Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 17 (1962)

Heft: 1

Artikel: Schaltalgebra

Autor: Lauchli, P.

DOl: https://doi.org/10.5169/seals-21903

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-21903
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

P. LAucuLi: Schaltalgebra 3

men zu diesem oder jenem Zwecke brauchbar sind. Dann ist aber die Mathematik
zur blossen Automatik degradiert.

Nach diesen Hinweisen erinnern wir nun an die zwar wenig bekannte, iiberragend
wichtige, oft verschwiegene, aber — soweit uns bekannt ist — niemals widerlegte Tat-
sache, die FINSLER?) entdeckte. Sie gilt fiir hinreichend allgemeine formale Systeme,
deren Grundsdtzen und Regeln (siehe Abschnitt 4) auch ein inhaltlicher Sinn zu-
kommt: Es lassen sich stets Sdtze, also Zeichenkombinationen angeben, die sicher for-
mal widerspruchsfrei sind, aber inhaltlich doch einen angebbaren Widerspruch enthalten.

Der Beweis hierfiir ist keineswegs allzu schwer. Immerhin wire es wiinschenswert,
wenn er von verschiedenen Fachleuten neu durchgearbeitet und vielleicht sogar noch
wesentlich vereinfacht werden konnte, damit die Einsicht in diese fundamentale
Tatsache, die grundséitzlich iiber die berithmt gewordene Godelsche Bemerkung weit
hinausgeht, moglichst bekannt wiirde, in erster Linie in Kreisen der Mathematik-
lehrer. L. LoCHER-ERNST

4) P. FinsLeERr: Formale Beweise und die Entscheidbarkeit. Math. Zeitschrift 25 (1926).

Schaltalgebra

1. Einleitung

Die Logik ist eine uralte Disziplin der Geisteswissenschaften. Gelehrte aus verschie-
denen Kulturvélkern haben sich immer wieder mit ihr abgegeben, und sie hat zu-
weilen auch recht seltsame Bliiten getrieben. Ein Teil der ihr innewohnenden faszi-
nierenden Problematik mag davon herriihren, dass der Gegenstand der Untersuchung
selbst wesentlich als Instrument verwendet wird. Fiir eine ausfithrliche geschichtliche
Ubersicht sei auf [1]1) verwiesen. Man findet dort auch eine sehr umfangreiche Biblio-
graphie.

Ein wichtiger Abschnitt in der historischen Entwicklung setzt dort ein, wo man
beginnt, in Richtung auf die Mathematik hin zu formalisieren. Der Name von
GEORGE BOOLE muss in diesem Zusammenhang genannt werden. Seine grundlegenden
Publikationen stammen aus der Mitte des letzten Jahrhunderts (siehe vor allem [2]).
Wesentlich ist fiir uns, dass ein Kalkiil gebildet wird, der nach gewissen, leicht zu
formulierenden Regeln funktioniert und schliesslich sogar von der inhaltlichen
Deutung gelost werden kann. Diese mathematische Logik hat sich zu einem kriftigen
Instrument fiir die Erforschung der Grundlagen der Mathematik entwickelt. So ist ja
zum Beispiel das Werk von HiLBERT und BErNAYS auf diesem Gebiet berithmt ge-
worden [4]. Eine Einfithrung in die mathematische Logik, besonders auch den Aus-
sagenkalkiil, gibt das Buch von HILBERT und ACKERMANN [3].

Auf der anderen Seite hat die Technik der Nachvichteniibertragung und der Auto-
matik in unserem Jahrhundert eine stiirmische Entwicklung genommen. Schon bald
wurden elektrische Schaltkreise von solchen Ausmassen verwendet, dass es immer
schwieriger war, die Ubersicht zu behalten, und es entstand das dringende Bediirfnis
nach einer « Kurzschrift» fiir die Beschreibung von Schaltungen. Aus dem Verlangen,
immer schnellere und kompliziertere Apparate zu bauen, ergab sich eine Entwicklung
von mechanischen Konstruktionen iiber elektromechanische (Schalter, Relais) zu

1) Die Zahlen in cckigen Klammern beziehen sich auf das Literaturverzeichnis am Schluss der Arbeit.
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rein elektronischen Schaltungen (ohne bewegte Teile). Eine Konsequenz dieser Ent-
wicklung ist, dass dort, wo das Prinzip des Zihlens (im Gegensatz zum Analogie-
prinzip) zur Anwendung kommt, aus Griinden der Betriebssicherheit und Einfachheit
vor allem mit zweiwertigen Grossen gearbeitet wird. Das bedeutet aber wieder, dass,
sofern es sich um arithmetische Vorginge handelt (vor allem natiirlich auf dem
Gebiet der Rechenautomaten), das bindre Zahlsystem an Bedeutung gewinnt. Und auf
der Seite der logischen Verkniipfung von Schaltvorgingen kommt ein kleiner Zweig
aus einem der abstraktesten Gebiete der Mathematik, ndmlich der Aussagenkalkiil,
zu einer ganz unvorhergesehenen Anwendung in der Form unserer Schaltalgebra.

Unter den ersten, welche in den Dreissigerjahren den Kalkiil auf Telephon- und
Rechenmaschinenschaltkreise anwendeten, sind C. E. SHANNON und H. H. AIKEN zu
nennen. Heute gehort in jedes Lehrbuch der digitalen Schaltungstechnik ein ein-
leitendes Kapitel tiber « Schaltalgebra», « Schaltungslogik», «Boolesche Algebra», oder
wie sonst die Bezeichnungen lauten (siehe [5]).

Von den vielen moglichen Anwendungen seien stichwortartig die folgenden Bei-
spiele genannt:

1. Entwurf einer Schaltung. Gewiinschte Eigenschaften durch die «Kurzschrift»
ausdriicken. Aus dieser die Schaltung realisieren.

2. Zwei verschiedene Schaltungen seien gegeben. Frage, ob sie dquivalent sind. Die
entsprechenden Ausdriicke der «Kurzschrift» auf eine eindeutig bestimmte Normal-
form bringen. Vergleichen.

3. Vereinfachung einer gegebenen Schaltung in der Kurzschrift-Form (wobei die
Definition der «einfachsten Schaltung» nicht selbstverstindlich ist).

Mit diesem Aufsatz soll auf der einen Seite eine kurze Einfithrung in die Deutung,
die der Elektroingenieur dem Aussagenkalkiil gegeben hat, versucht werden. Anderer-
seits wird anhand eines speziellen Problems gezeigt, wie sich aus dem so elementaren
Kalkiil sofort wieder interessante mathematische Fragestellungen ergeben.

2. Der Kalkiil

Wir stellen uns nun auf den rein formalen Standpunkt und sprechen von einem
Kalkiil, in welchem jede Variable den Wert 0 oder 1 annehmen kann. Die Beschrin-
kung auf diesen Wertevorrat zieht natiirlich einschneidende Konsequenzen nach sich:
die Rechenoperationen lassen sich durch Wertetabellen definieren, und die Richtig-
keit einer Identitit kann einfach durch Nachrechnen der endlich vielen Moglichkeiten
gepriift werden.

Folgende drei Rechenoperationen werden beniitzt:

1. Negation. Schreibe: x; lies: «nicht x».
2. Konjunktion. Schreibe: x - y, oder nur x y; lies: «x mal y».
3. Disjunktion. Schreibe: x v y; lies: «x oder y».

Die Definitionen lauten, in Form von Tabellen:

®

v |

0
1

1
0

O O
=2
- o O QO
P e e O
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Leider herrscht in der Literatur eine ziemliche Verwirrung beziiglich der Schreib-
weise; wir glauben, uns fiir eine solche entschieden zu haben, welche Missverstind-
nisse moglichst ausschliesst.

Offensichtlich kénnen diese drei Operationen im Sinne der Aussagenlogik so inter-
pretiert werden, dass x das Gegenteil von x bedeutet und die Aussage xy genau dann
zutrifft, wenn sowohl x als auch y wahr sind, x v y hingegen, wenn dies fiir mindestens
eine der beiden Aussagen x und y gilt.

Eine sehr anschauliche Realisierung des Kalkiils erhdlt man mittels elektrischer
Schalter: der Qperation «Mal» entspricht dann die Serie-, dem «Oder» die Parallel-
schaltung von Kontakten. Ferner trifft man zweckmissigerweise die Konvention,
dass einer nicht iiberstrichenen Variabeln ein im gezeichneten Ruhezustand geoff-
neter, einer negierten Variabeln ein geschlossener Schalter entsprechen soll. So
wiirde zum Beispiel der Boolesche Ausdruck

w * (XY v 2)
durch folgende Schaltung dargestellt:

Wiy - B
A , o
N0

Figur 1
Realisierung eines Booleschen Ausdrucks durch Relaisschaltung.

Das heisst, zwischen 4 und B besteht genau dann Verbindung, wenn der obige Aus-
druck den Wert 1 hat, wobei die Schalter im Falle, dass man den entsprechenden
Variabeln den Wert 0 gibt, die gezeichnete Lage einnehmen sollen.

Bei den elektronischen Schaltungen werden die Werte 0 und 1 durch andere zwei-
wertige Grossen dargestellt (zwei verschiedene Spannungspegel, Stromimpulse ver-
schiedener Richtung etc.) und durch entsprechende Grundschaltungen («Tore») mit-
einander verkniipft.

Es sollen nun einige der wichtigsten Rechenregeln und hervorstechenden Wesens-
ziige des Kalkiils zusammengestellt werden. Dabei werden Klammern und Identitdts-
zeichen (=) in der iiblichen Bedeutung verwendet, und es gilt die im obigen Beispiel
bereits stillschweigend beniitzte Konvention, dass «Mal» stirker bindet als «Oder».
Die Verifikation der Identititen durch Einsetzen aller moglichen Werte oder durch
Zuriickfithren auf schon bewiesene Gesetze sei dem Leser iiberlassen.

Unsere beiden Rechenoperationen sind kommutativ und assoziativ, ferner gilt das
Distributivgesetz:

x(yvz) =xyvaz. (1)
Trivial sind die folgenden Identititen:
XX =XVX=X =X
xx =0 (2)
vy =1
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Wichtig fiir das Umformen, Vereinfachen von Booleschen Ausdriicken sind:

XYVEY =X l
XVXy =% 3)
XVEY =XVY. l

(Versuche, die letzte Identitdt (3) auf die ersten beiden zuriickzufiihren). Die beiden
Identitdten

Xy =xvy
. o
Avy =xy

lassen sich als Spezialfille dem folgenden wichtigen Satz unterordnen:

Ein Boolescher Ausdruck wird negiert, indem man diberall - und v sowie 0 und 1
vertauscht sowie alle Variabeln exnmal negiert.

Dabei sind natiirlich die Klammern sinngemiss zu setzen.

Das in diesem Satz steckende Dualitdtsprinzip ist charakteristisch fiir den Aus-
sagenkalkiil. Es besagt unter anderem, dass zu jeder Identitidt eine duale gehort,
welche man erhilt, indem man nach der Vorschrift des angefithrten Satzes beide
Seiten negiert. Natiirlich darf man dann, um eine bequemer lesbare Form zu erhalten,
negierte Variable wieder durch die nicht negierten ersetzen. So lautet zum Beispiel
das zu (1) duale und auf den ersten Blick viel weniger selbstverstindliche Distributiv-
gesetz:

xvyz=(xvy) (xv2). (5)

(Man versuche auch, (5) nur aus den iibrigen angegebenen Identititen herzuleiten).

In dhnlicher Weise, wie man in der Schulalgebra einen rationalen Ausdruck durch
Ausmultiplizieren von Klammern, Kiirzen und Wegschaffen von Doppelbriichen
vereinfacht, bis er als Quotient von zwei Polynomen dasteht, so kann man auch
jeden Booleschen Ausdruck auf eine gewisse Normalform bringen, und zwar setzen
wir als solche die durch v verbundene Folge von Produkten fest. Beispiel:

(xvy) [zvw(xvy)] =xzvyzviywyiyw

Natiirlich ist diese Form nicht eindeutig bestimmt. Soll zum Beispiel ein Boolescher
Ausdruck durch eine Schaltung realisiert werden, dann hat man grosses Interesse
daran, ihn so stark wie moglich zu vereinfachen, um Schaltelemente einzusparen.
Dabei kommen wieder Gln. (3) und die iibrigen Identitdten zur Anwendung. Allerdings
sind die zur Vereinfachung notigen Schritte umso weniger leicht zu sehen, je mehr
Variable mit im Spiel sind. Man versuche zum Beispiel den Ausdruck

XYV YZIVXZ

auf einen solchen zu reduzieren, der nur noch zwei Produktterme zu je zwei Variabeln
errthdlt. (Siehe auch Wiirfelmethode am Schluss der Arbeit).

Eine ausgezeichnete, eindeutig bestimmte Normalform erhdlt man durch die Forde-
rung, dass in jedem Produkt jede Variable genau einmal vorkommen soll, und dass
nicht zweimal dasselbe Produkt aufgefiihrt werden darf. Diese Form hat nun die
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Eigenschaft, dass jeder Wertekombination der Variabeln, fiir welche der Ausdruck
den Wert 1 annimmt, ein solcher Produktterm entspricht, und dass demzufolge
genau die hier fehlenden Terme in der Negation desselben Ausdrucks auftreten. Zum
Beispiel ist

XVY SXYVEYV XY

xvy =xY

x vy ist gleich 1 fiir:

O M PR
S O =i

So schreibt man fiir eine Funktion, welche durch ihre Wertetabelle gegeben ist,
sofort die ausgezeichnete Normalform hin, und diese kann man dann zu reduzieren
versuchen.

Die hier gegebene Festsetzung der Normalform ist an sich willkiirlich. Sie hat sich
jedoch, besonders in der Elektrotechnik, besser eingebiirgert als die duale Form.

3. Ein spezielles Problem

Statt weitere allgemeine Sitze zu zitieren, soll im folgenden versucht werden,
anhand eines speziellen Problems etwas weiter in die Schaltalgebra einzudringen.

Die Frage nach der Anzahl verschiedener logischer Funktionen von # Variabeln
lasst sich leicht beantworten: Die » Argumente lassen sich auf 27 verschiedene Arten
mit O oder 1 belegen. Eine Funktion weist jeder dieser 2" Wertekombinationen den

Funktionswert 0 oder 1 zu. Dies ist aber auf 22" verschiedene Arten moglich.
Diese Anzahl wichst sehr rasch mit #:

n 22"

1 4
2 16
3 256
4 65536

Um iiberhaupt eine gewisse Ubersicht behalten zu konnen, muss man die Gesamtheit
aller moglichen Funktionen von # Variabeln irgendwie klassifizieren. Wir wollen eine
solche Einteilung etwas anschaulich motivieren:

Man denke sich eine Funktion, zum Beispiel von drei Variabeln, durch eine elek-
tronische Schaltung realisiert, um deren Aufbau wir uns aber nicht kiimmern. Viel-
mehr betrachten wir das System als abgeschlossenen Kasten mit drei Eingédngen,
an denen die Werte von x, ¥, z anzulegen sind, und mit einem Ausgang, welcher den
Wert von f liefert :

y —= — [y, Z)

Figur 2
Schaltung mit drei Eingingen.
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Wenn wir nun die Variabeln an den Eingingen desselben Kastens in einer anderen
Reihenfolge oder negiert geben, dann wird im allgemeinen eine andere Funktion g der
urspriinglichen Variabeln herauskommen:

- fxZ)mg(x,y,2)

N| x k|

Figur 3
Dieselbe Schaltung erzeugt neue Funktion.

Beispiel:
fx,y,2) =xvyz, gx,v,2) =yvxz.

Es scheint nun wohl verniinftig, Funktionen, welche durch solche Eingangstrans-
formationen auseinander hervorgehen und somit durch ein und dieselbe Schaltung
realisiert werden konnen, als nicht wesentlich verschieden zu betrachten und in
eine Aquivalenzklasse zu werfen. In diesem Sinne dquivalente Funktionen unter-
scheiden sich natiirlich auch in der Schreibweise nicht wesentlich.

Das Problem, das zur Diskussion gestellt wird, ist die Bestimmung der Anzahl
K(n) von so definierten Klassen. Es handelt sich um eine durchaus nichttriviale
Aufgabe, und wir werden keine geschlossene Formel fiir die Lésung angeben kénnen.

Die folgenden Feststellungen sollen das Problem etwas naher erliutern:

1. Anhand der fiir » = 2 angedeuteten Tabelle iiberlegt man sich leicht, dass
jede der erwihnten Eingangstransformationen (Vertauschen und/oder Negieren in
den ersten # Zeilen) eine gewisse Permutation der 2* Eingangswertekombinationen und
damit der Spalten der Tabelle induziert:

27 Eingangskombinationen

X
n Variabeln {
y

22" Funktionen

Diese 2% - n! Permutationen bilden eine transitive Gruppe, welche zur Drehspiege-
lungsgruppe W, des n-dimensionalen Wiirfels isomorph ist (die Werte in den ersten
n Zeilen kénnen als Koordinaten der 2" Ecken aufgefasst werden).

2. Jede Permutation der Spalten induziert wiederum eine Permutation der rest-

lichen Zeilen der Tabelle, das heisst in der Menge F der 22" Funktionen von # Varia-
beln. Diese neue Permutationsgruppe ist wieder isomorph zur W,, aber nicht mehr
transitiv beziiglich F, sondern die Transitivitdtsgebiete in F sind gerade unsere ge-
suchten Aquivalenzklassen.
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Eine triviale, aber auch viel zu kleine untere Schranke fiir K(») erhilt man aus der
Uberlegung, dass nur Funktionen untereinander permutiert werden, welche die
gleiche Anzahl Einsen in ihren Funktionstabellen enthalten, also

Km) > 2+ 1.

AIKEN schldgt in [7] die folgende naheliegende, aber wegen des Aufwandes fiir
n > 3 praktisch kaum durchfithrbare Methode zur Bestimmung von K(n) vor: Man
greift ein beliebiges Element aus F heraus und {ibt darauf alle Permutationen aus
W, aus. Damit erhdlt man eine erste Klasse. Mit einem nicht in dieser enthaltenen
weiteren Element fithrt man denselben Prozess aus, etc., bis ganz F ausgeschopft ist.

Eine wesentlich elegantere Methode ergibt sich bei Beniitzung einiger einfacher
darstellungstheoretischer Hilfsmittel, und zwar betrachtet man die natiirliche Dar-
stellung D der Permutationsgruppe iiber F durch Permutationsmatrizen. Diese Dar-

stellung hat den Grad 22", Zunichst zerfillt D sicher in soviele Summanden als Transi-
tivitdtsgebiete existieren, also K(n). Jeder dieser Summanden kann nun als nattirliche
Darstellung einer transitiven Permutationsgruppe aufgefasst werden und enthilt
deshalb die triviale Darstellung genau einmal. Man hat somit auszurechnen, wie oft
die triviale Darstellung in © enthalten ist:

1
Kin) = gy 205
]

(h; = Anzahl Elemente von W, in der j-ten Klasse von konjugierten Elementen;
x; = Charakter der j-ten Klasse).

Fiir die ziemlich miithsame Diskussion dieser Formel siehe [6].

(Der Verfasser wurde erst nachtriglich auf eine Arbeit von POLYA aufmerksam,
in welcher dasselbe Problem ohne Darstellungstheorie, direkt auf Grund der
Zyklenstruktur der Gruppe W, behandelt wird [ Journal of Symbolic Logic, 5 (1940)
p. 98]).

Zum Schluss moge das Problem fiir # = 3 noch etwas ausfiihrlicher behandelt
werden, und zwar auf eine anschaulich-geometrische Art. Dieser Fall ist deshalb von
gewissem Reiz, weil sich die Losung zwar kaum mehr auf den ersten Blick hinschrei-
ben ldsst, aber doch in durchaus elementarer Weise die Anzahl K(3) durch explizite
Aufzahlung aller Klassen angegeben werden kann.

Zu diesem Zwecke braucht man sich nur jede Boolesche Funktion von drei Varia-
beln durch eine 0-1-Belegung der 2% = 8 Ecken des dreidimensionalen Wiirfels dar-
gestellt zu denken. Diese Belegung hat natiirlich im Sinne der vorigen Tabelle zu
erfolgen, wo jeder Wiirfelecke eine Spalte entspricht und die zu einer Funktion f
gehorige Zeile direkt angibt, welche Ecken mit 1 zu belegen sind. Oder anders aus-
gedriickt: Zu jedem méglichen Term in der ausgezeichneten Normalform einer logi-
schen Funktion gehért eine Ecke; und diejenigen Ecken, welche einem bei f wirklich
vorkommenden Term entsprechen, werden mit 1 belegt.

So wird zum Beispiel die Funktion

f=XyZVXYZVXYZVEYZVXYZ

durch die folgende Belegung reprasentiert (Figur 4, Ecken mit 1 sind hervorgehoben).
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Aus unserem Wiirfelbild ist iibrigens auch sofort ersichtlich, wie die ausgezeichnete
Normalform vereinfacht werden kann. Dazu beachte man, dass

1. zwei Terme, die zu Ecken gehoren, welche durch eine Kante verbunden sind,
durch einen einzigen Term ersetzt werden kénnen, der nur zwei Variable enthilt;

2. vier Terme, deren entsprechende Ecken in einer Seitenfliche liegen, durch
einen einzigen Term ersetzt werden konnen, der nur aus einer Variabeln besteht.

Im obigen Beispiel gehoren so die letzten beiden Terme zur Kante x 2, die ersten
vier Terme zur Fliche y, also vereinfacht sich der Ausdruck zu f = x z v y (Figur 5).

Z

Z
Xyz xyz

0

i 5/

/ d
¥i73 / AYE )
Figur 4 Figur 5
Wiirfelbild einer Funktion f(x, y, z). Vereinfachungen in der Funktion f.

Dass dabei der vierte Term zweimal beniitzt wurde, indem die betreffende Ecke
einmal zu einer Kante und einmal zu einer Fliche geschlagen wurde, schadet natiirlich
nichts, wegen x v x = x. Vielmehr dient eben gerade die Ausniitzung dieses fiir die
Schaltalgebra typischen Effektes hdaufig als Trick zur Vereinfachung von Booleschen
Ausdriicken. (Man versuche den Ausdruck

XYVXYVYZVYZ
so zu reduzieren, dass nur noch drei Terme mit je zwei Variabeln auftreten. Bei

rechnerischer Behandlung sieht man die Lésung nur schwer, mit der Wiirfelmethode
wird die Aufgabe sehr leicht.)

Q Q

/ - L " .

Figur 6
Konfigurationen fiir p = 3.

Entsprechende Vereinfachungsmethoden sind auch fiir den Fall # = 4 im Gebrauch
(siehe [5]).
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Um schliesslich wieder auf das Problem der Klasseneinteilung zuriickzukommen,
so gehdren nun eben zwer Funktionen genaw dann zur selben Aquivalenzklasse, wenn
sich die zugehorigen Wiirfelbelegungen durch eime Dreh-Spiegelung ineinander iiber-
fithren lassen. Und um die Klassen aufzuzdhlen, hat man der Reihe nach fiirp =0, 1,
..., 8 zu untersuchen, wieviele nicht kongruente Konfigurationen von $ Einern ge-
bildet werden konnen. Zum Beispiel findet man fiir 4 = 3 die vorstehenden drei mog-
lichen Fille (Nr. 6, 7, 8 der nachstehenden Tabelle).

Kll\lesse b Anzahl Funktionen Reprisentant
I.

1 0 1 0

2 1 e= 8 xXyez

3 2 k=12 xy

4 2 21 =12 XYEVEYZ= (XY VEY)2

5 2 d= 4 XYENEYZ

6 3 41 =24 xzvyz= (¥ vy)z

7 3 2k =24 XYZVEY

] 3 e = 8 XVZVEYENXYZ

9 4 f= 6 x

10 4 e = 8 XY VYEVXZ

11 4 6d =24 XY VEE

12 4 4f=24 XYZVEYVEZ=XYEZVE Y2

13 4 k]2 = 6 Xy VvEYy

14 4 2 FYZVEYIVEYZVEYZ

15 5 e= 8 XYVYZVEIVIEYS

16 5 41 =24 XY VEXZVEY

17 5 4f=24 xXvyz

18 6 4 XY VYZVEIX

19 6 2f=12 XYVEYVZ

20 6 k=12 xvy

21 7 e= 8 XVyvz

22 8 1 1

D) =256

(Man versuche dasselbe fiir p = 4.)

Die Anzahl der verschiedenen Funktionen, die zu einer Klasse gehoren, erhilt man
dann sofort, wenn man auszihlt, auf wieviele Arten das betreffende Gebilde auf den
Wiirfel gelegt werden kann. Zum Beispiel passt das erste der drei abgebildeten auf
vier Arten auf jede Fliche, also Anzahl = 4 f = 24.

In der obigen Tabelle ist bei jeder Klasse diese Anzahl mit aufgefiihrt, wo-
bei 'mit ¢, &, f, d der Reihe nach die Zahl der Ecken, Kanten, Flichen und Raum-

diagonalen des Wiirfels gemeint ist. Dazu wird bei jeder Klasse ein Reprisentant
angegeben.
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Man findet also K(3) = 22. (Unter den 22 verschiedenen Konfigurationen gibt es
eine einzige, welche nicht durch Drehungen allein in alle zu ihr kongruenten tiber-
gefiihrt werden kann, wo also eine Spiegelung notwendig ist. Welche?) Wegen der
Dualitdt des Kalkiils wiirde es geniigen, die Tabelle bis und mit p = 4 aufzustellen.
Um Reprdsentanten fiir die restlichen Klassen zu finden, hidtte man lediglich die dual
entsprechenden Ausdriicke zu negieren. P. LAucHLI, Ziirich
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Verschirfung eines Kreisabdeckungssatzes

Von HADWIGER stammt der folgende bekannte Satz:

Die ebene Menge solcher Kreise von gleichem Durchmesser, die paarweise einen
nichtleeren Durchschnitt besitzen, ldsst sich in drei Teilmengen so zerlegen, dass die
zu derselben Teilmenge gehorigen Kreisbereiche simtlich einen nichtleeren Durch-
schnitt besitzen [1]1). _

Es ist auch bekannt, dass die Punktmenge einer abgeschlossenen Orbiforme vom
Durchmesser 4 sich mit genau so vielen abgeschlossenen Kreisbereichen vom Durch-
messer d abdecken ldsst, wie sich die Menge von abgeschlossenen Kreisbereichen vom
gleichen beschriankten Durchmesser in solche Teilmengen zerlegen ldsst, dass die zu
jeder Teilmenge gehorigen Kreisbereiche simtlich einen nichtleeren Durchschnitt
aufweisen [2].

Eine Orbiforme vom Durchmesser 4 ldsst sich aber bekanntlich sogar mit 3 Krei-
sen vom Durchmesser 4 ]/§/Z abdecken [3], [4].

Diese letzterwdhnte Behauptung ermoéglicht die Verschirfung des Satzes von
HADWIGER [1].

Sei M die Menge derjenigen abgeschlossenen Kreisbereiche K, (x € 4) vom Durch-
messer 4 der euklidischen Ebene, die paarweise einen nichtleeren Durchschnitt auf-
weisen, das heisst, wenn K, € M und Kz € M, dann gilt K, N K, * 0, wenn « + f3
(x, B € A). Eine Kreismenge M heisst vollstindig, wenn keine solche Kreismenge M’
existiert, welche die gleichen Bedingungen wie M erfiillt und eine echte Teilmenge
von M bildet. Im folgenden setzen wir voraus, dass die vorkommenden Kreismengen
immer vollstindig sind. Es ist noch zu erwdhnen, dass eine Punktmenge sich auch
als Kreismenge von Nullkreisen betrachten lisst.

1) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 14,
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