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Sur une propriete des nombres tetraedraux

On appelle tetraedral (ou pyramidal) tout nombre de la forme

_ n (n -f 1) (n -f 2) _ (n 4- l)3 - (« + 1)
n~~ 6 ~ ~6 '

oü n est un entier positif.
Le but de cette note est de donner une demonstration elementaire de la proposition

suivante:

Th£or£me. II existe une infinite des paires de nombres tetraedraux distincts dont la
somme est un nombre tetraedral.

Demonstration. Definissons les suites infinies d'entiers positifs an et bn (n 1, 2,

par les conditions

ax 9, bx 4, an+1 161 an + 360 bn, bn+1 72 an + 161 &„ (1)

pour n 1,2,
II rEsulte sans peine de (1) par l'induction que

les nombres an (n 1, 2, sont divisibles par 9 (2)

3 bn> an pour w 1, 2, (3)

«»+1 > <*n > &n+l > ^ P0Ur ^ 1, 2, (4)

On verifie sans peine l'identite

(161a + 360Ö)2 - 5 (72a + 161b)2 a* - 562,

d'apres laquelle il resulte de (1) que

<41 ~ 5 6n+i «2 - 5 hl Pour » 1, 2,

et comme a\ — 5 b\ 92 - 5 • 42 1, il en r<_sulte par l'induction que

al - 5 bl 1 pour n l,2, (5)

Posons maintenant

Wn 3 6B 4- -?»-, vn 3bn-^-, wn 4 bn pour n 1, 2, (6)

D'apres (2) et (3) les nombres (6) seront des entiers > 1 et, d'apres (4) on aura

un+1 > un pour n 1, 2, • (7)

D'apres (6) on vErifie sans peine qu'on a pour n 1,2, ...:

<+<-<-«n-Vn+">n= K + Vn) K ~ Un Vn + ^n ~ *) ~ Wl + «>«

2^M(a2-562-l),
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d'oü, d'apres (5), on trouve u\ + v\ — w\ — un — vn -f- wn 0 pour n 1, 2, d'oü

u V
_1_

w

donc

7^ + r%_x T^.! pour n 1, 2, (8)

D'apres (6) onawB> vn pour n=l,2, donc rWn_! > TVn_lt et, d'apres (7), les
nombres un — 1 peuvent etre aussi grands que l'on veut La formule (8) prouve donc

que notre theoreme est vrai.
On a, par exemple,

% ___ 3 bx + ^ 34 + 3 15, vj 3 &! - -^ 34 - 3 9 z^ 4 ^ 16

donc, d'apres (8) Tu -\- Ts= Tu
Or, les formules (8) ne donnent pas toutes les Solutions de l'equation Tx + Ty T2

en nombres naturels x, y, z, puisqu'on a, par exemple

-*54 + -*20 ~ ^55 » ^118 "+" -*34 ~ -M19 > -^138 + ^38 ^140

II est k remarquer qu'il existe une paire des nombres tetraedraux egaux, dont la
somme est un nombre tetraedral, puisque _T3 + Tz T4. Je ne sais pas s'il existe
d'autres telles paires Or, il resulte facilement d'un theoreme de M A. Thue, pubhe
dans Det Kong Norske Vid Selskab Sknfter 1911, Nr. 3, que l'equation 2 Tx Ty

n'a qu'un nombre fini de Solution en nombres naturels x et y
II resulte tout de suite de notre theoreme qu'tl existe une infinite des paires de

nombres tetraedraux distincts dont la difference est un nombre tetraedral. Par exemple
Tis - ^i4 T8.

Or, je ne connais aucune paire des nombres tetraedraux distincts dont la somme
ainsi que la difference seraient des nombres tetraedraux. W. Sierpinski (Varsovie)

Dichteste Kreispackungen aufeinem Zylinder
Gewisse Pflanzenformationen, wie zum Beispiel der Maiskolben, legen die Frage

der dichtesten Kreispackung auf einem Zylinder nahe wieviele aus Papier
ausgeschnittene Kreisscheiben vom Durchmesser 1 lassen sich auf den Mantel eines
vorgegebenen, «sehr langen» Zyhnders ohne gegenseitige Überdeckung aufkleben

Betrachten wir den einfachen Fall, m dem der Umfang U des Zylinders eine natürliche

Zahl U n ist. Dann können wir n Kreise in gleicher Hohe so anbringen, dass

der erste Kreis den zweiten, der zweite den dritten, der n-te den ersten berührt.
Es entsteht em «Kreisring». Aus solchen Kreisringen lasst sich eine dichteste
regelmassige1) Kreislagerung aufbauen, in der die Berührungspunkte der Kreise jede
Kreislinie in sechs Teilbogen zerlegen2). Die Dichte dieser Kreispackung betragt

x) Die Regulantat bedeutet, dass sich jeder Kreis in jeden anderen durch eine Deckbewegung der
Lagerung überfuhren lasst

2) Im Falle n > 1 lasst sich diese Kreispackung einfacher kennzeichnen jeder Kreis wird von sechs
anderen berührt
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