Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 16 (1961)

Heft: 6

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

134 Aufgaben

Der Vergleich von (3) und (1) ergibt:

$$\overline{C_2E_4} = i \ \overline{B_1D_3}$$
, was zu beweisen war.

Anmerkung. Der ebene Streckenzug $A_1A_2A_3A_4A_1$ ist ganz beliebig; insbesondere kann er einfach sein oder sich durchkreuzen, er darf ganz oder teilweise auf gerader Linie verlaufen, endlich dürfen einige seiner Strecken Nullstrecken sein. N. Kritikos, Athen

Inequalities for a triangle, II

In this note ϱ_i and h_i (i=1, 2, 3) denote the radii of the ex-circles and the altitudes of a triangle with the sides a_1 , a_2 , a_3 ; F denotes its area. G(x) and H(x) denote the geometric and harmonic means of x_1 , x_2 , x_3 respectively.

In [1] it is proved that $G(h) \leq G(\varrho)$. Here I prove the inequalities

$$G(h) \le 3^{1/4} F^{1/2} \le G(\varrho)$$
, (1)

$$H(h) = H(\varrho) \le 3^{1/4} F^{1/2}$$
. (2)

Proof: It is known that

$$3^{3/2} \gamma^2 \leq F \leq \frac{3^{3/2}}{4} R^2$$
 ,

where r and R denote the radii of the inscribed and circumscribed circles (see [2], p. 6). Hence

$$2 R^{-1} \le 3^{3/4} F^{-1/2}, \tag{3}$$

$$r^{-1} \ge 3^{3/4} F^{-1/2}. \tag{4}$$

From the identity $8 F^3 = G^3(h) a_1 a_2 a_3 = G^3(h) \cdot 4 R F$ and from (3) it follows that $G^3(h) = 2 R^{-1} F^2 \le 3^{3/4} F^{3/2}$.

Hence we get the first part of (1).

From the identity $\varrho_1 \varrho_2 \varrho_3 = F^2 r^{-1}$ and from (4) it follows that

$$G^3(\rho) \geq 3^{3/4} F^{3/2}$$
.

Hence we get the second part of (1).

The inequality (2) follows immediately from the identity $\sum_{i=1}^{3} h_i^{-1} = \sum_{i=1}^{3} \varrho_i^{-1} = r^{-1}$ and from (4).

A. Makowski, Warsaw

REFERENCES

- [1] A. MAKOWSKI, Inequalities for a triangle, El. Math. 16 (1961), p. 60-61.
- [2] L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, Berlin-Göttingen-Heidelberg 1953.

Aufgaben

Aufgabe 387. Auf einem nichtzerfallenden Kegelschnitt k seien fünf Punkte P_1 , P_2 , P_3 , P_4 und S gegeben. Bekanntlich ist das Doppelverhältnis $\delta = ([S P_1] [S P_2] [S P_3] [S P_4])$ der vier Strahlen $[S P_i]$, i = 1, 2, 3, 4 gegenüber einer Bewegung von S auf k invariant.

- a) Wie müssen die Punkte P_1 , P_2 , P_3 , P_4 auf k gewählt werden, damit $\delta = -1$ wird?
- b) Wie muss die gegenseitige Lage von P_1 , P_2 , P_3 , P_4 sein, wenn $\delta = -1$ und k eine Parabel ist?
- c) In einem kartesischen Normalkoordinatensystem sind die Punkte $P_1(0, 0)$, $P_2(0, -1)$, $P_3(1, 0)$ gegeben. Wie ist P_4 anzunehmen, wenn bei $\delta = -1$ der Kegelschnitt k α) eine Parabel, β) eine gleichseitige Hyperbel, γ) ein Kreis sein soll?

R. Bereis und E. Schröder, Dresden

Lösung der Aufgabensteller: Eine Kollineation K, die die Punkte P_3 , P_4 in die absoluten Kreispunkte der Ebene von k transformiert, führt k in einen Kreis k' durch P_1' , P_2' , S' über. Aus den Verbindungsgeraden $[S P_3]$, $[SP_4]$ werden die isotropen Geraden i_1' , i_2' durch S'.

Aufgaben 135

Wegen der Konstanz des Peripheriewinkels über der gleichen Sehne bleibt der Winkel $\varphi'=\not \subset P_1'$ S' P_2' bei einer Bewegung von S' auf k' ungeändert. Nach Laguerre gilt die Beziehung

$$\varphi' = \frac{1}{2i} \lg ([S' P_1'] [S' P_2'] i_1' i_2') = \frac{1}{2i} \lg \delta'.$$

Hieraus folgt, dass auch das Doppelverhältnis δ' bei einer Bewegung von S' auf k' konstant bleibt. Wegen der Invarianz des Doppelverhältnisses von 4 Strahlen eines Büschels gegenüber Kollineationen gilt $\delta' = \delta$. Somit bleibt δ ungeändert, wenn sich S auf k bewegt.

Zu a): Für $\delta = \delta' = -1$ ist φ' ein rechter Winkel und demnach $[P_1' \ P_2']$ ein Durchmesser von k'. Die Ferngerade $[P_3' \ P_4']$ ist daher zu $[P_1' \ P_2']$ konjugiert. Da diese Eigenschaft der beiden Geraden invariant gegenüber Kollineationen ist, sind auch $[P_1 \ P_2]$ und $[P_3 \ P_4]$ bezüglich k konjugiert.

Zu b): Gibt man P_1 , P_2 , P_3 in allgemeiner Lage (nicht auf einer Geraden) vor, dann muss P_4 auf einer Parabel liegen, die das Dreieck P_1 P_2 P_3 als Tangentendreieck besitzt und die Seite $[P_1$ $P_2]$ im Mittelpunkt der Strecke P_1 P_2 berührt. Zu diesem Ergebnis gelangt man zum Beispiel dadurch, dass man mittels einer reellen Affinität P_1 , P_2 , P_3 in Punkte mit den kartesischen Normalkoordinaten $P_1'(0, 0)$, $P_2'(0, -1)$, $P_3'(1, 0)$ überführt und die in c) α) angegebene Rechnung durchführt, das Ergebnis diskutiert und affin zurücktransformiert.

Zu c): Bezeichnet man die Koordinaten von P_4 mit (x_0, y_0) und die von S mit (ξ, η) , so ergeben sich als Projektionen von P_1 , P_2 , P_3 , P_4 aus S auf die y-Achse die Punkte

$$P_{1}'=P_{1}(0,0), \quad P_{2}'=P_{2}(0,-1), \quad P_{3}'\left(0,\frac{\eta}{1-\xi}\right), P_{4}'\left(0,\frac{x_{0}\eta-y_{0}\xi}{x_{0}-\xi}\right).$$

Setzt man die Koordinaten von P_i in die Bedingungsgleichung

$$(P_1' P_2' P_3' P_4') = -1 (1)$$

ein, so ergibt sich bei festem P_4 als Ortskurve von $S = S(\xi, \eta)$ der Kegelschnitt

$$y_0 \xi^2 - \xi \eta (x_0 + 2 y_0 + 1) + 2 x_0 \eta^2 - y_0 \xi + 2 x_0 \eta = 0.$$
 (2)

Dieser geht durch die Punkte P_1 , P_2 , P_3 , P_4 und stellt

a) eine Parabel dar, wenn

$$(x_0 - 2y_0)^2 + 2x_0 + 4y_0 + 1 = 0 (3)$$

ist.

Sind P_1 , P_2 , P_3 vorgegeben, so muss P_4 auf einer Parabel liegen, die das Dreieck P_1 P_2 P_3 als Tangentendreieck besitzt und die Dreieckseite $[P_1$ $P_2]$ im Mittelpunkt der Strecke P_1 P_2 berührt;

 β) eine gleichseitige Hyperbel, wenn

$$y_0 + 2 x_0 = 0 (4)$$

ist. P_4 liegt somit auf einer Geraden durch P_1 . Sie ist Leitgerade der Parabel (3);

γ) ein Kreis, wenn die Gleichungen

$$x_0 + 2 y_0 + 1 = 0$$

$$2 x_0 - y_0 = 0$$
(5)

erfüllt sind. Dieser muss nach Voraussetzung Umkreis des Dreiecks P_1 P_2 P_3 sein.

Für P_4 ergeben sich die Koordinaten (-1/5, -2/5). Die Geraden $[P_1 P_2]$ und $[P_3 P_4)$ sind in Übereinstimmung mit den Ausführungen unter a) bezüglich des Kreises konjugiert.

Eine weitere Lösung sandte W. Jänichen (Berlin-Zehlendorf).

Aufgabe 388. Wieviele unter den ersten 3ⁿ natürlichen Zahlen lassen sich als Summe von positiven Potenzen von 3 darstellen? W. Jänichen, Berlin

136 Aufgaben

Lösung: Die gesuchte Anzahl ist 2^{n-1} , wenn der Summand 30 ausgeschlossen wird,

Beweis: Eine natürliche Zahl ist dann und nur dann als Summe von verschiedenen positiven Potenzen von 3 darstellbar, wenn ihre Darstellung im System mit der Basis 3 die Ziffer 2 nicht enthält. Dann aber ist diese Darstellung im System mit der Basis 3 zugleich die «Nummer» der natürlichen Zahl, dargestellt im Dualsystem. 3ⁿ, in der Form 100...00 (n Nullen) geschrieben, erhält so die Nummer 2n. Darf der Summand 30 nicht vorkommen, so fallen die ungeraden «Nummern», das heisst die Hälfte weg.

MARGRIT FREI, Zürich

O. REUTTER (Ochsenhausen) weist auf die Verallgemeinerung für eine beliebige natürliche Basis a > 1 hin. E. HERRMANN (Porz am Rhein) gewinnt die Anzahl $2^{n-1} - n$ für den Fall, dass mindestens zwei Summanden vorkommen sollen. Weitere Lösungen sandten L. Bernstein (Tel-Aviv), B. Bollobás (Budapest), A. Makowski (Warschau), H. Meili (Winterthur), J. Schopp (Budapest).

Aufgabe 389. Man beweise: Ist $x_i > 0$ (i = 1, 2, ..., n), dann ist

$$\left(\sum_{i=1}^{n} x_i\right)_{i=1}^{\sum_{i=1}^{n} x_i} \leq \prod_{i=1}^{n} (n x_i)^{x_i}$$

und Gleichheit besteht genau dann, wenn $x_1 = x_2 = \cdots = x_n$ ist. O. Reutter, Ochsenhausen/Deutschland

Lösung: Zunächst folgt für x > 0

$$x (\log x - 1) + 1 = \int_{1}^{x} \log x \, dx \ge 0$$
,

also $x^x = e^{x \log x} \ge e^{x-1}$, wobei das Gleichheitszeichen nur für x = 1 steht.

Setzt man daher $A = \frac{1}{n} \sum_{i=1}^{n} x_i$, so erhält man

$$\prod_{i=1}^{n} \left(\frac{x_{i}}{A}\right)^{\frac{x_{i}}{A}} \ge \prod_{i=1}^{n} e^{\frac{x_{i}}{A}-1} = e^{\sum_{i=1}^{n} \left(\frac{x_{i}}{A}-1\right)} = 1 ,$$

das heisst, es gilt auch $\prod_{i=1}^{n} \left(\frac{x_i}{A}\right)^{x_i} \geq 1$, wobei Gleichheit genau dann besteht, wenn $x_1 = x_2 = \cdots = x_n = A$ ist. Hieraus folgt die Behauptung sofort.

R. KÜHNAU, Sangerhausen/Deutschland

Herr F. Leuenberger (Zuoz) macht darauf aufmerksam, dass man auch die Ungleichung (vergleiche Polya-Szegö, Aufgaben und Lehrsätze aus der Analysis, Bd. I, S. 53, Nr. 78)

$$\frac{p_1 a_1 + p_2 a_2 + \dots + p_k a_k}{p_1 + p_2 + \dots + p_k} > \left(a_1^{p_1} a_2^{p_2} \dots a_k^{p_k}\right)^{\frac{1}{p_1 + p_2 + \dots + p_k}}$$

anwenden kann. Setzt man $a_i = 1/p_i$ und hernach $p_i = x_i$, so ergibt sich

$$\frac{1}{k}\sum x_i < \left(\prod x_i^{x_i}\right)^{1/\sum x_i}.$$

Hieraus folgt die Ungleichung der Aufgabe sofort. Der Aufgabensteller hat seinerseits nachträglich eine Verallgemeinerung angegeben. Weitere Lösungen sandten W. Jäni-CHEN (Berlin-Zehlendorf), H. MEILI (Winterthur), UNGAR TIHOMER (Novi Sad/Jugoslawien).

Aufgabe 390. Es seien a > 1 eine natürliche Zahl, keine Potenz von 10, und N eine natürliche Zahl. Es gibt mit m als natürlicher Zahl unendlich viele Potenzen a^m , die eine der beiden Bedingungen erfüllen:

- (1) Die dekadische Entwicklung von a^m beginnt mit 1 und hat darauf folgend mindestens N Nullen.
 - (2) Die dekadische Entwicklung von a^m beginnt mit mindestens N Neunern.

L. Holzer, Rostock

Lösung: Es sei $\varepsilon > 0$ so klein, dass $10^{\varepsilon} = 1,00...$ mit N Nullen und $10^{-\varepsilon} = 0,99...$ mit N Neunern nach dem Komma beginnt. $\log a$ ist irrational, also gibt es (Kettenbruch!) je unendlich viele rationale Zahlen n/m mit

$$\log a = \frac{n}{m} \pm \frac{\vartheta}{m^2}, \ 0 < \vartheta < 1.$$

Für die unendlich vielen m, für die noch $\vartheta/m < \varepsilon$ ist, gilt dann

$$n < m \log a < n + \varepsilon$$
 bzw. $n - \varepsilon < m \log a < n$,

also

$$10^n < a^m < 10^n \cdot 1,00\dots$$
 bzw. $10^n \cdot 0,99\dots < a^m < 10^n$

womit wegen $n \to \infty$ für $m \to \infty$ die Behauptungen bewiesen sind.

E. Teuffel, Korntal/Stuttgart

O. Reutter (Ochsenhausen/Deutschland) bemerkt, dass die Aussage der Aufgabe sich auch auf die g-adische Entwicklung der Potenzen a^m , wo $a \neq g^k$, verallgemeinern lässt.

Weitere Lösungen sandten B. Bollobás (Budapest), E. Herrmann (Porz am Rhein), A. Tipp (Soest/Deutschland).

Neue Aufgaben

Aufgabe 416. Ein Dreieck habe die Fläche Δ_0 . Verbindet man seine Ankreismittelpunkte, so entstehe ein Dreieck mit der Fläche Δ_1 . Wiederholt man dasselbe Verfahren bezüglich des neuen Dreiecks, so habe das entstehende Dreieck die Fläche Δ_2 usw. Es sei das Dreieck mit der Fläche Δ_n homothetisch zu demjenigen mit der Fläche Δ_n bei einer Charakteristik 1:2ⁿ. Man weise für das Grenzdreieck $\Delta = \lim_{n \to \infty} \Delta_n$ die Abschätzung

$$\Delta_0 \leq \Delta$$

nach.

F. LEUENBERGER, Zuoz

Aufgabe 417. Man beweise die folgende Umkehrung eines bekannten Satzes: Wenn der Schnittpunkt H der Ecktransversalen AA', BB' eines Dreiecks, die dessen Umkreis in A', B' zum zweiten Male treffen, die Eigenschaft hat, dass die Abschnitte $\overline{A'H}$, $\overline{B'H}$ von den Seiten BC resp. AC halbiert werden, und wenn H keine Ecke ist, so ist H der Höhenschnittpunkt des Dreiecks ABC.

C. BINDSCHEDLER, Küsnacht

Aufgabe 418. Es sei $[\alpha]$ die grösste ganze Zahl $\leq \alpha$ und $\alpha = [\alpha] + {\alpha}$. Man weise nach, dass für $0 \leq \xi \leq 1$

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} \left[\left\{ \frac{x^2}{n} \right\} + \left\{ \frac{\xi x}{n} \right\} \right] = f(\xi)$$

existiert, und bestimme $\max_{0 \le \xi \le 1} f(\xi)$

E. TEUFFEL, Korntal/Stuttgart

Aufgabe 419. In der Ebene seien n Punkte beliebig gegeben. Man zeige, dass diese Punkte mindestens n-2 verschiedene Winkel bestimmen und dass genau n-2 verschiedene Winkel nur dann bestimmt werden, wenn die Punkte ein reguläres n-Eck bilden. P. Erbös, Sydney

138 Bericht

Aufgaben für die Schule

Es wird kein Anspruch auf Originalität der Aufgaben erhoben; Autoren und Quellen werden im allgemeinen nicht genannt. Die Daten für Aufgaben aus der Darstellenden Geometrie sind durchwegs so festgelegt, dass der Ursprung des Koordinatensystems in der Mitte des linken Randes eines Blattes vom Format A 4 gewählt werden soll, x-Achse nach rechts, y-Achse nach vorn, z-Achse nach oben, Einheit 1 cm. Anregungen und Beiträge sind zu senden an Prof. Dr. WILLI LÜSSY, Büelrainstrasse 51, Winterthur.

- 1. In der gleichseitigen Hyperbel ist der Radiusvektor geometrisches Mittel der beiden Brennstrahlen.
- 2. An eine Ellipse werden zwei parallele Tangenten t_1 und t_2 gelegt. Die Geraden durch den Berührungspunkt B auf t_1 und durch die Brennpunkte schneiden t_2 in U und V. Es ist BU = BV = 2 a.
- 3. Die Berührungssehne zweier Hyperbeltangenten halbiert die Strecke, die auf einer Asymptote von diesen Tangenten ausgeschnitten wird.
 - ▶ Die Eigenschaft ist affin-invariant, sehr einfacher Beweis für die gleichseitige Hyperbel.
- 4. Im Punkt P einer Parabel wird die Tangente gezogen. Eine beliebige Sekante schneidet die Parabel in S_1 und S_2 , die Tangente in T, und den Durchmesser durch P in D. Es ist $\overline{TD^2} = \overline{TS_1} \cdot \overline{TS_2}$.
- 5. Einer Ellipse soll ein Rechteck mit vorgeschriebener Fläche umschrieben werden. Zwischen welchen Grenzen kann die Fläche variieren?
 - ▶ Das Rechteck muss dem orthoptischen Kreis der Ellipse einbeschrieben werden. Aus der bestimmbaren Sehne im orthoptischen Kreis ergibt sich eine bekannte Sehne im Hauptkreis, die an der richtigen Stelle konstruierbar ist.

$$F_{min} = 4 a b$$
, $F_{max} = 2 (a^2 + b^2)$.

Bericht

über das Seminar der Internationalen Mathematischen Unterrichtskommission (IMUK) vom 26. bis 29. 6. 1961 in Lausanne

Zum diesjährigen, der Schweiz übertragenen und unter dem Patronat der Schweizerischen Mathematischen Gesellschaft durchgeführten IMUK-Seminar fanden sich rund 100 Teilnehmer aus verschiedenen westeuropäischen Ländern am Genfersee ein. Die Leitung des Seminars lag in den Händen von H. Behnke (Münster), G. de Rham (Lausanne) und M. Rueff (Zürich). Im Vordergrund der Vorträge und Diskussionen stand diesmal der Analysis-Unterricht an der Mittel- und Hochschule.

Choquet (Paris) beleuchtete in seinem Vortrag den Analysis-Unterricht im Lichte der Bestrebungen des Bourbaki-Kreises. Mit der bewussten Betonung der Strukturen lässt diese Seite die Algebra und die Topologie stark in die Analysis hineinwachsen. Im Vortrag von Behnke (Münster) über die Geschichte der Anfängervorlesung zur Infinitesimalrechnung an den deutschen Universitäten und ebenso im Beitrag von Pickert (Tübingen) über die Einführung des Stetigkeits- und des Grenzwertbegriffs kam diese Tendenz zur Abstraktion nochmals deutlich zum Ausdruck. Sie ist zwangsläufig verbunden mit einer fortschreitenden Loslösung des Mathematik-Unterrichtes von den praktischen Anwendungen. Dass diese Entwicklung ihre Gefahren in sich birgt, wurde in verschiedenen Diskussionsvoten vermerkt; die Mathematik verschliesst sich ihren Nachbarwissenschaften, es werden Mathematiker für die Mathematik allein ausgebildet, der Formalismus beginnt, seine Blüten zu treiben, und was dahinter steckt, wird nur noch von wenigen verstanden. Den Gegenpol hiezu bildeten die Vorträge von Blanc (Lausanne), Gonseth (Lausanne-Zürich) und van der Waerden (Zürich), die sich über den Hochschulunterricht in Analysis für Ingenieure, Physiker und Naturwissenschafter äusserten. Die ganz