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60 Kleine Mitteilungen

Spektra bei verschiedenen Temperaturen und Druckverhéltnissen einen Erklirungsgrund
finden zu kénnen.» «Wenn der Kraftpunkt sich mit einer solchen Geschwindigkeit in
seiner Bahn bewegt, dass er seine eigene Schwerkraft nur einmal iiberholt, so ist dies sein
einfachster Monadenzustand. Durch Verengerung seiner Bahn bei gleicher Energie kann
seine Eigenbewegung so gesteigert werden, dass er seine eigene Schwerkraft zum zweiten,
dritten Mal iiberholt usw. Der Ubergang vom ersten zum zweiten, vom zweiten zum
dritten Zustand usw. muss ein urplétzlicher sein.»

In dieser Weise stellte sich Balmer die Vorginge vor, die 20 Jahre spiter durch
das Fallen der Elektronen von einer dussern auf eine innere Bahn erklirt wurden,
wobei die Energiedifferenz als ausgesandte Spektrallinie erscheint.

Wihrend Balmer an seinem alten Stehpult sann, veranlasste seine Formel viele
Forscher, die Spektren der Elemente genauer zu erkunden und nach weiteren zahlen-
missigen Verkettungen der Spektrallinien zu suchen. KAYSER, RUNGE, RYDBERG,
Rrtz kniipften an ihn an. Balmer selber wurde dadurch angeregt und konnte in
einem Vortrag im Juni 1896 eine eigene, allgemeinere Formel vorlegen, die er auf
die Linienserie I des Lithiums und auf die verschiedenen Serien I bis VI des Heliums
anwandte. («Eine neue Formel fiir Spektralwellen», Verhandlungen der Naturfor-
schenden Gesellschaft in Basel, 1897.)

Beide Spektralabhandlungen von 1885 und 1897 erschienen auch in den entspre-
chenden Jahrgidngen der «Annalen der Physik und Chemie» in Leipzig. Die erste ist
dabei um die 4 Seiten des Anfangs gekiirzt und um einen zweiseitigen Nachtrag
erweitert, die zweite unverdndert abgedruckt.

Eine lebensvolle Vergegenwirtigung von Balmers lieber Personlichkeit finden wir
in den «Erinnerungen» seines jiingsten Sohnes WILHELM BALMER (Rotapfel-Verlag,
Erlenbach-Ziirich 1924). Eine knappe Darstellung seiner wissenschaftlichen Titig-
keit gab ALBERT RIGGENBACH in der «Allgemeinen Schweizer Zeitung» vom 20. Mirz
1898. Danach hat Balmer zu den 5 reguliren Polyedern des Altertums, wozu schon
Poinsot 4 weitere fand, noch 8 neue hinzugefiigt. RIGGENBACH schliesst seine Be-
trachtungen mit den Worten, dass «Balmers wissenschaftlicher Name einem Berge
gleicht, der aus der Nihe gesehen sein Haupt nur bescheiden zwischen andern Spitzen
durchblicken ldsst, aber um so héher emporwichst, je weiter wir von ihm zuriick-
treten». HEeiNnz BALMER, Basel

Kleine Mitteilungen
Inequalities for a triangle

Let g; and %, (i = 1, 2, 3) denote the radii of the escribed circles and the altitudes of a
triangle with the sides a; (¢ = 1, 2, 3) respectively.
‘We show that

B* + ho* + heF = 00F + @oF + 08* for —1 <k <O, (1)
bk + h* + he¥ < ok + 0.F + 0 for B> 0and £ < -1, (2)
hyhg by < 0, 0505 - (3)
The equalities
o 2E L 2F
P e Y et 0, —a

are known (we suppose a, = a3, @, = a,). F denotes here the area of a triangle.
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Thus the inequalities (1), (2) and (3) may be written in the form
a7 + ay TRt ayTE 2 (3, + a3 — a) Tk (@ + a3 — ag)TF + (a4 ay — ag)~k
for -1 <k <0,
a"*+ a7  + a7k < @y + a3 — a)7F o+ (ay 4 ag — ap)7F 4 (@, + a; — ag)~k
fork > 0and & < —1,
—loga, — loga; — log a; < —log (a, + a; — a,) — log (a, + a; — a,) — log (a, + a; — ay).

Because the functions »~% for £ > 0and # < — 1, —x *for — 1 < % < 0 and — log »
are convex for » > 0, the JENSEN’s inequality

S 1) 5k )

holds (f(x) denotes here any of the functions mentioned above). Hence
flay + ag — a,) + f(a; + ay — ay)

2 g /(al) '
f(as + a3 — ay) ‘;‘f(“z“l"“l—“a) > f(a,) ,
flas + ay — a,) ’; f(as + a; — a,) = fas) .

Adding these inequalities we get

f(as + a3 — a;) + f(a, + a3 — a5) + fla, + a; — az) = f(a,) + faq) + f(as) .

Thus the inequalities (1), (2) and (3) are proved?).
The inequalities (1), (2) and (3) become equalities when

a,+a,—az=a,+ a; — a; = a, + az — a,,

i. e. for an equilateral triangle. A. MAxowski, Warsaw

Anschaulicher Beweis des Vierscheitelsatzes?)

Den bekannten Satz: Jede Eilinie mit stetig verdnderlicher Kriimmung besitzt wenigstens
vier Scheitelpunkte beweisen wir unter der etwas stirkeren Voraussetzung, dass die Eilinie
von der Klasse C, ist, das heisst dreimal stetig differenzierbar ist. Ferner setzen wir voraus,
dass es auf der Eilinie keine Bogen konstanter Kriimmung gibt, dass sie also keine Kreis-
segmente enthdlt, sowie, dass die Kriimmung nirgends gleich Null wird. (Von diesen
letzten Beschrankungen kénnten wir uns zwar ohne wesentliche Verdanderung des Beweises
befreien. Doch wiirde dadurch der Beweis an Einfachheit einbiissen, so dass wir darauf
nicht eingehen wollen.)

Offenbar geniigt es, zu zeigen, dass es keine Eilinie der genannten Eigenschaften mit
genau zwei Scheitelpunkten geben kann.

Lemma 1. Liegt innerhalb eines Dreiecks, iiber einer seiner Seiten, ein konvexer Kur-
venbogen, so ist seine Linge [ kleiner als die Summe der Lingen der iibrigen zwei Seiten
des Dreiecks (Fig. 1).

Beweis: Umschreiben wir dem Kurvenbogen Polygonziige A P,P,B, AP,P,P,PgB, ...
mit steigender Seitenanzahl und zu Null abnehmenden Seitenldngen, so wird

Af+@>A—E+P1P2+m>m+P3P4+P4P5+2510+P:P>"’s
wobei die Summen rechts fallend zur Kurvenbogenlidnge ! streben.

1) The idea of application of JENSEN’s inequality is due to Z. CIESIELSKI.
2) Eine dhnliche anschauliche Deutung des Vierscheitelsatzes hat E. Trost in El Math. 3, 100 (1948)
gegeben.
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Lemma 2. Ist die Kriitmmung lings des Kurvenbogens 4 B (der betrachteten Eilinie)
monoton verdnderlich (das heisst nimmt sie von 4 bis B stindig zu oder stindig ab), so
kriimmt sich die Evolute dieses Bogens stdndig in demselben Sinne, so dass die Evoluten-
abschnitte, denen eine Drehung ihrer Tangente um einen Winkel < x entspricht, konvexe
Bogen sind. (Eine solche Kurve nennen wir «lokal-konvex».) Die Linge ! der Evolute des

Bogens AB ist gleich der Differenz R — » der Kriimmungshalbmesser fiir 4 und B
(Fig. 2). C

Figur 1 Figur 2

Lemma 3. Jedem Scheitelpunkt der Eilinie entspricht eine Spitze ihrer Evolute, und
zwar von solcher Art, dass die beiden Aste der Spitze auf verschiedenen Seiten der
Spitzentangente liegen (Fig. 3).

-
— e e -

Figur 3 Flgur 4 Figur 5

Nehmen wir jetzt an, es sei £ (Fig. 4) eine Eilinie der betrachteten Art mit genau zwei
Scheitelpunkten 4 und B. Unter den gemachten Voraussetzungen hat ihre Evolute ¢
zwei Spitzen (Lemma 3), die durch zwei lokal-konvexe Aste verbunden sind (Lemma 2).
Es ist nicht méglich, dass sich lings jedes dieser Aste die Tangente genau um n dreht,
da sich sonst diese Aste nicht in der zweiten Spitze der Evolute vereinigen konnten
(Fig. 5). Es muss sich also die Tangente lings des einen Astes um a < x, lings des anderen
um f > = drehen, da die Tangente an e zugleich Normale an % ist, sodass a + =2 =
sein muss.

Figur 6
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Es sei nun ¢, der Ast, lings dem sich die Tangente um weniger als z dreht (Fig. 6). Die
Tangenten in den Spitzen S, und S, der Evolute seien ¢, und #,. Lings des zweiten Astes e,
dreht sich die Tangente um weniger als 2 n; daraus folgt: Entfernt sich der Beriihrungs-
punkt der Tangente von S; und von S, aus lings e, je so weit, dass sich die Tangente um
7 dreht, so wird dabei der ganze Bogen e, beschrieben (und ein Teil davon sogar zweimal).
Daraus folgt aber, dass ¢, ganz in dem Teil der Ebene verlaufen muss, der in der
Figur 6 schraffiert ist. Es ist aber l(e;) < S,T + TS, (Lemma 1), wihrend offenbar
leg) > S, T + TS, sein muss. Es wire also I(e;) + I(ey), im Widerspruch zum Lemma 3,
wonach die beiden Aste von der Linge R — 7 sein sollten.  VLADIMIR DEVIDE, Zagreb

Eine neue Form des Solitdr-Spieles

Die Beschiftigung mit elementaren mathematischen Unterhaltungen und Spielen wird
gegenwirtig in Europa nicht mehr hiufig gepflegt, sie ist gewissermassen aus der Mode
gekommen. Noch vor einigen Jahrzehnten bestand jedoch auf diesem Gebiete ziemliche
Regsamkeit, so dass eine recht umfangreiche Literatur dariiber zu finden ist. Ausser zahl-
reichen Publikationen in Zeitschriften sind auch Biicher erschienen, wovon wir das
zweibdandige Werk von W. AHRENS, Mathematische Unterhaltungen und Spiele (2. Auflage
1910 bei Teubner, Leipzig), sowie das Buch Mathematische Mussestunden von H. ScHU-
BERT (erste Auflage 1897, zehnte von F. FITTING bearbeitete Auflage 1953, Walter de
Gruyter & Co., Berlin) nennen méchten. Haben es doch LE1BNIZ und spdter KOwWALEWSKI
nicht unter ihrer Wiirde gehalten, sich eingehend mit der mathematischen Theorie be-
stimmter Spiele auseinanderzusetzen.

Figur 1

Neuerdings kommen aus Amerika zahlreiche Geduldspiele, die in die Kategorie der
mathematischen Unterhaltung einzureihen sind. Wir wollen uns im folgenden mit einem
solchen Spiel befassen. In ein Brettchen sind 15 Locher gebohrt in der Anordnung von
Figur 1. Wir haben also ein gleichseitiges Dreiecks-Punktgitter. In die Lécher werden
Pflocke gesteckt, ein Loch jedoch wird leer gelassen. Wir unterscheiden auf dem Spielbrett
drei Richtungen, nach den Dreieckseiten. Die Spielregel besteht nun darin, dass wenn von
drei in einer Reihe auf einer der drei genannten Richtungen gelegenen Lochern zwei benach-
barte mit einem Pflock versehen sind, wiahrend das dritte unmittelbar daneben liegende
leer ist, der entferntere Pflock in das leere Loch gesteckt, widhrend der Pflock aus dem
mittleren, iibersprungenen Loch entfernt wird. Ein solcher Zug hat also stets das Ver-
schwinden eines Pflocks und Ortsverinderung eines anderen Pflockes zur Folge. Wenn auf
diese Weise der Reihe nach alle Pflocke bis auf einen fortgeschafft werden konnen, ist die
Spielaufgabe gel6st. Da im ganzen 15 Locher sind, wovon eines zu Anfang leer ist und
eines am Schlusse besetzt bleibt, erfordert die Losung, sofern es eine gibt, offenbar
13 Ziige.

%s

o |4

o 3

° o |2

a K 1
1 2 3 4 5

Figur 8
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Die Aufgabe ist 16sbar, aber es erhebt sich die Frage, ob es, abgesehen von Ldsungen,
die nur durch Spiegelung an einer Héhe des Gesamtdreiecks oder durch Drehung desselben
um 120, resp. 240 Grad entstehen, verschiedene Losungen gibt, und insbesondere, ob nur
bestimmte Ausgangspositionen eine Losung zulassen. Das Spiel ist offensichtlich eine
Abart des altbekannten Solitdr-Spiels. Hier sind 33 Locher in Kreuzform gemiss Figur 2
angeordnet, und die Ziige diirfen nur in horizontaler oder vertikaler Richtung erfolgen.
Uber das Solitir-Spiel besteht eine ausfiihrliche Literatur, seine Theorie wurde insbe-
sondere von REiss (Crelles Journal, Bd. 54. 1857) und von HERMANY (Assoc. frang. pour
I'avanc. des sc., VIII, Congrés de Montpellier 1879) entwickelt, welche Hinweise wir dem
genannten Buch von AHRENS entnehmen. Wir besetzen nun vom Solitirspielbrett nur
einen Teil von 15 Lochern, und denken uns das Brett schachspielartig in schwarze und
weisse Quadrate aufgeteilt, gemédss Figur 3, so dass also jedes Loch in der Mitte eines
quadratischen Feldes steht. Gleichzeitig fithren wir eine koordinatenmaissige Numerierung
der Felder ein, wie Figur zeigt. Wir haben 9 schwarze und 6 weisse Felder, und wir wollen
daher auch nach schwarzen und weissen Pflécken unterscheiden. Es ist klar, dass ein
schwarzer Pflock im Spielverlauf niemals auf ein weisses Feld gelangen kann und umge-
kehrt. Nun iiberblickt man leicht, dass eine Lésung bei nur horizontalen und vertikalen
Ziigen nicht moglich ist, es werden bestenfalls drei der in Uberzahl vorhandenen schwarzen
Pflocke stehen bleiben. Um einen Spielverlauf zu beschreiben, bezeichnen wir einen Zug
durch einen Bruch, dessen Zihler die Position des Pflockes vor, und dessen Nenner seine
Position nach dem Zug angibt. Wir kénnen nun zum Beispiel Pflock 33 entfernen und
dann wie folgt spielen 35/32, 55/35, 14/34, 25/45, 33/35, 45/25, 22/24, 12/14, 25/23, 15/13,
13/33. Es bleiben die Pflocke 11, 33 und 44 stehen, und wir sehen, dass eine Losung
moglich wird, wenn auch Ziige in Richtung der Treppe zugelassen werden. Nach den zwei
Ziigen 44/22, 11/33 bleibt auf Feld 33 der letzte Pflock iibrig.

55 %
44 45 . o
33 3% 35 o X o
2 23 24 25 ¥ o o X
o112 13 44 45 S ® ° °
Figur 4 i Figur 5

Nach diesem Exkurs kehren wir zu unserem Spielproblem zuriick und numerieren die
Locher in Analogie zu Figur 3 wie Figur 4 zeigt. Wieder bezeichnen wir die Ziige durch
Briiche, so dass also 33/13 bedeutet, dass Pflock 33 in das, natiirlich leere, Loch 13
gesteckt wird, wobei Pflock 23 ausscheidet. In Analogie zu dem zu Figur 3 Gesagten folgt
unmittelbar, dass es eine Losung der Spielaufgabe gibt. Wir wollen nun folgendes Spiel
mit dem leeren Anfangsloch 13 durchfiithren: 33/13, 11/33, 45/23, 44/22, 13/33, 22/44,
15/13, 12/14, 25/45, 14/34, 44/24, 55/35, 35/13. Als Schlussposition erhalten wir das
Anfangsloch. Spielen wir jedoch nach dem zehnten Zuge wie folgt: 55/35, 35/33 und dann
33/55 oder 44/22, so folgen die Schlusspositionen 55 oder 22. Wir kénnen aber ab zehntem
Zug auch wie folgt verfahren: 55/33, 33/35, 45/25, was zur Endposition 25 fiihrt. Eine
wesentlich andere Spielfolge, ebenfalls mit Anfangsloch 13, ist gegeben durch: 11/13,
14/12, 33/13, 12/14, 35/13, 15/35, 55/33, 45/25, 22/44, 44/24, 14/12, 25/23, 12/34, womit
wir zur Schlussposition 34 gelangen.

Somit haben wir in fiinf Spielfolgen, jeweils von dem in Figur 5 mit Kreis umrandeten
Anfangsloch 13 ausgehend, die mit Kreuz bezeichneten Endpositionen 13, 55, 22, 25 und
34 erreicht. Man kann aber das Spiel natiirlich auch in umgekehrter Reihenfolge spielen,
das heisst von einem der fiinf mit Kreuz bezeichneten Locher als leerer Anfangsposition
ausgehen und bei Loch 13 als Endposition landen. Durch Drehung von Figur 5 um 120,
bzw. 240 Grad ersieht man aber sofort, dass jedes Loch des Spielbrettes Ausgangspunkt
fiir eine Zugfolge mit Losung der Spielaufgabe sein kann. H. JeckLIN, Ziirich

.
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Eine Denksportaufgabe und ihr algebraischer Gehalt

1. Ein erster Behdlter enthalte [, Liter rote Fliissigkeit und ein zweiter Behilter K|,
Liter griine Fliissigkeit. Nun wird mit einem Gefdss von G Litern Fassungsvermégen aus
dem ersten Behilter G Liter rote Fliissigkeit entnommen und in den zweiten Behilter
geschiittet. Nach guter Durchmischung werde dem zweiten Behilter ebenfalls G Liter
der Mischung entnommen und in den ersten Behilter zuriickgeschiittet.

Im Falle der Gleichheit von J, und K, bildet die Frage nach dem Mischungsverhiltnis
griin zu rot, bzw. rot zu griin eine bekannte Denksportaufgabe.

Das eben Gesagte lisst sich formulieren etwa in folgender Weise: Es sei

" Jo=#G,, K,=9G, (1)

wo x und y positive Zahlen grosser als 1 sind. Die Indizes r und g von G kennzeichnen nur
die Farbe der Fliissigkeit, die sich in den Mengen [, und K, befindet. Die Symbole [,
und K, sind also selbst Kennzeichen fiir rote bzw. griine Fliissigkeit.

Nach Durchfiihrung der ersten Operation befinden sich im

ersten Behilter zweiten Behilter
]1=(x-—1)Gr Klzng+Gr (2)

Liter Fliissigkeit, wobei im zweiten Behilter y G, Liter griine und G, Liter rote enthaltenist.
Nach Durchfiihrung der zweiten Operation befinden sich im

ersten Behilter zweiten Behilter
_ K, _ K,
Jo=J1+ y+1 K, = 1T S ET (3)

Liter Fliissigkeit. Offenbar ist mengenmadssig J, = J, und K, = K,. Die Verbindung von
(1), (2) und (3) liefert:

y 1
= (= 555m) oty B "
1

_ y _
IQ"'xW+J)]°+(1 y+1lg)

wobei die Terme mit ], rote, diejenigen mit K, griine Fliissigkeitsmengen bedeuten.
2. Setzen wir zur Abkiirzung:

- =gy =1—Tu,
x(y+1) P2 Y2
1 —_
y11 - Tl

1
l"m":%:l“%

I A B
x(y-{—l)_% 1— g,

so kénnen wir die Beziehung (4) verallgemeinert so schreiben:

Jen = Pom Jon—2m + ¥am Koypn—om } (6)
Kzn =—’;’—2m ]27;—2m +Tp;m K2n—2m

Es gilt auch hier, analog wie in (5):
Pam=1—Vami Vam=1— Pam } -

T’sz=1”'p2m; -ij‘mzl_‘pzm’
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wobei die ¢,,, und y,,, Funktionen von ¢, und y, sind. Die Indizes » und m sind ganze
positive Zahlen, wobei m kleiner, oder hochstens gleich gross wie % ist. Die Berechnung
der Koeffizienten von J, und K, fiihrt zunichst auf die Beziehungen:

Pan — Yo = (P2 — ¥a)" (8)
”n
Pan+ Van =1+ (ga— 2 ) (@ — va)" ™", (9)
=1
Wir setzen abkiirzend
n
2 (92 — V’z)”_a =S (10)
i=1
und beachten, dass wegen (5):
Pr—Pa=1— (P —vs) — 2(1 — @y). (11)
Unter Benutzung von (10) und (11) wird dann aus (9):
Pan+ Ven=1+{1—(pa—9)}S—2(1—g,)S. (12)

Wegen der allgemeingiiltigen Beziehung:

a-zn:(l—a)"_;'zl——(l—-a)" (13)
i=1

koénnen wir nunmehr (8) und (9) schreiben:

Pan t Van=2— (P2 —9)" —2(1 — @) S } (14
Pan — Yan = (P2 —wa)" =1 —{1 — (g — yu)} S.
Hieraus ergibt sich sofort:
=1—19y,S
Pan Y2 l (15)
Ven =192 S ‘
und analog, wegen (7):
Doy = 1 — ANY
fan= T } (16)
Yan =¥y S
Aus (15) und (16) ist sofort ersichtlich, dass:
Pan +-'—/’—2n= 'Pzn'*'an =1 (17)
Die Mischverhéltnisse nach 2 » Operationen sind
9 == PanJo _ Pan¥
Yan Ko Yen ¥
s — (18)
= Pan Ko _ Pany

van Jo Voo ¥
3. Wir wenden uns noch einigen Spezialfillen zu und bemerken, dass wegen

0< P — Yo < 1
aus (15) und (16) ohne weiteres folgt:

. e v x
Nm fan = 10 Y20 = Yo+ ¥y A+Y
s y

}.}31909321; = hm”'Pln: " +";; = ¥+ y
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Fiir x = y wird P2 = QP2 Y3= s
¥—1
und ‘Pz“'/’zz';é“ﬁ‘

Hieraus folgt

— 1 ¥ — 1)\"
¢2n:¢2n=7{1+(x+1) }.-

— 1 ¥ — 1\
'Pzn::%n:‘é‘ 1—(x+1)

und daraus nach (18) fiir den Grenzwert des Mischungsverhéiltnisses im Falle x = y :

limm=limm =1
n—0 n—>0

Die letzte Beziehung besagt, dass im Falle der Gleichheit von ¥ und y, nach unendlich
vielen Operationen, in jedem Behilter gleich viel rote wie griine Fliissigkeit enthalten ist,
was phdanomenologisch ohne weiteres verstidndlich ist. H. BrANDLI, Ziirich

Aufgaben

Aufgabe 375. Ist p eine Primzahl der Gestalt 4 » + 3 und N die Anzahl der quadrati-
schen Nichtreste von p unter den Zahlen

p—1
1,2,.., —-
’ ’ 2

so besteht die Kongruenz

R.STEUERWALD t, Alzing (Bayern)

Losung: Die Reste + 1, 4+ 2, ..., 4+ (p — 1)/2 sind mod. p verschieden. Multipliziert
man also jeden der N quadratischen Nichtreste aus 1, 2, ..., (p — 1)/2 mit dem quadra-
tischen Nichtrest — 1, so erhilt man simtliche (p — 1)/2 quadratischen Reste, die man
nach Wahl einer Primitivwurzel ¢ auch in der Form ¢° ¢2, ..., ¢?~3% aufzdhlen kann.
Bildet man beide Male das Produkt, so ergibt sich

»—3
(— l)N (z.%i)! = g0+t e +P-3 = (q 4 )p“1 =1 (mod.p),

woraus die Behauptung folgt. E. TeurrEeL, Korntal bei Stuttgart

A. Makowsk1 (Warschau) und E. KrRATZEL (Jena) bemerken, dass die Aussage der
Aufgabe als Satz 114 in HArRDY and WRIGHT: An introduction to the theory of numbers,
3. ed., p. 88 (1954) vorkommt (Der Beweis ist vom oben gegebenen verschieden.) W. JA&-
NICHEN (Berlin) weist auf P. BAcHMANN: Niedere Zahlentheorie I, S. 178-179 (1902) hin,
Weitere Losungen sandten J. FIEDLER (Regensburg), H. MEmL1 (Winterthur) und O.
ReutTER (Ochsenhausen).

Aufgabe 376. Zwei Rotationsellipsoide liegen spiegelbildlich in bezug auf eine Tan-
gentialebene. Welchen Winkel miissen die Rotationsachsen bilden, damit der kleinste
konvexe Bereich, der die beiden Ellipsoide umfasst, maximales Volumen hat ?

C. BINDSCHEDLER, Kiisnacht
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