frage eingehen, geben wir zwei Beispiele aus
der Topologie, wobei wir allerdings auf eine präzise Formulierung verzichten müssen.

Betrachten wir die Oberflache eines Wurfeis Vom topologischen Standpunkt aus
können wir sie auch eine Kugelflache nennen, auf der eine gewisse Einteilung in
Gebiete vorliegt Bezeichnen wir die Anzahlen der Eckpunkte, Kanten und Gebiete
mit e, k und /, so zeigt sich, dass die Relation e — k -f- / 2 gilt Eine weitere
Untersuchung lehrt, dass fur jede beliebige Einteilung der Kugelflache in Gebiete dieser

Zusammenhang zwischen e, k und / besteht Dies hat Euler erkannt und man
nennt dies den Eulerschen Polyedersatz Ob wir nun eine Gebietseinteilung auf der

Kugelflache oder die entsprechende Einteilung auf einem topologischen Bilde der

Kugel betrachten, ist doch gleichgültig Also haben wir hier eine topologische Eigenschaft

der Kugelflache vor uns Wurden wir analoge Gebietseinteilungen auf der

Ringflache (Torus) untersuchen, so wurde sich herausstellen, dass fur diese stets
e — k + / 0 gilt Daraus ergibt sich, dass Kugelflache und Rmgflache nicht homoo-

morph smd Der Eulersche Polyedersatz gehört der sogenannten algebraischen
Topologie an, von der im weiteren nicht die Rede sein wird

Sei C em topologisches Bild einer Kreislinie K, das m der euklidischen Ebene

hegt, das heisst, anschaulich gesagt, eine «einfach geschlossene Kurve» der Ebene
Der Jordansche Kurvensatz sagt aus C zerlegt die Ebene in genau zwei Gebiete und
ist deren Rand Schoenflies hat den Satz folgendermassen erweitert Es gibt eine

topologische Abbildung der ganzen Ebene, in der K hegt, auf die ganze Ebene von C,

welche K auf C abbildet und das «Innere» bzw «Äussere» von K auf das «Innere»
bzw «Äussere» von C, das heisst also, dass zum Beispiel das «Innere» von K dem
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«Inneren» von C homöomorph ist. Man wird nun sagen, das ist doch anschaulich
ziemlich klar. Denken wir uns die entsprechende Situation im Räume. Da hat nun
Antoine gezeigt, dass es im euklidischen Raum topologische Bilder der Kugelfläche
gibt, deren «Inneres» dem «Inneren» der Kugelfläche nicht homöomorph ist. Dazu
wird kaum einer sagen, das sei von vornherein anschaulich klar! Während der
Eulersche Polyedersatz eine «innere» Eigenschaft der Kugelfläche darstellt, das heisst
die Lage der Kugelfläche spielt keine Rolle, handelt es sich hier um Lageeigenschaften,

genauer gesagt um Fragen der Einbettung von zur Kreislinie bzw. Kugelfläche

homöomorphen Gebilden in die euklidische Ebene bzw. den euklidischen
Raum. Das hier Besprochene gehört mehr der sogenannten mengentheoretischen
Topologie an, die zu den Grundlagen der Mathematik zu rechnen ist und auf die wir
etwas weiter eingehen wollen.

Es sei noch ein kurzer Blick auf die Geschichte der Topologie geworfen. Leibniz
ahnte die Topologie und sprach 1679 von deren Notwendigkeit. Aber Gauss musste
1833 sagen, dass auf diesem Gebiete noch kaum etwas erreicht worden sei. Die Grundlagen,

um den Stetigkeitsbegriff korrekt zu fassen, waren noch nicht vorhanden.
Bevor Entscheidendes geleistet werden konnte, musste eine Loslösung von der natürlichen

Raumesvorstellung stattfinden, die es dem Denken ermöglichte, den Raumesbegriff

zu fassen, was in sich schhesst, dass es für das Denken auch andere «Räume»
als «unsern» Raum gibt. Hiefür waren die Entdeckung der nichteuklidischen
Geometrie und vor allem die Forschungen Riemanns von Bedeutung. Den eigentlichen

Anstoss für die Entwicklung der mengentheoretischen Topologie gab Cantor,
indem er die Mengenlehre geschaffen hat (1879-1884).

Wir benützen im folgenden die grundlegenden Mengenoperationen. Sind M und
N zwei Teilmengen einer Menge R von Objekten, genannt Elemente von R, so sei

a) die Vereinigung M U N von M und N die Teilmenge derjenigen Elemente von
R, die in M oder in N enthalten sind,

b) der Durchschnitt M O N von M und N die Teilmenge derjenigen Elemente von
R, die sowohl in M als auch in N enthalten sind,

c) das Komplement c M von M die Teilmenge derjenigen Elemente von R, die
nicht in M enthalten sind.

Diese drei Operationen erfüllen die Regeln der Booleschen Algebra.
Wir wollen nun einige Grundbegriffe erklären, wobei wir zunächst unserer

Betrachtung einen metrischen Raum zugrunde legen. Darunter verstehen wir eine

Menge R von gewissen Objekten, genannt Punkte, in der für jedes Paar von Punkten
p, q eindeutig eine Funktion d(p, q), genannt Abstand, definiert ist. Diese Funktion
muss, um dem, was wir anschaulich unter Abstand verstehen, gerecht zu werden,
reell sein und die folgenden Bedingungen erfüllen:

1. d(p, q)>0.
2. d(p, q) 0 nur für p q.

3. d(p,q)~d(q,p).
4. d(p, q) + d(q, r) _^ d(p, r). (Dreiecksungleichung)

Die euklidische Ebene E2 ist ein metrischer Raum, und in ihr geben wir Beispiele
zu den folgenden Definitionen, wobei irgendein rechtwinkliges Koordinatensystem
festgelegt sei.
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Umgebung eines Punktes p von R Fur jedes q > 0 heisst die Menge U(p, q) aller
Punkte q von R, fur die d(p, q) < q gilt, eine Umgebung von p

(Beispiel Inneres einer Kreisscheibe vom Radius q um den Mittelpunkt p
Offene Menge Eine Teilmenge M von R heisst offen, wenn jeder Punkt von M

eine Umgebung besitzt, welche ganz m M enthalten ist, das heisst M besteht nur aus
sogenannten inneren Punkten

(Beispiel das Innere oder Äussere eines endlichen einfach geschlossenen Streckenzuges

Die oben definierten Umgebungen smd offene Mengen Jede offene Menge, welche
eine Umgebung von p enthalt, nennen wir von nun an ebenfalls eine Umgebung von
p Fur offene Mengen sieht man leicht die folgenden Satze em

Die Vereinigung beliebig vieler offener Mengen ist eine offene Menge
Der Durchschnitt endlich vieler offener Mengen ist eine offene Menge
(Dabei wird vereinbart, dass die leere Menge offen sei)
Dass der letzte Satz fur unendlich viele Mengen falsch sein kann, zeigt folgendes

Beispiel m E2 Sei qv q2, @3, eine Folge von positiven Zahlen, fur welche hm Qn 0

ist Dann gilt fur jeden Punkt p

U(p Qjnu&QjciUtp.Qjn P

und der Punkt p stellt in E2 keine offene Menge dar
Abgeschlossene Menge Eine Teilmenge M von R heisst abgeschlossen, wenn ihr

Komplement c M eine offene Menge ist
(Beispiele Jeder endliche Streckenzug Jeder einfach geschlossene endliche

Streckenzug unter Emschluss seines Innern Die Menge aller Punkte mit ganzzahhgen

Koordinaten)
Die genannten Satze fur offene Mengen lassen sich fur abgeschlossene Mengen

wie folgt übersetzen (am einfachsten durch Verwendung von Regeln der Booleschen

Algebra)
Die Vereinigung endlich vieler abgeschlossener Mengen ist abgeschlossen
Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen

Haufungspunkt p einer Menge M p heisst Haufungspunkt von M, wenn jede
Umgebung von p mindestens einen, von p verschiedenen, Punkt von M enthalt

(Beispiel Jeder Punkt p(x, y) von E2 mit x 0, | y \ < 1 ist Haufungspunkt der
Menge der Punkte, fur deren Koordinaten y sml/x, x #= 0 gilt)

Ist jeder Punkt von R Haufungspunkt einer Menge M, so heisst M dicht in R
(Beispiel Die Menge aller Punkte von E2 mit rationalen Koordinaten ist dicht

in£2)
Eine Menge ist genau dann abgeschlossen, wenn sie alle ihre Haufungspunkte

enthalt Beweis a) M sei abgeschlossen Jeder Punkt p von c M, das ja offen ist, besitzt
eine Umgebung, die ganz m c M hegt, also keinen Punkt von M enthalt, das heisst,
p ist nicht Haufungspunkt von M b) M enthalt alle seme Haufungspunkte Jeder
Punkt p von c M besitzt, da er nicht Haufungspunkt von M ist, mindestens eine
Umgebung, die keinen Punkt von M enthalt, die also ganz m c M hegt, das heisst,
c M ist offen, also M abgeschlossen

Abgeschlossene Hülle einer Menge M heisst die Vereinigung von M mit allen ihren
Haufungspunkten
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Nun sagen wir uns von dem metrischen Raum, der uns zur Einführung einiger
Grundbegriffe gedient hat, los und geben eine Definition eines allgemeinen
topologischen Raumes

Gegeben sei eine Menge R von «Punkten» Gewisse Teilmengen von R seien
ausgezeichnet als offene Mengen Auf diese Weise wird m R eine Topologie eingeführt
und damit R zu einem topologischen Raum, sofern die folgenden Axiome erfüllt smd

1 Die Vereinigung beliebig vieler offener Mengen ist offen
2 Der Durchschnitt endlich vieler offener Mengen ist offen
3 Der ganze Raum und die leere Menge smd offen
Liegt solch em topologischer Raum vor, so definieren wir fur jeden Punkt p

von R Jede offene Menge, die p enthalt, ist eine Umgebung von p Die übrigen
oben definierten Begriffe lassen sich nun ebenso einfuhren und es gelten auch die
uber sie gemachten Aussagen

Nach diesen Definitionen smd wir nun in der Lage, den Begriff der Stetigkeit zu
präzisieren Sei / eine Abbildung eines topologischen Raumes X in einen topologi
sehen Raum Y Ist _V eine Teilmenge von Y, so heisst die Gesamtheit M der Punkte
von X, deren Bild in N hegt, das Urbild von N (M kann leer sein')

/ heisst stetig, wenn das Urbild jeder offenen Menge von Y eine offene Menge von
Zist

Eine, der m der Analysis üblichen, entsprechende Definition, von der man die

Äquivalenz mit der gegebenen leicht einsieht, lautet wie folgt
Gibt es zu jedem Punkt x von X und zu jeder Umgebung V von y f(x) in Y

eine Umgebung U von x in X, so dass das Bild von U in V hegt, so heisst / stetig
Wie schon gesagt, heisst eine Abbildung topologisch, wenn sie em-eindeutig (das

heisst, jeder Punkt besitzt genau einen Bildpunkt und jeder Bildpunkt genau em
Urbild) und in beiden Richtungen stetig ist (das heisst sowohl der Übergang vom
Urbild zum Bild wie derjenige vom Bild zum Urbild smd stetig) Aus letzterem folgt
nach unserer ersten Definition der Stetigkeit, dass nicht nur das Urbild einer offenen
Menge, sondern auch das Bild einer offenen Menge offen ist Daraus ergibt sich
weiter Die Eigenschaften einer Menge eines topologischen Raumes, offen,
abgeschlossen oder Umgebung eines Punktes zu sein, und die Eigenschaft eines Punktes,
Haufungspunkt einer Menge zu sein, smd topologisch invariant

Wir wollen nun vorderhand nicht weiter auf Grundbegriffe der Topologie
eingehen, sondern von einer tiefer liegenden Problemstellung berichten, namhch von der
Fundierung des Dimensionsbegriffes Man sah sich zu dieser veranlasst, nachdem die

folgenden Entdeckungen gemacht wurden
Sei S eine Strecke und Q em Quadrat der euklidischen Ebene E2, also zum Beispiel
5 Menge der Punkte p(x, y), fur die 0 _g # < 1, y 0, und
Q Menge der Punkte p(x, y), fur die 0 < x < 1 0 <, y < 1 gilt
Cantor hat gezeigt, dass es ein-emdeutige Abbildungen von S auf Q gibt, das

heisst, wobei jeder Punkt von Q Bildpunkt ist
Peano hat gezeigt, dass sich 5 stetig (bezogen auf die durch die euklidische Metrik

in E2 gegebene Topologie) auf Q abbilden lasst
Damit wurden gewisse Vorstellungen, die man mit dem zunächst nicht voll

herausgearbeiteten Dimensionsbegriff verband, hinfällig Von einem Dimensionsbegriff m
einem topologischen Raum R verlangen wir, dass er jeder Teilmenge von R eine
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bestimmte Dimension zuweist und dass diese Dimension topologisch invariant ist
Erst 1913 ist es Brouwer gelungen, einen solchen Dimensionsbegriff zu fassen Eine
abgeschlossene Dimensionstheorie gibt es bis heute nur fur spezielle topologische
Räume, namhch fur separable metrische Räume Em topologischer Raum heisst sepa-
rabel, wenn es eine abzahlbare Menge von Punkten von R gibt, die in R dicht ist
(Beispielsweise ist E2 separabel, denn die in E2 dichte Menge der Punkte mit rationalen
Koordinaten ist abzahlbar) Die Dimensionstheorie zeigt, dass der «n-dimensionale»
euklidische Raum die Dimension n hat Weitere Beispiele Sowohl die Menge der
Punkte von E1 mit rationaler Abszisse, wie die der Punkte mit irrationaler Abszisse,
haben die Dimension 0 Die Strecke S hat die Dimension 1, das Quadrat Q die
Dimension 2, das heisst, obschon die oben angeführten Phänomene bestehen, smd
S und Q nicht homöomorph

Da wir fur die Dimensionstheorie nicht auf die Metnsierbarkeit verzichten
können, lasst sich die Frage aufwerfen, ob sich mengentheoretische Bedingungen fur
die Metnsierbarkeit eines topologischen Raumes angeben lassen Urysohn hat
gezeigt, dass dies tatsächlich möglich ist Bevor wir solche Bedingungen angeben,
müssen wir zwei weitere Grundbegriffe erklaren

Basis eines topologischen Raumes R Em Teilsystem B der offenen Mengen von
R heisst eine Basis von R, wenn jede offene Menge von R Vereinigung von gewissen
Mengen des Systems B ist (Beispielsweise bilden in E2 alle Umgebungen U(p, q) mit
rationalem q, deren Mittelpunkte p rationale Koodmaten besitzen eine Basis von E2

Diese Basis ist abzahlbar
Em topologischer Raum heisst regulär, wenn er die folgenden beiden sogenannten

Trennungsaxiome erfüllt
1 Von je zwei Punkten hat jeder eine Umgebung, welche den andern nicht

enthalt

2 Fur jede abgeschlossene Menge M und jeden Punkt p, der nicht in M enthalten
ist, gibt es eine offene Menge N, die M enthalt, und eine Umgebung U von p, so dass

der Durchschnitt N n U leer ist

Es gilt nun der folgende Metrisationssatz
Jeder reguläre topologische Raum, der eine abzahlbare Basis besitzt, kann

metnsiert werden
Wir schhessen mit einigen Bemerkungen zur Literatur Es zeigt sich heute m

einigen Werken, zum Beispiel in denjenigen von N Bourbaki, die Tendenz, die

Darstellung der Grundlagen der Topologie (und auch der anderen Gebiete der Mathematik)

stark zu formahsieren Em solches Vorgehen ist fur die Untersuchung
der Struktur der Grundlagen berechtigt und auch notwendig Daraus aber zu
schhessen, dass eine solche Darstellung auch demjenigen dienen soll, der sich mit dem
betreffenden Gebiet bekannt machen will, ist unseres Erachtens ein Irrtum Fur uns
ist zum Beispiel die Topologie mehr als ihre Struktur Wohl werden dem Leser die

Grundlagen m möglichster Allgemeinheit und konsequentem Aufbau dargeboten,
aber diese Grundlagen werden fur den Leser zumeist nur formale Bedeutung haben,
weil er der Ideen, welche zu diesen Grundlagen gefuhrt haben, kaum teilhaftig wird
Und nur aus diesem Ideellen heraus kann schöpferisch an den Problemen der Mathematik

weitergearbeitet werden



54 D. Laugwitz: Eine elementare Methode für Unmöglichkeitsbeweise

Als ansprechende, wenig umfangreiche Einführungen sind die beiden folgenden
Publikationen zu empfehlen, die auch weitere Literaturangaben enthalten:

1) R. H. Bing: Elementary Point Set Topology. The American Mathematicai
Monthly, Volume 67, Number 7, Part II, 1960.

2) E.M. Patterson: Topology. Oliver and Boyd, Edinburgh and London, 1956.

Johannes M. Ebersold

Eine elementare Methode für Unmöglichkeitsbeweise bei

Konstruktionen mit Zirkel und Lineal

Bei dem Versuch, für Anfangssemester in Vorlesungen über «Schulmathematik
vom höheren Standpunkt» die Konstruktionen mit Zirkel und Lineal möglichst
elementar darzustellen, habe ich in der Literatur nur wenig Hilfe finden können. Eine
elementare Methode für Unmöglichkeitsbeweise, die ich mir zurechtgelegt habe, mag
deshalb auch für andere von Interesse sein, zumal sie durchaus auch Schülern
zugänglich ist. Die Methode braucht nur einfachste Sätze über Polynome und vermeidet
alle Mittel der Körpertheorie; sie scheint einheitlich viele alte und neue
Unmöglichkeitsbeweise bei Konstruktionen mit Zirkel und Lineal zu erfassen, soweit sie nicht
ihrer Natur nach transzendente Mittel erfordern (Kreisquadratur) oder Gleichungen
höheren als 4. Grades (Kreisteilung). In der Literatur werden meist nur die klassischen

Unmöglichkeitsbeweise behandelt: Winkeldrittelung, Würfelverdoppelung, reguläre
n-Ecke [1], [2], [3], [5], [6], [10], [11]. Die Beweise setzen meist auch noch mehr
Vorkenntnisse aus der Algebra voraus, als nötig wären. Zur Theorie der Dreieckskonstruktionen

finden sich in den zugänglichen Büchern nur wenige Beiträge, so in [7]1).
Da andererseits noch in neuerer Zeit Originalabhandlungen über spezielle
Unmöglichkeitsbeweise bei Dreiecken erschienen sind (Dreieck aus den drei Winkelhalbierenden

[8]; andere Sätze in [4] und [9]), mag es gerechtfertigt sein, eine Methode hier
darzustellen, deren einzelne Teile zwar längst bekannt sind- die aber einfachere
Beweise auch für schon bekannte Sätze erlaubt.

1. Konstruktionen dritten und vierten Grades

Vorausgesetzt wird der leicht zu beweisende Satz (z. B. [3], [5], [6], [10]), dass

bei vorgegebenen Streckenlängen oder Punktkoordinaten genau diejenigen Punkte
(Strecken) mit Zirkel und Lineal konstruierbar sind, deren Koordinaten (Massgrössen)
aus den gegebenen Grössen durch endliche Anwendung der rationalen Operationen
und der Operation des QuadratWurzelziehens hervorgehen. Vorausgesetzt wird ferner
der Begriff des Körpers (aber kein Satz der Körpertheorie). Mit K0 wird der Körper
der rationalen Zahlen bezeichnet, mit Kx ein Körper, der aus allen rationalen
Ausdrücken in einer festen Quadratwurzel \/dx mit rationalen Koeffizienten besteht
(ix rational, aber kein Quadrat). Allgemein besteht der Körper Kn aus allen rationalen

Ausdrücken (oder, was offenbar auf dasselbe hinausläuft, allen gebrochenlinearen

Ausdrücken) in ^dn mit Koeffizienten aus Kn„lt wo dn-lf aber nicht ^in-X
aus Kn_v Offenbar liegt jede Zahl, die aus der Zahl 1 mit Zirkel und Lineal konstru-

*) Auch in den IMUK-Bänden [1], [2] finden sich keine elementaren Beiträge zu unserem Aufgabenkreis.
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