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Kleine Mitteilungen
Gegensätzliches Verhalten der arithmetischen und geometrischen Mittel

7. Vorbemerkungen
Das arithmetische Mittel A von n positiven Grössen ist nie kleiner als das geometrische

Mittel G. Fast ebenso bekannt dürfte die Tatsache sein, dass aus yit z{ > 0 und der Gültigkeit

von A(yt) ^ A(z{) arithmetisch nicht etwa die Relation G(yz) *> G(zt) folgt. Die
arithmetischen und geometrischen Mittel brauchen sich nicht gleichartig zu verhalten.
Zahlenbeispiele für gegensätzliches Verhalten können leicht gefunden werden, doch
mögen die folgenden geometrischen Beispiele aus der elementaren Dreiecksgeometrie
vielleicht von Interesse sein. Bieten sie gar dem einen oder andern Kollegen Anregung zu
kleinen Abweichungen vom üblichen Stoffprogramm an der Mittelschule, so erfüllt diese
Note ihren Zweck völlig. 3 3

Im folgenden ist H das harmonische Mittel, Z xi E %t und II %i II %t> Der Seite at
i l

im Bezugsdreieck A liege der Winkel <x2- mit dem Scheitel Ai gegenüber. A{ sei der eine
Endpunkt der Winkelhalbierenden wi und der Seitenhalbierenden mt. R, r und s seien
Um-, Inkreisradius und halber Umfang von A, ri der Radius des a{ berührenden Ankreises.

Wir zeigen vor allem, dass

und

A(mt) ^A(rt)
G(mt) :> G(rt)

|/3 A(at) ^2A(rt)
]/3 G(at) ^ 2 G(rt)

(I)

(II)

mit Gleichheit nur im gleichseitigen Dreieck gilt. Überhaupt realisiert in den jeweiligen
Beweisgängen bei « ^» und « ^» nur die reguläre Figur das Gleichheitszeichen, wenn
beide Seiten drei Grössen aufweisen. Überdies folgen alle Ungleichungen jeweils aus
Jensens Überlegungen für die Funktionen einer Variablen1), falls nicht eine besondere
Begründung angeführt wird. Die verwendeten Gleichungen sind leicht herzuleiten und
grösstenteils, vielleicht sogar ausnahmslos, bekannt. Auf Herleitungen glauben wir
deshalb hier verzichten zu dürfen.

2. Seitenhalbierende und Ankreisradien
Besonders reizvoll wird der Beweis der ersten Ungleichung von (I) auch für den Schüler,

wenn wir die Anschauung zu Hilfe nehmen. Die Anregung dazu verdankt der Verfasser
der Rubrik «Aufgaben für die Schule» dieser Zeitschrift2).

1) Jensen, Sur les fonctions convexes et les inigaliUs entre les valeurs moyennes. Acta Mathematica 30,
175-193, 1906.

2) El. Math. XIII, 2, Aufgabe 3 mit Figur 2, 45-46, 1958.
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Es ist PM MQ und damit MN \ (rx + r2). Im spitz- und stumpfwinkligen A gilt
wz ^ MN i(rx + r2) und Analoges fur wx und w2, nach Summation

A(wt) <A(rt).

N

m

P A M

(l)

Fig. 1

Im spitzwinkligen A, Figur 1, ist stets mz ^ MN, Analoges gilt fur mx und m2, demnach
A(mt) t^A(rt). Figur 2 dagegen zeigt, dass im stumpfwinkligen A mz ^ \(rx + r2),
weshalb wir durch Summation allein keine bindende Aussage gewinnen. Dagegesn gilt
ersichtlich mx <\ (a2 + az), m2 < i (ax + az) - Verbindung der Seitenmitten; eine Drei-
eckseite ist kleiner als die Summe der beiden andern - und mz < R, somit

2Jmt <R+^- + s <2R + s.

N

P A H

Fig. 2

> a; q

Für em behebiges A gilt
s* r2 + 4Rr+ 4 R2(l + IIcos a%)

für das stumpfwinklige demnach

s < r + 2 R wegen 77 cos at < 0

und damit wegen Vorangehendem

27 w* <4R + r=s £rt>
womit der Beweis für

A(mt) <LA(rt)
vollständig ist.

(2)
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Dank mt entstehen aus <xt die beiden Teilwmkel <xt x und oct 2 Es gilt

1 2 y sma.iSina,, „ a, r * * * + 1
• * 2sm-~-

2
und demnach

77**477^-77«.«»?-77'..
sm —-

2
was mit

TAI f H ' G^^GW (3)
gleichbedeutend ist

Bemerkung Durch den Beweis von (I) haben wir gezeigt, dass sich die arithmetischen
und geometrischen Mittel der Seitenhalbierenden und Ankreisradien gegensätzlich
verhalten Dagegen stosst man auf das «normale» gleichartige Verhalten, wenn man die
Winkelhalbierenden an die Stelle der Seitenhalbierenden setzt Es ist namhch

2 az_xal + x at / a,
wr ——* t + L cos -± ^ya,_^a,^ cos *

wegen H <^ G, somit

IIw>^na>cosCT nr>-
das heisät

G(wt) £ G(rt) (4)

(1) und (4) repräsentieren das behauptete gleichartige Verhalten In (1) erkennt man
übrigens em Korollanum der schärferen Ungleichung (2)

3 Seiten und Ankreisradien
Aus rt — s tg ccJ2 folgert man

__>.-*_*>!_ ^3_tg£ _^
und damit

2^W^)/3"_JK) (5)
Schliesslich folgt aus

in der Tat
2G(r%) 1k\>3G(a%) (6)

Kurzer kann der Beweis von (II) kaum gefuhrt werden Mit einer guten Klasse ist es bei
wenig Zeitaufwand möglich, die Jensensche Ungleichung fur eine Variable etwa im
Anschluss an das Kapitel „Bedeutung der zweiten Ableitung fur den Kurvenverlauf» zu
behandeln Da wir aber keiner Überladung des Stoffprogramms das Wort reden wollen,
haben wir beim Beweis der übrigen Ungleichungen zum Teil mit Absicht andere Wege
aufgezeigt

Es mag noch erwähnt werden, dass heute etliche Lander Anstrengungen machen8), den
jungen Menschen den Übergang von der Mittelschule zur Universität durch die Besprechung

derartiger Ungleichungsprobleme zu erleichtern Die dem Verfasser zugängliche
Literatur enthalt jedoch keine der Ungleichungen (1) bis (6), so dass ihm vor allem

A(w%) £A(mt) £A(rt),
jedoch

G(w%) ^ G(rt) ^ G(mt)

eine kleine Überraschung bedeutete F Leuenberger, Zuoz

3) Vergleiche u a de Francis J Mathematicai competüions m China, Punkt 3, Amer Math Monthly
67, 8, S 758, 1960 Ebenso Künzi, H P Lineare Programmierung, «personliche Bemerkung», El Math
XVI, 1, S 1, 1961
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Ein Reduktionsverfahren für Determinanten und Gleichungssysteme
Der Wert einer Determinante, deren Elemente numerisch gegeben sind, kann nach

einer einfachen RechenVorschrift berechnet werden. Das Verfahren eignet sich besonders
für eine elektrische Tischrechenmaschine, bei der man positive und negative Produktsummen

im Ergebniswerk auflaufen lassen kann. Nach einer entsprechenden
Rechenvorschrift ist auch die Auflösung von Gleichungssystemen und die Matrizeninversion
möglich.

1. Die Reduktion einer Determinante
Das Verfahren wird an einem Zahlenbeispiel gezeigt. In der Determinante (1) sind die

Zeilen mit i, die Spalten mit k bezeichnet. Die Zeilensummen ergeben eine weitere
Spalte £. Der Grad der Determinante sei n:

E
2-1

6 0

2-2
12

3
(1)

-4-4 1 6 | - 1

Nach dem Satz 14 in [1], S. 24, werde die erste Zeile mit alXjaxx multipliziert und von
der i-ten Zeile subtrahiert, i geht von 2 bis n. Mit den Zeilensummen wird ebenso verfahren
wie mit den Elementen. Nach der Berechnung jeder Zeile folgt die Probe durch Addieren
der neuen Elemente.

So entsteht die Determinante (2), bei der in der ersten Spalte nur noch ein Element
von Null verschieden ist, da die erste Zeile unverändert übernommen wird:

2 2-1 21 5

0-6
0-4
0 0

- 1

1

10

(2)

Das Element axx muss mit der Unterdeterminante der zweiten bis vierten Zeile und
Spalte multipliziert werden. Statt nur eine Zeile oder Spalte zu multiplizieren, wie dies
nach Satz 12 in [1], S. 23, nötig wäre, multipliziert man alle Elemente und setzt dafür
l/alxn~2 - in vorliegendem Falle (1/2)2 - vor die neue Determinante, die nur noch vom
dritten Grad ist:

- 12 8-2

0 20

-6

18

(3)

Die Elemente bik der reduzierten Determinante ergeben sich aus den Elementen atk der
ursprünglichen Determinante nach

h-i> k~l all aik ~ ailaik • (4)

Die neue Determinante wird noch durch an~2 dividiert. Die Vorschrift lässt sich
darstellen :

*-/

-Li (5)

Die Summenprobe erfolgt nach:

jfe«2 *~2
(6)

*«2
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Das obige Beispiel wird zu Ende gerechnet:

n _ __ i_ _i 140 ~~ 40 I °
~ 4 12 I 24 - 240 j- 216 48 (- 8640) 180

131

(7)

Fur die Reduktion kann auch em anderes Element als axx benutzt werden, wenn dann
m der entsprechenden Weise vorgegangen wird. In [2], S. 45, ist eine andere Darstellung
des Verfahrens gegeben

2. Die Reduktion eines Gleichungssystems
Auch bei einem Gleichungssystem von der Form

% * %, v >

das eine lineare Beziehung zwischen den Grossensystemen

* (*i %n)

v [Vi • yn)

(8)

und

mit den numerisch gegebenen Koeffizienten at k der Matrizen $ix und tyiy darstellt, kann
das Verfahren angewendet werden. Es muss nur die Determinante der Matrix %x von
Null verschieden sein, da sonst eine Transformation nach

X^K^Kyt) (9)

grundsatzlich nicht möglich ist. Hier wird nach der gleichen Vorschrift gerechnet:

(10)

Dabei wird auch die rechts stehende Matrix einbezogen. Die Division fällt hier weg,
da sie sich auf beide Seiten der Gleichung bezöge. Die Summenprobe wird auf beiden
Seiten getrennt durchgeführt.

Der Fall des inhomogenen Gleichungssystems

2lx a, (11)

bei dem a einen Spaltenvektor mit numerisch gegebenen Komponenten darstellt, kann
m der gleichen Weise behandelt werden (vgl. [3], S. 107). DieAnzahl der durchzuführenden
Operationen ist zwar grosser als beim Gaußschen Algorithmus. Es kommt aber keine
Division vor, welche den Rechnungsgang bei Tischrechenmaschinen wesentlich erschwert
(Vorzeichen, Stellung des Kommas).

Im Falle
9lx l) (12)

wird die Kehrmatrix 9l_1 berechnet mit
X m-1 X) (13)

Es folgt noch em Zahlenbeispiel:

7 3 2 12 xi
2 4 6 12 H

114 6 H

17 Vi

16 y*
7 yz

(14)
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Durch zweimaliges Reduzieren jeweils mit dem Element der obersten Zeile und linken
Spalte erhält man

^i y-i
5 41 32 I 78

1

und

22 38 I 60
I

4 26 i 30 1 24 9 I 32
y2

ov

f420 ] 420 I xz f- 42 364 70 j 392 J

r 13 o

y±

y%

(15)

(16)

(17)

Mit der ersten Gleichung aus (15) erhält man x2 und mit der ersten Gleichung (14) xx.
Das Resultat ist:

xx 1 1/6 1/6 yx

*2 2/5 11/30 7/6 y% (18)

*Z - 1/10 13/15 1/6 yz B. Jäger, Stuttgart

LITERATURVERZEICHNIS
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Vektorieller Beweis eines elementargeometrischen Satzes

Es ist wohlbekannt, dass viele Sätze der Elementargeometrie auf sehr übersichtliche
Weise und manchmal in etwas allgemeinerer Fassung mit Hilfe der Vektorrechnung
bewiesen werden können. Die folgende Mitteilung liefert ein interessantes und, soviel ich
weiss, neues Beispiel dafür.

/Y

/y
M

/
/

8

In der Sammlung Exercices de G6om6trie par F. G.-M., 7e ed., p. 519, findet man folgen
den Satz, der dem Inspecteur des ponts et chauss£es Ed. Collignon zugeschrieben wird.
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Satz. Es sei AXA2AZA± ein ebenes Viereck. Auf den Seiten AXA2, A2AZ, AzAit A4AX als
Hypotenusen konstruiere man, allemal entweder nach der Aussen- oder nach der Innenseite
des Vierecks in seiner Ebene, die gleichschenkligen und rechtwinkligen Dreiecke

AXA2BX, A2AZC2, AzA4iDz, AiAxEi
Dann sind die Diagonalen BXDZ und C2E± des Vierecks B1CiD9Ei gleichlang und zueinander
senkrecht.

Wir beweisen den Satz vektonell in folgender, em wenig allgemeiner Fassung.
Satz. In einer orientierten Ebene p betrachte man einen beliebigen geschlossenen Streckenzug

AXA2AZAAAX Man drehe seine orientierten Strecken AXA2, A2AZ, AzAi} AtAx in der
Ebene p um ihre respektwen Mittelpunkte Mx, M2, Mz, M4 um den Winkel +7ij2; dabei
bekomme man respektive die orientierten Strecken BXB2, C2CZ, DzDit EiEx Es sind dann
die Strecken BXDZ und C2E± gleichlang und zueinander senkrecht, ebenso die Strecken B2Dt
und CZEX.

Beweis. Zur Bezeichnung einer Drehung in der orientierten Ebene p um einen positiven
rechten Winkel fuhren wir den Operator i multiphkativ em Wir bezeichnen also mit
i AB den (freien) Vektor, der entsteht, wenn der (freie) Vektor AB m der Ebene p um
den Winkel + n/2 gedreht wird. Man sieht leicht em, dass folgende vektonelle Beziehung
gilt'

i (XAB + ii A'B' +-•') X (lAB) + ju (i A'B') + •••

wobei X, ju, reelle Faktoren bedeuten.
Wir können jetzt die Behauptung des Satzes durch die Beziehungen formulieren:

C2£4 i BXDZ, CZEX - i B2D4

Es genügt, die erste dieser Beziehungen zu erharten; der Nachweis fur die zweite verlauft
in ähnlicher Weise.

Nach der Definition der Addition von Vektoren hat man

C2£4 C2M2 + M2A2 + A2AX + AXM^ + MiEi
C2Ei C2M2 + M2AZ + AzAt + A^M^ + M,E^

Daraus, wenn man die Beziehungen M2A2 — M2AZ und _41M4 — ^44M4 berücksichtigt,

seitenweise addiert und mit 1/2 multipliziert, bekommt man

C2£4 C2M2 + -~~ A2AX + — AZA4 + M^E, (1)
2 -2"1 ' 2

Auf ähnliche Weise erhalt man.

BXDZ BXMX + — A2AZ +-JAxAl + MZDZ (2)

Wir multiplizieren nun die Gleichung (2) mit i beiderseits und finden.

1 r-T- 1

Es gilt aber

t BXDZ i BXMX + y % A2AZ + y i AxAt + i MZDZ

1 -7-T- 1

i BXMX A2MX y A2AX, y i A2AZ

y iAxAi iM^At MJEl, i MZDZ MZAA — AzAt :

also hat man

% BXDZ y Ä^TX + C2M2 + M4£4 + y ÄJTA (3)
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Der Vergleich von (3) und (1) ergibt
C2E± i BXDZ, was zu beweisen war

Anmerkung. Der ebene Streckenzug AxA2AzAiAx ist ganz beliebig, insbesondere kann
er einfach sein oder sich durchkreuzen, er darf ganz oder teilweise auf gerader Linie
verlaufen, endlich dürfen einige seiner Strecken Nullstrecken sein N Kritikos, Athen

Inequahties for a triangle, II
In this note q% and ht (i 1, 2, 3) denote the radn of the ex-circles and the altitudes

of a triangle with the sides ax, a2, az, F denotes its area G(x) and H(x) denote the geometrie
and harmome means of xx, x2, xz respectively

In [1] it is proved that G(h) < G(q) Here I prove the inequahties

G(h) =g 31'4 F1'2 ^ G(q) (1)

H(h) H(q) ^ 31'* F12 (2)
Proof It is known that

33 2

33 2 r2 < F ^ i— R2
4

where r and 7? denote the radn of the mscnbed and circumscribed circles (see [2], p 6)
Hence

2 7.-1 ^ 3*i* F~112, (3)

r-i ^ 33/4^-1/2 (4)

From the identity 8 Fz G*(h) ax a2 az G3(h) 4 R F and from (3) it follows that
G*(h) 2R~1F2 ^ 33/4F3'2

Hence we get the first part of (1)
From the identity qx q2 qz — F2r~1 and from (4) it follows that

G*(q) ^ 33/4 F3/2

Hence we get the second part of (1) 3 3

The inequality (2) follows immediately from the identity Eh~l E qj1 r~x and
from (4) *i*iA Makowski, Warsaw

references
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Aufgaben
Aufgabe 387. Auf einem nichtzerfallenden Kegelschnitt k seien fünf Punkte Px, P2, Pz,

P4 und S gegeben Bekanntlich ist das Doppelverhaltnis ö ([S Px] [S P2] [S Pz] [S P4])
der vier Strahlen [S Pt], 1 1, 2, 3, 4 gegenüber einer Bewegung von S auf k invariant

a) Wie müssen die Punkte Px, P2, Pz, P4 auf k gewählt werden, damit ö — 1 wird?
b) Wie muss die gegenseitige Lage von Px, P2, Pz, P4 sein, wenn ö — 1 und k eine

Parabel ist?
c) In einem kartesischen Normalkoordmatensystem smd die Punkte Px(0, 0), P2(0, — 1),

P3(l, 0) gegeben Wie ist P4 anzunehmen, wenn bei ö — 1 der Kegelschnitt k ol) eine
Parabel, ß) eine gleichseitige Hyperbel, y) em Kreis sein solP

R Bereis und E Schröder, Dresden

Losung der Aufgabensteller Eine Kollmeation K, die die Punkte P3, P4 m die absoluten
Kreispunkte der Ebene von k transformiert, fuhrt k in einen Kreis k' durch Px, P2, S'
uber Aus den Verbindungsgeraden [S PJ, {SP^} werden die isotropen Geraden tx, i2
durch S'
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