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Kleine Einfithrung in die Topologie

Kurz gefasst konnte man die Topologie, im Gegensatz zur metrischen Geometrie,
stetige Geometrie nennen. Eine Abbildung eines geometrischen Gebildes auf ein an-
deres heisst fopologisch, wenn sie ein-eindeutig und in beiden Richtungen stetig ist.
Urbild und Bild einer topologischen Abbildung heissen homéomorphe Gebilde. Die
Homd&omorphie spielt in der Topologie dieselbe Rolle, wie die Kongruenz in der
euklidischen Geometrie. Aufgabe der Topologie ist es, diejenigen Eigenschaften eines
geometrischen Gebildes aufzufinden, welche es mit seinen homéomorphen Gebilden
gemein hat. Offensichtlich sind die Massverhdltnisse vom Standpunkt der Topologie
aus belanglos. Wir erwdhnten die Stetigkeit; was ist das iiberhaupt, wenn wir von
Massverhiltnissen absehen? Auch diese Frage zu beantworten, gehort zur Aufgabe
der Topologie. Bevor wir nun auf diese Frage eingehen, geben wir zwei Beispiele aus
der Topologie, wobei wir allerdings auf eine prizise Formulierung verzichten miissen.

Betrachten wir die Oberfldche eines Wiirfels. Vom topologischen Standpunkt aus
konnen wir sie auch eine Kugelfliche nennen, auf der eine gewisse Einteilung in
Gebiete vorliegt. Bezeichnen wir die Anzahlen der Eckpunkte, Kanten und Gebiete
mit e, & und f, so zeigt sich, dass die Relation ¢ — & + f = 2 gilt. Eine weitere Unter-
suchung lehrt, dass fiir jede beliebige Einteilung der Kugelfliche in Gebiete dieser
Zusammenhang zwischen e, & und f besteht. Dies hat EULER erkannt und man
nennt dies den Eulerschen Polyedersatz. Ob wir nun eine Gebietseinteilung auf der
Kugelfliche oder die entsprechende Einteilung auf einem topologischen Bilde der
Kugel betrachten, ist doch gleichgiiltig. Also haben wir hier eine topologische Eigen-
schaft der Kugelfliche vor uns. Wiirden wir analoge Gebietseinteilungen auf der
Ringfliche (Torus) untersuchen, so wiirde sich herausstellen, dass fiir diese stets
¢ — k + f = 0 gilt. Daraus ergibt sich, dass Kugelfliche und Ringflache nicht homéo-
morph sind. Der Eulersche Polyedersatz gehort der sogenannten algebraischen
Topologie an, von der im weiteren nicht die Rede sein wird.

Sei C ein topologisches Bild einer Kreislinie K, das in der euklidischen Ebene
liegt, das heisst, anschaulich gesagt, eine «einfach geschlossene Kurve» der Ebene.
Der Jordansche Kurvensatz sagt aus: C zerlegt die Ebene in genau zwei Gebiete und
ist deren Rand. SCHOENFLIES hat den Satz folgendermassen erweitert: Es gibt eine
topologische Abbildung der ganzen Ebene, in der K liegt, auf die ganze Ebene von C,
welche K auf C abbildet und das «Innere» bzw. «Aussere» von K auf das «Innere»
bzw. «Aussere» von C, das heisst also, dass zum Beispiel das «Innecre» von K dem
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«Inneren» von C homéomorph ist. Man wird nun sagen, das ist doch anschaulich
ziemlich klar. Denken wir uns die entsprechende Situation im Raume. Da hat nun
ANTOINE gezeigt, dass es im euklidischen Raum topologische Bilder der Kugelfliche
gibt, deren «Inneres» dem «Inneren» der Kugelfliche nicht hom6éomorph ist. Dazu
wird kaum einer sagen, das sei von vornherein anschaulich klar! Wihrend der
Eulersche Polyedersatz eine «innere» Eigenschaft der Kugelfliche darstellt, das heisst
die Lage der Kugelfliche spielt keine Rolle, handelt es sich hier um Lageeigen-
schaften, genauer gesagt um Fragen der Einbettung von zur Kreislinie bzw. Kugel-
fliche homoéomorphen Gebilden in die euklidische Ebene bzw. den euklidischen
Raum. Das hier Besprochene gehért mehr der sogenannten mengentheoretischen
Topologie an, die zu den Grundlagen der Mathematik zu rechnen ist und auf die wir
etwas weiter eingehen wollen.

Es sei noch ein kurzer Blick auf die Geschichte der Topologie geworfen. LEIBNI1Z
ahnte die Topologie und sprach 1679 von deren Notwendigkeit. Aber GAUSS musste
1833 sagen, dass auf diesem Gebiete noch kaum etwas erreicht worden sei. Die Grund-
lagen, um den Stetigkeitsbegriff korrekt zu fassen, waren noch nicht vorhanden.
Bevor Entscheidendes geleistet werden konnte, musste eine Loslosung von der natiir-
lichen Raumesvorstellung stattfinden, die es dem Denken ermdéglichte, den Raumes-
begriff zu fassen, was in sich schliesst, dass es fiir das Denken auch andere «Rdume»
als «unsern» Raum gibt. Hiefiir waren die Entdeckung der nichteuklidischen
Geometrie und vor allem die Forschungen RIEMANNS von Bedeutung. Den eigent-
lichen Anstoss fiir die Entwicklung der mengentheoretischen Topologie gab CANTOR,
indem er die Mengenlehre geschaffen hat (1879-1884).

Wir beniitzen im folgenden die grundlegenden Mengenoperationen. Sind M und
N zwei Teilmengen einer Menge R von Objekten, genannt Elemente von R, so sei

a) die Vereinigung M U N von M und N die Teilmenge derjenigen Elemente von
R, die in M oder in N enthalten sind,

b) der Durchschnitt M 0 N von M und N die Teilmenge derjenigen Elemente von
R, die sowohl in M als auch in N enthalten sind,

c) das Komplement ¢ M von M die Teilmenge derjenigen Elemente von R, die
nicht in M enthalten sind.

Diese drei Operationen erfiillen die Regeln der Booleschen Algebra.

Wir wollen nun einige Grundbegriffe erkldren, wobei wir zundchst unserer Be-
trachtung einen metrischen Raum zugrunde legen. Darunter verstehen wir eine
Menge R von gewissen Objekten, genannt Punkte, in der fiir jedes Paar von Punkten
$, ¢ eindeutig eine Funktion d(p, g), genannt Abstand, definiert ist. Diese Funktion
muss, um dem, was wir anschaulich unter Abstand verstehen, gerecht zu werden,
reell sein und die folgenden Bedingungen erfiillen:

1. d(p,q) = 0.

2. d(p, q) = 0 nur fiir p = q.

3. d(p, g) = dlg. ).

4. d(p,q) +d(g,r) = d(p,r). (Dreiecksungleichung)

Die euklidische Ebene E? ist ein metrischer Raum, und in ihr geben wir Beispiele
zu den folgenden Definitionen, wobei irgendein rechtwinkliges Koordinatensystem
festgelegt sei.
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Umgebung eines Punktes p von R: Fiir jedes o > 0 heisst die Menge U(p, g) aller
Punkte ¢ von R, fiir die d(p, ¢) < p gilt, eine Umgebung von 5.

(Beispiel: Inneres einer Kreisscheibe vom Radius ¢ um den Mittelpunkt .)

Offene Menge. Eine Teilmenge M von R heisst offen, wenn jeder Punkt von M
eine Umgebung besitzt, welche ganz in M enthalten ist, das heisst M besteht nur aus
sogenannten inneren Punkten.

(Beispiel: das Innere oder Aussere eines endlichen einfach geschlossenen Strecken-
zuges.)

Die oben definierten Umgebungen sind offene Mengen. Jede offene Menge, welche
eine Umgebung von $ enthilt, nennen wir von nun an ebenfalls eine Umgebung von
p. Fiir offene Mengen sieht man leicht die folgenden Sitze ein:

Die Vereinigung beliebig vieler offener Mengen ist eine offene Menge.

Der Durchschnitt endlich vieler offener Mengen ist eine offene Menge.

(Dabei wird vereinbart, dass die leere Menge offen sei.)

Dass der letzte Satz fiir unendlich viele Mengen falsch sein kann, zeigt folgendes
Beispiel in E2. Sei g4, g5, 03, ... €ine Folge von positiven Zahlen, fiir welche lim g, = 0
ist. Dann gilt fiir jeden Punkt e

Up,0) U@, 0 NUP,05) N ... =

und der Punkt p stellt in E? keine offene Menge dar.

Abgeschlossene Menge. Eine Teilmenge M von R heisst abgeschlossen, wenn ihr
Komplement ¢ M eine offene Menge ist.

(Beispiele: Jeder endliche Streckenzug. Jeder einfach geschlossene endliche
Streckenzug unter Einschluss seines Innern. Die Menge aller Punkte mit ganzzah-
ligen Koordinaten).

Die genannten Sitze fiir offene Mengen lassen sich fiir abgeschlossene Mengen
wie folgt tibersetzen (am einfachsten durch Verwendung von Regeln der Booleschen
Algebra):

Die Vereinigung endlich vieler abgeschlossener Mengen ist abgeschlossen.

Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen.

Héufungspunkt p einer Menge M. p heisst Hiufungspunkt von M, wenn jede
Umgebung von p mindestens einen, von p verschiedenen, Punkt von M enthilt.

(Beispiel: Jeder Punkt p(x, y) von E2 mit x = 0, | y | < 1 ist Hiufungspunkt der
Menge der Punkte, fiir deren Koordinaten y = sin 1/x, x + 0 gilt.)

Ist jeder Punkt von R Héiufungspunkt einer Menge M, so heisst M dicht in R.

(Beispiel: Die Menge aller Punkte von E2? mit rationalen Koordinaten ist dicht
in E?).

Eine Menge ist genau dann abgeschlossen, wenn sie alle ihre Hiufungspunkte ent-
hilt. Beweis: a) M sei abgeschlossen. Jeder Punkt p von ¢ M, das ja offen ist, besitzt
eine Umgebung, die ganz in ¢ M liegt, also keinen Punkt von M enthilt; das heisst,
p ist nicht Hiufungspunkt von M. b) M enthilt alle seine Hiufungspunkte. Jeder
Punkt p von ¢ M besitzt, da er nicht Hiufungspunkt von M ist, mindestens eine
Umgebung, die keinen Punkt von M enthilt, die also ganz in ¢ M liegt; das heisst,
¢ M ist offen, also M abgeschlossen.

Abgeschlossene Hiille einer Menge M heisst die Vereinigung von M mit allen ihren
Haufungspunkten.
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Nun sagen wir uns von dem metrischen Raum, der uns zur Einfithrung einiger
Grundbegriffe gedient hat, los und geben eine Definition eines allgemeinen topolo-
gischen Raumes.

Gegeben sei eine Menge R von «Punkten». Gewisse Teilmengen von R seien aus-
gezeichnet als offene Mengen. Auf diese Weise wird in R eine Topologie eingefiihrt
und damit R zu einem fopologischen Raum, sofern die folgenden Axiome erfiillt sind.

1. Die Vereinigung beliebig vieler offener Mengen ist offen.

2. Der Durchschnitt endlich vieler offener Mengen ist offen.

3. Der ganze Raum und die leere Menge sind offen.

Liegt solch ein topologischer Raum vor, so definieren wir fiir jeden Punkt p
von R: Jede offene Menge, die p enthilt, ist eine Umgebung von 4. Die tibrigen
oben definierten Begriffe lassen sich nun ebenso einfithren und es gelten auch die
iiber sie gemachten Aussagen.

Nach diesen Definitionen sind wir nun in der Lage, den Begriff der Stetigkeit zu
prazisieren. Sei f eine Abbildung eines topologischen Raumes X in einen topologi-
schen Raum Y. Ist IV eine Teilmenge von Y, so heisst die Gesamtheit M der Punkte
von X, deren Bild in N liegt, das Urbild von N (M kann leer sein!).

f heisst stetig, wenn das Urbild jeder offenen Menge von Y eine offene Menge von
X ist.

Eine, der in der Analysis iiblichen, entsprechende Definition, von der man die
Aquivalenz mit der gegebenen leicht einsieht, lautet wie folgt:

Gibt es zu jedem Punkt x von X und zu jeder Umgebung V' von y = f(x) in Y
eine Umgebung U von x in X, so dass das Bild von U in V liegt, so heisst f stetig.

Wie schon gesagt, heisst eine Abbildung topologisch, wenn sie ein-eindeutig (das
heisst, jeder Punkt besitzt genau einen Bildpunkt und jeder Bildpunkt genau ein
Urbild) und in beiden Richtungen stetig ist (das heisst sowohl der Ubergang vom
Urbild zum Bild wie derjenige vom Bild zum Urbild sind stetig). Aus letzterem folgt
nach unserer ersten Definition der Stetigkeit, dass nicht nur das Urbild einer offenen
Menge, sondern auch das Bild einer offenen Menge offen ist. Daraus ergibt sich
weiter: Die Eigenschaften einer Menge eines topologischen Raumes, offen, abge-
schlossen oder Umgebung eines Punktes zu sein, und die Eigenschaft eines Punktes,
Hiufungspunkt einer Menge zu sein, sind topologisch invariant.

Wir wollen nun vorderhand nicht weiter auf Grundbegriffe der Topologie ein-
gehen, sondern von einer tiefer liegenden Problemstellung berichten, ndmlich von der
Fundierung des Dimensionsbegriffes. Man sah sich zu dieser veranlasst, nachdem die
folgenden Entdeckungen gemacht wurden:

Sei S eine Strecke und Q ein Quadrat der euklidischen Ebene E2, also zum Beispiel

S: Menge der Punkte p(x, y), firdie0 <x <1, y=0, und

Q: Menge der Punkte p(x, y), firdie0 <x <1, 0 <y <1 gilt.

CANTOR hat gezeigt, dass es ein-eindeutige Abbildungen von S auf Q gibt, das
heisst, wobei jeder Punkt von @ Bildpunkt ist.

Peano hat gezeigt, dass sich S stetig (bezogen auf die durch die euklidische Metrik
in E? gegebene Topologie) auf Q abbilden ldsst.

Damit wurden gewisse Vorstellungen, die man mit dem zunéchst nicht voll heraus-
gearbeiteten Dimensionsbegriff verband, hinfillig. Von einem Dimensionsbegriff in
einem topologischen Raum R verlangen wir, dass er jeder Teilmenge von R eine
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bestimmte Dimension zuweist und dass diese Dimension topologisch invariant ist.
Erst 1913 ist es BROUWER gelungen, einen solchen Dimensionsbegriff zu fassen. Eine
abgeschlossene Dimensionstheorie gibt es bis heute nur fiir spezielle topologische
Rédume, ndmlich fiir separable metrische Raume. Ein topologischer Raum heisst sepa-
rabel, wenn es eine abzdhlbare Menge von Punkten von R gibt, die in R dicht ist.
(Beispielsweise ist £2 separabel, denn die in E% dichte Menge der Punkte mit rationalen
Koordinaten ist abzdhlbar). Die Dimensionstheorie zeigt, dass der «»n-dimensionale»
euklidische Raum die Dimension # hat. Weitere Beispiele: Sowohl die Menge der
Punkte von E! mit rationaler Abszisse, wie die der Punkte mit irrationaler Abszisse,
haben die Dimension 0. Die Strecke S hat die Dimension 1, das Quadrat Q die
Dimension 2, das heisst, obschon die oben angefithrten Phinomene bestehen, sind
S und Q nicht homéomorph.

Da wir fiir die Dimensionstheorie nicht auf die Metrisierbarkeit verzichten
konnen, lisst sich die Frage aufwerfen, ob sich mengentheoretische Bedingungen fiir
die Metrisierbarkeit eines topologischen Raumes angeben lassen. URYSOHN hat ge-
zeigt, dass dies tatsdchlich moéglich ist. Bevor wir solche Bedingungen angeben,
miissen wir zwei weitere Grundbegriffe erkliren.

Basis eines topologischen Raumes R. Ein Teilsystem B der offenen Mengen von
R heisst eine Basis von R, wenn jede offene Menge von R Vereinigung von gewissen
Mengen des Systems B ist. (Beispielsweise bilden in E2 alle Umgebungen U(p, g) mit
rationalem p, deren Mittelpunkte p rationale Koodinaten besitzen, eine Basis von E2.
Diese Basis ist abzédhlbar.)

Ein topologischer Raum heisst reguldr, wenn er die folgenden beiden sogenannten
Trennungsaxiome erfiillt:

1. Von je zwei Punkten hat jeder eine Umgebung, welche den andern nicht ent-
halt.

2. Fiir jede abgeschlossene Menge M und jeden Punkt p, der nicht in M enthalten
ist, gibt es eine offene Menge N, die M enthilt, und eine Umgebung U von p, so dass
der Durchschnitt N 0 U leer ist.

Es gilt nun der folgende Metrisationssatz:

Jeder regulire topologische Raum, der eine abzihlbare Basis besitzt, kann
metrisiert werden.

Wir schliessen mit einigen Bemerkungen zur Literatur. Es zeigt sich heute in
einigen Werken, zum Beispiel in denjenigen von N. BourBAKI, die Tendenz, die Dar-
stellung der Grundlagen der Topologie (und auch der anderen Gebiete der Mathe-
matik) stark zu formalisieren. Ein solches Vorgehen ist fiir die Untersuchung
der Struktur der Grundlagen berechtigt und auch notwendig. Daraus aber zu
schliessen, dass eine solche Darstellung auch demjenigen dienen soll, der sich mit dem
betreffenden Gebiet bekannt machen will, ist unseres Erachtens ein Irrtum. Fiir uns
ist zum Beispiel die Topologie mehr als ihre Struktur. Wohl werden dem Leser die
Grundlagen in moéglichster Allgemeinheit und konsequentem Aufbau dargeboten,
aber diese Grundlagen werden fiir den Leser zumeist nur formale Bedeutung haben,
weil er der Ideen, welche zu diesen Grundlagen gefiihrt haben, kaum teilhaftig wird.
Und nur aus diesem Ideellen heraus kann schopferisch an den Problemen der Mathe-
matik weitergearbeitet werden.
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Als ansprechende, wenig umfangreiche Einfiihrungen sind die beiden folgenden
Publikationen zu empfehlen, die auch weitere Literaturangaben enthalten:
1) R. H. BinG: Elementary Point Set Topology. The American Mathematical
Monthly, Volume 67, Number 7, Part II, 1960.
2) E. M. PATTERSON: Topology. Oliver and Boyd, Edinburgh and London, 1956.
JoHANNES M. EBERSOLD

Eine elementare Methode fiir Unmdoglichkeitsbeweise bei
Konstruktionen mit Zirkel und Lineal

Bei dem Versuch, fiir Anfangssemester in Vorlesungen iiber «Schulmathematik
vom hoheren Standpunkt» die Konstruktionen mit Zirkel und Lineal méglichst ele-
mentar darzustellen, habe ich in der Literatur nur wenig Hilfe finden kénnen. Eine
elementare Methode fiir Unmoglichkeitsbeweise, die ich mir zurechtgelegt habe, mag
deshalb auch fiir andere von Interesse sein, zumal sie durchaus auch Schiilern zu-
ginglich ist. Die Methode braucht nur einfachste Sitze tiber Polynome und vermeidet
alle Mittel der Korpertheorie; sie scheint einheitlich viele alte und neue Unméglich-
keitsbeweise bei Konstruktionen mit Zirkel und Lineal zu erfassen, soweit sie nicht
ihrer Natur nach transzendente Mittel erfordern (Kreisquadratur) oder Gleichungen
hoheren als 4. Grades (Kreisteilung). In der Literatur werden meist nur die klassischen
Unmoglichkeitsbeweise behandelt: Winkeldrittelung, Wiirfelverdoppelung, reguldre
n-Ecke [1], [2], [3], [5], [6], [10], [11]. Die Beweise setzen meist auch noch mehr
Vorkenntnisse aus der Algebra voraus, als nétig wiren. Zur Theorie der Dreieckskon-
struktionen finden sich in den zuginglichen Biichern nur wenige Beitrige, so in [7]1).
Da andererseits noch in neuerer Zeit Originalabhandlungen iiber spezielle Unmog-
lichkeitsbeweise bei Dreiecken erschienen sind (Dreieck aus den drei Winkelhalbie-
renden [8]; andere Sitze in [4] und [9]), mag es gerechtfertigt sein, eine Methode hier
darzustellen, deren einzelne Teile zwar lingst bekannt sind- die aber einfachere
Beweise auch fiir schon bekannte Sitze erlaubt.

1. Konstruktionen dritten und vierten Grades

Vorausgesetzt wird der leicht zu beweisende Satz (z. B. [3], [5], [6], [10]), dass
bei vorgegebenen Streckenlingen oder Punktkoordinaten genau diejenigen Punkte
(Strecken) mit Zirkel und Lineal konstruierbar sind, deren Koordinaten (Massgrossen)
aus den gegebenen Grossen durch endliche Anwendung der rationalen Operationen
und der Operation des Quadratwurzelziehens hervorgehen. Vorausgesetzt wird ferner
der Begriff des Korpers (aber kein Satz der Korpertheorie). Mit K, wird der Koérper
der rationalen Zahlen bezeichnet, mit K, ein Korper, der aus allen rationalen Aus-
driicken in einer festen Quadratwurzel /d; mit rationalen Koeffizienten besteht
(d, rational, aber kein Quadrat). Allgemein besteht der Korper K, aus allen ratio-
nalen Ausdriicken (oder, was offenbar auf dasselbe hinauslduft, allen gebrochen-
linearen Ausdriicken) in Vc—i:mit Koeffizienten aus K, _,, wod,_,, aber nicht }/d, _,
aus K, _,. Offenbar liegt jede Zahl, die aus der Zahl 1 mit Zirkel und Lineal konstru-

1) Auch in den IMUK-Binden [1], {2] finden sich keine elementaren Beitrige zu unserem Aufgaben-
kreis.
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