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Sur une propriété des nombres tétraédraux
On appelle tétraédral (ou pyramidal) tout nombre de la forme

T:n(n+1)(n+2) _ (m 1)~ (m+1)
! 6 - 6 ,

ou » est un entier positif.
Le but de cette note est de donner une démonstration élémentaire de la proposi-
tion suivante:

Théoréme. I existe une infinité des pairves de nombres tétraédraux distincts dont la
somme est un nombre tétraédral.

Démonstration. Définissons les suites infinies d’entiers positifsa, et b, (n =1, 2, ...)
par les conditions

a,=9,b=4,a,,=161a,+3600,, b,,, =72a,+ 1610, (1)
pourn=12 ....
I1 résulte sans peine de (1) par I'induction que
les nombres a, (n =1, 2, ...) sont divisibles par 9, (2)
3b,>a,pourn=12 ..., (3)
Appy > By, by > b,pourn=12,.... 4)

On vérifie sans peine I'identité
(161a + 3606)2 — 5 (72a + 161b)2 = a® — 502,
d’apreés laquelle il résulte de (1) que
a: ,—5b,  =a.—5bpourn=12 ...,

et comme a? — 5 b% = 92 — 542 = 1, il en résulte par I'induction que

a2—5b=1pourn=12.... (5)
Posons maintenant
u,=3b,+ —‘%’L, v,=30b,— %?L, w,=4b,pourn=12,... (0)

D’aprés (2) et (3) les nombres (6) seront des entiers > 1 et, d'aprés (4) on aura
Uy > U, pour n=1,2,.... (7)
D’aprés (6) on vérifie sans peine qu'on a pour n =1, 2, ...:
Wt od—w—u, —v, +w,=(4,+v, (2 — u, v, + 02— 1) —w) +w, =

=2b (a®2—5b—1),
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d’olt, d’aprés (5), on trouve u2 + v — w2 —u, — v, + w,=Opour n=1,2, ..., d’olt:
ty LT
6 6 6 ’
donc
I, a+71, 1=1, ypourn=12 .... (8)

D’apres (6) on a #, > v, pour n=1,2,...,donc T, > T, _,, et, d’aprés (7), les
nombres %, — 1 peuvent étre aussi grands que 'on veut. La formule (8) prouve donc
que notre théoréme est vrai.

On a, par exemple,

u1=3b1+£‘31=3-4+3=15, v=3b—2=34-3=9, w,=45=16,
donc, d’apres (8): Ty, + Tg = Tys.

Or, les formules (8) ne donnent pas toutes les solutions de I'équation T, + T, = T,
en nombres naturels x, y, z, puisqu’on a, par exemple:

T54 + Tzo = Tss ’ Tue + T34 = T119 ’ T138 + Tas = T14o »

Il est & remarquer qu’il existe une paire des nombres tétraédraux égaux, dont la
somme est un nombre tétraédral, puisque 73 + T; = T,. Je ne sais pas s’il existe
d’autres telles paires. Or, il résulte facilement d’un théoréme de M. A. THUE, publié
dans Det Kong. Norske Vid. Selskab Skrifter 1911, Nr. 3, que 'équation 2 T, = T,
n’a qu'un nombre fini de solution en nombres naturels x et .

Il résulte tout de suite de notre théoréme qu’sl existe une infinité des paires de
nombres tétraédraux distincts dont la différence est un nombre tétraédral. Par exemple
Ly — Tha= T

Or, je ne connais aucune paire des nombres tétraédraux distincts dont la somme
ainsi que la différence seraient des nombres tétraédraux. W. SIERPINSKI (Varsovie)

Dichteste Kreispackungen auf einem Zylinder

Gewisse Pflanzenformationen, wie zum Beispiel der Maiskolben, legen die Frage
der dichtesten Kreispackung auf einem Zylinder nahe: wieviele aus Papier ausge-
schnittene Kreisscheiben vom Durchmesser 1 lassen sich auf den Mantel eines vor-
gegebenen, «sehr langen» Zylinders ohne gegenseitige Uberdeckung aufkleben ?

Betrachten wir den einfachen Fall, in dem der Umfang U des Zylinders eine natiir-
liche Zahl U = n ist. Dann konnen wir » Kreise in gleicher Hohe so anbringen, dass
der erste Kreis den zweiten, der zweite den dritten, ..., der n#-te den ersten beriihrt.
Es entsteht ein «Kreisring». Aus solchen Kreisringen ldsst sich eine dichteste regel-
missige!) Kreislagerung aufbauen, in der die Beriihrungspunkte der Kreise jede
Kreislinie in sechs Teilbogen zerlegen?). Die Dichte dieser Kreispackung betrigt
mmaﬁtét bedeutet, dass sich jeder Kreis in jeden anderen durch eine Deckbewegung der
Lagerung iiberfithren lisst.

2) Im Falle # > 1 lasst sich diese Kreispackung einfacher kennzeichnen: jeder Kreis wird von sechs
anderen beriihrt.



	Sur une propriété des nombres tétraédraux

