Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 16 (1961)

Heft: 4

Artikel: Ausfüllung von Eilinien durch einbeschriebene gleichseitige und

gleichwinklige n-Ecke

Autor: Giering, O.

DOI: https://doi.org/10.5169/seals-21288

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

daher einmal statt der Polygonfolge $\Pi^{(s)}$ ($s=0,1,\ldots$) die Folge $\Pi^{[s]}$ ($s=0,1,\ldots$), die im Raum \Re_k durch

$$\mathfrak{p}^{[s+1]} = \mathfrak{Q}^{-1} \cdot \mathfrak{p}^{[s]} \text{ bzw.} \tag{20}$$

$$\mathfrak{p}^{[s+1]} = (\mathfrak{Q}^{-1})^{s+1} \cdot \mathfrak{p} = \mathfrak{B} \cdot \left[1, \frac{1}{L_1}, \dots, \frac{1}{L_{k-1}}\right]^{s+1} \cdot \mathfrak{B}^{-1} \cdot \mathfrak{p} \qquad (s = 0, 1, \dots)$$
 (20')

beschrieben wird. (Neue Aufgabe: Lässt sich die neue Polygonfolge auch konstruktiv herstellen?) Da die L_1, \ldots, L_{k-1} eine der oben nicht eingeklammerten Bedingungen (I) oder (II) erfüllen, trifft jetzt der entsprechende eingeklammerte Fall zu. Wir erhalten: Notwendig und hinreichend für die Konvergenz des neuen Verfahrens ist, dass der Punkt \mathfrak{p} , der das Ausgangspolygon Π angibt, in den Fällen (I) eine Darstellung

$$p = C_0 \cdot l_0 + \sum_{r=j+1}^{k-1} C_r \cdot l_r, \qquad (21')$$

in den Fällen (II) eine Darstellung

$$p = C_0 \cdot l_0 + \sum_{r=j}^{k-1} C_r \cdot l_r \tag{21''}$$

besitzt. Ist bei (I) das eine Verfahren konvergent, so ist das andere sicher divergent, und bei (II) konvergieren beide Verfahren nur genau dann, wenn gilt:

$$\mathfrak{p} = C_0 \cdot l_0 + C_j \cdot l_j.$$

NB. Wie Herr Prof. Dr. R. Bereis (Dresden) dem Verfasser mitteilte, hat für den Fall, dass k=3 und das Dreieck M_0M_1M gleichseitig ist, Herr Prof. Dr. Heinrich (Dresden) ähnliche Untersuchungen durchgeführt.

GERHARD GEISE, Dresden

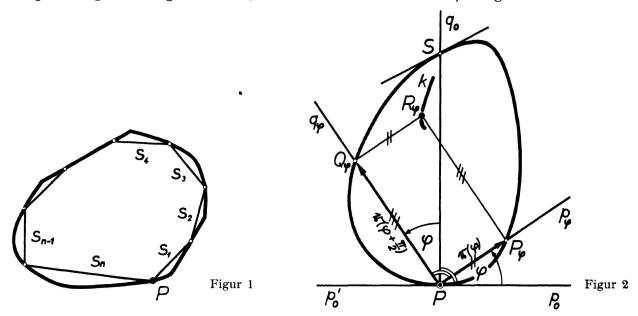
Zusatz bei der Korrektur: Herr Prof. Dr. Heinrich (Dresden) vermittelte freundlicherweise dem Verfasser einen Hinweis von Herrn Prof. Dr. Wunderlich (Wien), dem zu entnehmen ist, daß in der Arbeit von J. H. Cadwell, A property of linear cyclic transformations, Math. Gaz. 37, 85-89 (1953) (Referat: Zentralblatt 51, 117 (1954)) eine andere Verallgemeinerung der Aufgabe 379 für den Raum vorliegt.

Ausfüllung von Eilinien durch einbeschriebene gleichseitige und gleichwinklige n-Ecke

Einer Eilinie¹) werde, ausgehend von einem festen Eilinienpunkt P, ein konvexer Sehnenzug mit (hinreichend kleinen) gleichlangen Sehnen $s_1, s_2, \ldots, s_{n-1}$ einbeschrieben, so dass er durch die Sehne s_n , die seinen Endpunkt mit P verbindet, zu einem konvexen Sehnenzug geschlossen wird (Figur 1). Ist dabei $s_{n-1} \neq s_n$, so lässt sich durch stetige Vergrösserung der gleichlangen Sehnen s_k ($k = 1, \ldots, n - 1$) im Falle $s_{n-1} < s_n$ bzw. Verkleinerung im Falle $s_{n-1} > s_n$ zu jedem Eilinienpunkt P ein der Eilinie einbeschriebenes gleichseitiges n-Eck finden.

¹⁾ Eine Eilinie sei eine ebene, geschlossene, konvexe und stückweise stetig differenzierbare Kurve.

Die abgeschlossene Vereinigungsmenge aller einbeschriebenen gleichseitigen n-Ecke, die identisch ist mit dem von der Eilinie berandeten Eibereich, werde als «Ausfüllung» der Eilinie durch gleichseitige n-Ecke bezeichnet. Für n=3 erhält man eine Ausfüllung durch gleichseitige Dreiecke, für n=4 durch Rhomben²). Es gilt also



Satz 1: Jede Eilinie kann durch einbeschriebene gleichseitige n-Ecke ausgefüllt werden.

Die Ausfüllung einer Eilinie durch gleichwinklige n-Ecke leistet für n=3 Satz 1, da jedes gleichseitige Dreieck gleichwinklig ist.

Durch graphische Gegenbeispiele überzeugt man sich sofort, dass im allgemeinen für n > 4 keine Ausfüllung möglich ist. Es wird daher im folgenden die Ausfüllbarkeit durch gleichwinklige Vierecke, also Rechtecke studiert³).

Jede Stützgerade p einer Eilinie wird in einem Stützpunkt P in zwei Halbstützgeraden p_0 und p_0' geteilt (Figur 2). Die von P ins Eilinieninnere weisende Halbnormale q_0 schneidet die Eilinie noch in einem weiteren Punkt S und bildet mit der Halbstützgeraden p_0 den rechten Winkel $(p_0, q_0)^4$). Dreht man (p_0, q_0) um seinen Scheitel P derart, dass in der durch den Drehwinkel $\varphi = \pi/2$ festgelegten Endlage $(p_{\pi/2}, q_{\pi/2})$ der Schenkel $p_{\pi/2}$ auf die Halbnormale q_0 fällt, so schneiden die Schenkel p_{φ}, q_{φ} die Eilinie in jeder Zwischenlage $(p_{\varphi}, q_{\varphi})$ $(0 < \varphi < \pi/2)$ in je einem weiteren von P verschiedenen Punkt und zwar p_{φ} in P_{φ} und q_{φ} in Q_{φ} (es ist also $P_0=Q_{\pi/2}=P$ und $P_{\pi/2} = Q_0 = S$). Die Punkte P, P_{φ} und Q_{φ} lassen sich für $0 < \varphi < \pi/2$ zu einem Rechteck $PP_{\varphi}Q_{\varphi}R_{\varphi}$ ergänzen. Für die Ausgangslage (p_0 , q_0) des rechten Winkels $(p_{\varphi}, q_{\varphi})$ entartet das Rechteck $PP_{\varphi}Q_{\varphi}R_{\varphi}$ in die von der Eilinie aus der Halbnormalen q_0 ausgeschnittene Strecke \overline{PS} ; dasselbe gilt für die Endlage $(p_{\pi/2}, q_{\pi/2})$. Ist die Rechtecksecke R_{φ} für alle φ ein fester Punkt, so fällt er mit S zusammen, und die Eilinie ist notwendig der Kreis über \overline{PS} . Wird dieser Sonderfall im folgenden ausgeschlossen, so durchlaufen die Punkte R_{φ} eine Ortskurve k, die aus Stetigkeitsgründen in S geschlossen ist.

²) Fordert man bei n=4 keine Gleichseitigkeit, sondern nur $s_1=s_4$ und $s_2=s_3$, so erhält man eine Ausfüllung durch Drachen, bei der Forderung $s_1=s_3$, $s_2=s_4$ eine Ausfüllung durch Parallelogramme.

³⁾ Übrigens kann jeder Eilinie ein Quadrat einbeschrieben werden; vgl. I. M. Jaglom und W. G. Bolt-Janski, Konvexe Figuren (Berlin 1956), S. 24.

⁴⁾ P und S seien zunächst keine Ecken der Eilinie.

Die Eilinie sei durch ihre von P ausstrahlenden Ortsvektoren in der Form $\mathbf{r} = \mathbf{r}(\varphi)$ $(0 \le \varphi \le \pi)$ gegeben, mit $\mathbf{r}(0) = \mathbf{r}(\pi) = \mathbf{0}$. Somit ist $\mathbf{r}^* = \mathbf{r}(\varphi) + \mathbf{r}(\varphi + \pi/2)$ $(0 \le \varphi \le \pi/2)$ eine Darstellung von k. Mit der Eilinie ist auch k stetig und in S stetig differenzierbar; ausserdem enthält k niemals den Punkt P. Die Ortskurve k schneidet die Eilinie sicher dann in S, wenn $\dot{\mathbf{r}}(\pi/2)$, der Tangentenvektor der Eilinie in S, und $\dot{\mathbf{r}}(0) + \dot{\mathbf{r}}(\pi/2)$, der Tangentenvektor der Ortskurve k in S, nicht parallel sind. Dies ist stets der Fall, wenn $\dot{\mathbf{r}}(0)$ nicht parallel zu $\dot{\mathbf{r}}(\pi/2)$ ist. Somit gilt: Besitzt die Eilinie in P keine Doppelnormale, so durchsetzt die Ortskurve k der Rechtecksecken R_{φ} die Eilinie in S.

Es sind nun zwei Fälle zu unterscheiden: 1. k schneidet die Eilinie in S nicht nur für $\varphi=0$ (bzw. $\pi/2$), sondern überdies für mindestens ein $\varphi_0 \neq 0$ (bzw. $\pi/2$). Dann besitzt die Eilinie ein einbeschriebenes Rechteck mit den Ecken P, P_{φ_0} , Q_{φ_0} und $R_{\varphi_0}=S$. 2. k schneidet die Eilinie in S nur für $\varphi=0$ (bzw. $\pi/2$). Da die Eilinie die Ebene nach dem Jordanschen Kurvensatz in ein inneres und ein äusseres Gebiet zerlegt, muss daher die stetige Kurve k die Eilinie in mindestens einem weiteren Punkt $R_{\varphi_0} \neq S$ (und $\neq P$) schneiden. Die Eilinie besitzt also auch in diesem Fall ein einbeschriebenes Reckteck mit den Ecken P, P_{φ_0} , Q_{φ_0} und $R_{\varphi_0} \neq S$.

Da die Ausfüllung einer Eilinie durch einbeschriebene Rechtecke unempfindlich ist gegen höchstens abzählbar viele Eilinienpunkte P, die nicht Ecken eines einbeschriebenen Rechtecks sind, dies jedoch höchstens in solchen Eilinienpunkten eintritt, in denen die Eilinie eine Doppelnormale besitzt und überdies bei nur stückweise stetig differenzierbaren Eilinien höchstens endlich viele weitere Ausnahmepunkte P hinzukommen, so gilt

Satz 2: Jede Eilinie mit höchstens abzählbar vielen Doppelnormalen kann durch einbeschriebene Rechtecke ausgefüllt werden.

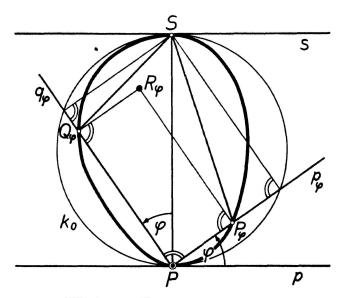
Ist \overline{PS} Doppelnormale, so berühren sich – wie man leicht nachrechnet – Eilinie und Ortskurve k in S und haben dort sogar gleiche Krümmung, wenn diese existiert. In diesem Fall lässt sich also nicht mit dem lokalen Verhalten der Eilinie in P und S entscheiden, ob sie ein einbeschriebenes Rechteck mit der Ecke P besitzt, jedoch lassen sich leicht zwei Klassen von Eilinien angeben, denen kein Rechteck mit der Ecke P einbeschrieben ist:

Satz 3: Verläuft eine Eilinie (mit Ausnahme von P und S) ganz im Innern bzw. ganz im Äussern des Kreises k_0 über \overline{PS} , so verläuft die zu P gehörende Ortskurve k (mit Ausnahme von S) ganz im Innern bzw. ganz im Äussern der Eilinie; es gibt also kein der Eilinie einbeschriebenes Rechteck mit der Ecke P.

Zum Nachweis verlaufe die Eilinie mit Ausnahme von P und S etwa ganz im Innern des Kreises k_0 über \overline{PS} (Figur 3). Da die Schnittpunkte P_{φ} , Q_{φ} der Schenkel des rechten Winkels (p_{φ} , q_{φ}) mit der Eilinie für $\varphi \neq 0$ (bzw. $\pi/2$) im Innern des Kreises k_0 liegen, ist das der Eilinie einbeschriebene, sicher konvexe Viereck $PP_{\varphi}SQ_{\varphi}$ in P_{φ} und Q_{φ} stumpfwinklig und R_{φ} liegt daher als Schnittpunkt der Lote auf $\overline{PP_{\varphi}}$ in P_{φ} und $\overline{PQ_{\varphi}}$ in Q_{φ} im Innern der Eilinie. Damit liegt aber die ganze Ortskurve k mit Ausnahme von S im Innern der Eilinie. Analog schliesst man für den in Satz 3 genannten zweiten Fall.

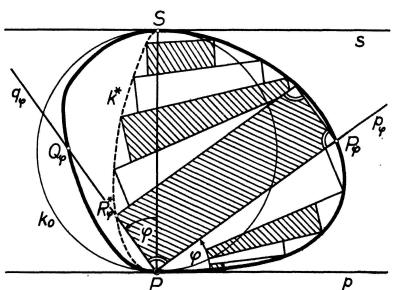
Verläuft eine Eilinie mit der Doppelnormalen \overline{PS} weder ganz im Innern noch ganz im Äussern des Kreises k_0 , so sind verschiedene Fälle möglich:

1. Gibt es mindestens ein der Eilinie einbeschriebenes Viereck $PP_{\varphi_0}SQ_{\varphi_0}$ mit bei P_{φ_0} und Q_{φ_0} spitzen Winkeln und mindestens ein ihr einbeschriebenes Viereck $PP_{\varphi_1}SQ_{\varphi_1}$ mit bei P_{φ_1} und Q_{φ_1} stumpfen Winkeln, so dass mindestens eine Rechtecksecke R_{φ_0} im Innern und mindestens eine Rechtecksecke R_{φ_1} im Äussern der Eilinie liegt, so gibt es aus Stetigkeitsgründen ein der Eilinie einbeschriebenes Reckteck für eine Drehlage $\varphi_0 < \varphi < \varphi_1$.



Figur 3

- 2. Ist eine Eiliniensehne $\overline{P_{\varphi}Q_{\varphi}} \neq \overline{PS}$ zugleich Durchmesser von k_0 , so ist $PP_{\varphi}SQ_{\varphi}$ ein der Eilinie einbeschriebenes Rechteck.
- 3. Verläuft nur der eine Eilinienbogen \widehat{PS} ausserhalb k_0 und die allein durch diesen definierte Ortskurve k^* der Rechtecksecken R_{φ}^* ganz im Innern oder ganz im Äussern der Eilinie, so gibt es kein der Eilinie einbeschriebenes Rechteck mit der Ecke P (Figur 4).



Figur 4

Hat eine Eilinie überabzählbar viele Doppelnormalen, wie zum Beispiel eine Kurve konstanter Breite, und besitzt sie mindestens eine Symmetrieachse, so ist sie – wie man leicht einsieht – durch einbeschriebene Rechtecke ausfüllbar.

O. GIERING, Stuttgart