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Kleine Mitteilungen

Uber ein Problem der Differenzenrechnung

Die Glieder der Reihe

1 x_l
7 BT

sind, wie man sich leicht durch Ausrechnen iiberzeugt, dadurch ausgezeichnet, dass die
Anfangsglieder A"y, (n =1, 2, 3,...) der Folgen der ersten Differenzen, der zweiten
Differenzen, ... mit den Gliedern der Reihe iibereinstimmen, so dass A"x, = 1/(n + 1).
Es ist von Interesse, die allgemeine Frage zu stellen: Wie muss die Folge (x,, x4, #,, ...)
beschaffen sein, damit

1 1 1
log2=1-—~—2—+—3——-—4—+—"': =1, x =

A%y = %, ? (1)

Wenn wir uns das Schema der Folge und der aufeinander folgenden Differenzen hinschrei-

ben
K %y, Xq, Hn,

Axg, Axy, Ax,,
A%x,, A2,
A3x,,

wobei jede Differenz A"+1 x, = A"y, , — A"x,, unter der Liicke der Glieder steht,
deren -Differenz sie ist, so soll also die Folge (dx,, 4%x,, A3x, ...) mit der Folge
(%4, ¥g, %3, ...) iibereinstimmen.

Aus der Differenzenrechnung ist folgende Formel bekannt:

A“x(,:xo—(’i‘)xl—}—(@xz—-{»---+(— 1)"(:),1:”. (2)
Es soll demnach sein:

= 2n—1 2n—1 2n—1
4 17’0*”2n—1=xo—( 1 )”1‘1‘( 2 )x2—+"’+(2n_z)xzn—z”‘ (3)

AP %y — Fap = %o — (21n)x1 + (zzn)xa -+t (ziﬁ 2)”2n-2 -
(4)

2n
""(Zn_l)xzn_1=0, (n=1,2,3,...).
Die Gleichungen (3) und (4) sind Beziehungen zwischen denselben Zahlen x,, x,, ... ¥3, _;.
Sie stehen aber nicht im Widerspruch zueinander. Vielmehr ist Gleichung (4) eine Folge

der vorhergehenden Gleichungen Axy — x; = 0, A%y — %, =0, ..., 42"~ xy, — x5, _;, = O.
Zum Nachweis dieser Behauptung beweisen wir zunidchst den

Hilfssatz: Fiir zwei positive ganze rationale Zahlen a und b, a > b, ist der Ausdruck

A=) -sa) () (20T |

o+ 1)a-b—1(a “ 1) (“ > 1) + (- l)a—b(z) (‘;) =0.

Beweis: Eine Umformung des allgemeinen Gliedes von A ergibt
a )(b—l—r)_a(a——l)...(a~—~b—r+1) b+ +r—1)...(r+ 1)
(b b ¥ b &+ ! b!

a(a—l)...b(!ar-!—b—r-i- 1) =(¢bz)(a-;b)’
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A=@ET)-@OCT) @)+ @ (E2Y
=(F)a - —o0.

Wir bringen nun den Beweis der obigen Behauptung und setzen

daher

2 2 2
A*Mxy — Hap = Xy — ( 1n)x1+( zn)xz—‘ +. - <2n—1-7’- 1) Fan 1= Pan (Ko ¥1s -+ Fan_1) -
Da nun », = Axy, vy = A% xy, ..., %, _, = 4*"~1 1, sein soll, so ist
2 2 2 -
Pan (¥ X1, - Xy 1) 2”0“( 1n)Axo+( zn)Azxo— + -'-—(an 1)A2n Yx =
2 2 2 2 3 3
== () = () (ro = (o) = (5 o= () (2 o 4
2n 2n—1 2n—1
J"‘""(zn~1)(”°*( L) (7 )"2“+"'_"’""l)=

=Z§ lxr {(271'&) . (72+n1) (7-{; 1) n (72+n2) (1/—1%,- 2) e (= 1)r+1(2 ;ﬁ 1) (2 ny—- 1)}

und nach (5)

2n -1 2n —- 1
2n 2n
Pan (Fo» 1y «v- Hoy_1) = 2 (— 1)”“( v )”r= - 2 o= 1)7( ¥ )xr=

r=0 r=0

dah = — @ap Yo ¥y, -+ Xap_1) s

aher
. @an Koy X1y -+ Xgp 1) = 0,
das heisst
A2nx0 = QPap (xo» XIUEEE xZn—l) + Xgp = ¥gp -

Dabei darf fiir x,, jeder beliebige Wert angenommen werden. Obige Behauptung ist
somit bewiesen. Zusammenfassend kommen wir zu folgendem

Satz: Um Zahlenfolgen (x,, x,, %5, ...) mit dev Bedingung A" x4 = ¥, zu bilden, davf man
die Zahlen mit gevadem Index beliebig annehmen, wihvend die wit ungevadem Index sich
sukzessive aus den Gleichungen

2n—1 2n —1 2n—1
xo_( nl )”1‘!‘( nz )x2—+"'+(2n__2)x2n_2—Zxan_1=0,

n=1,23,...
oder
2 2n 2n 2n
,1:0——( ln)x1+( z)xz— + "'“"(27,_2)”21:—2“‘(2%__ 1)x2n—1=0s
n=123,...
evgeben.

Als Anwendung der allgemeinen Betrachtung untersuchen wir die Folge, die durch die
Bedingungen
=1, x5, =0 n=1,2,3,..)

gegeben ist. (3) und (4) gehen dadurch iiber in

2n—1 2n—1 Z2n—-1
1_( " )xl—( " )xr..._.(”__,))x,n_s_zxz,,_l—_-o, (6)

1—(2112)”1—“(23”)‘”3"""'(23.1_2. 1)xzn—1=0- (7)
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Um einen geschlossenen Ausdruck fiir »,,_, zu erhalten, machen wir Gebrauch von den
Potenzreihen der beiden hyperbolischen Funktionen

et 4 e~ % x 2x
th ¥ = : = .
veothy =4 s — e~ % und sinh x e —e~%
Beide lassen sich, da sie gerade Funktionen sind, nach Potenzen von #? entwickeln,
beginnend mit dem Glied 1. Man kann also setzen

______x._,z al -3 35‘ 5 -
x coth x Sioh % x( + +5!x +...)—.x‘.}3(x).

Daher
(* — e~ %) Px) =e*+ €% — 2,
x PR N
(ﬁ‘l‘g!-*f'“g!—"r”') P(x) =”2T+T!‘+6—!+"'
Vergleichung der Koeffizienten von x2” auf beiden Seiten liefert

a as Aan—1 1
CnoDTil T Zrn=33 T T T Ze =0T T 2l

2n 2n 2n
() () (o 2% =
eine Rekursionsformel der a,,, _,, die mit (7) iibereinstimmt, daher

-

oder

¥en—1= Qgp_1 -
Die a,,, _,lassen sich leicht angeben, da die Potenzreihen von x coth » und #/sinh x bekannt
sind, ndmlich

22 B, 2¢ B 2:n B
= 2 __ 2 44 —_ eee [ 1\ —1_= n_ 4,20
¥cothy =14 —~ —37 x A xt 4 (— 1) ! x2n L s
—n<lx <+,
¥ 2(2'—1)B, , 2(2-1)B, ,
smhw ~ 1 v Ay

2(22"-1_1)B

— eos (o n n 2n v —_
+ (= 1) @ 2L ST n<x<+m,
folglich
1 1 B
- - _— = — (e -1 n an . 92n—1 __
(2n—1)s"“‘"'1 (2n — 1)! -1 = (= 1)" (Zn)!(z +2-2 2)
; B
Hop—1= (— 1)"71 N = (22— 1), (8)
also
=L@ 1), m=— @), m= 2@,
(By, By, By, ... = Bernoullische Zahlen).
Wir erhalten somit folgenden
Satz: Bestimmt man fiiv die Folge
Bl 2 BS 4 B3 [}
1,34 (@2-1), 0-—A@-1), 02(22-1), o0.

die aufeinander folgenden Differenzenreihen, so stimmt die Folge dev Anfangsglieder dev Dif-
fevenzenreihen mit der Zahlenfolge viberein.

Wie unmittelbar einleuchtet, sind die Bernoullischen Zahlen die einzigen rationalen
Zahlen, die man fiir B,, B,, B, ... setzen kann, damit die Aussage des Satzes richtig ist.
Man kann in ihr also geradezu eine Definition dieser Zahlen sehen. Eine weitere Eigen-
schaft ergibt sich aus (3). Diesen Gleichungen zufolge sind 2 x,, 22 x5, 28 x4, ... 2" x,,,_,, .
ganze Zahlen. Damit ist in einfacher Weise bewiesen

Satz: Der Ausdruck 2" (22" — 1) B, [n ist eine ganze Zahl.
W. JANICHEN, Berlin-Zehlendorf
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Uber den Zusammenhang zwischen zwei Abdeckungsproblemen von
n-dimensionalen Hyperkugelbereichen

Seien R, und R} im (» + 1)-dimensionalen euklidischen Raum eingebettete vollstindig
parallele z-dimensionale Rdume, deren Abstand d/2 betridgt. Sei weiterhin D ein n-dimen-
sionaler geschlossener Hypersphiaroformbereich!) von konstantem Durchmesser d.

Sei weiterhin M die vollstindige Menge derjenigen #-dimensionalen geschlossenen
Hyperkugelbereiche K,, die D eingeschrieben sind. Sind K, bzw. K zwei beliebige
Hyperkugelbereiche der Menge M, mit den Mittelpunkten O, bzw. Og und mit den
Radien 7 bzw. 7g, so gilt offenbar

'Ogra,75§9<—d-, (1)

(wo ¢ den Inhyperkugelradius von D bezeichnet) und
000+ ra+1rs =d. (2)

Man betrachte die Hyperkugelbereiche der Menge M als zyklographlsche Abbildung einer
Punktmenge M des (n + 1)-dimensionalen Raumes, die im (% + 1)-dimensionalen Raum-
streifen zwischen R, und R} liegt. Der beliebige Hyperkugelbereich K, der Menge M ist
also als zyklographisches Bild desjenigen Punktes 4 der Punktmenge M zu betrachten,
der auf dem Lot durch O, auf R, und im (»# + 1)-dimensionalen Raumstreifen so liegt,
dass Oq A = 74 ist. Bildet man zyklographisch die Punktmenge M auf R¥ ab, so entsteht
im R} eine Menge M* von Hyperkugelbereichen K%. Waren K, und Kz zwei beliebige
Hyperkugelbereiche der Menge M, so entsprechen ihnen zwei Hyperkugelbereiche K%
und K} der Menge M*, ihre Mittelpunkte O% bzw. O} sind die Projektionen von O, bzw.
Og auf R}, woraus
0403 = 0%0% . (3)

Da der Abstand zwischen R, und R¥* d/2 betrigt, gilt fiir die Radien 7% bzw. #} der
Hyperkugelbereiche K% und K B

a d
Yy + vE = oR 7ﬂ+77§=~2~. (4)
Mit Riicksicht auf (2) und (3) folgt hieraus
O¥OF <r¥ +1r%. (5)
Aus (1) und (4) folgt weiterhin . *
d d
("'2“@)-—“’ ﬁéz» (6)

(5) und (6) zeigen, dass die Hyperkugelbereiche K% der Menge M* paarweise einen nicht-
leeren Durchschpitt aufweisen, und ihre Radien beschrinkt sind. Es ist leicht einzusehen,
dass die Menge M* auch vollstindig ist, und dass sie nur einen einzigen Hyperkugel-
bereich mit dem minimalen Radius d/2 — g besitzt. Es ldsst sich weiterhin auch leicht
zeigen, dass laut obigem Verfahren die Hyperkugelbereiche der vollstindigen Menge M*
sich genau auf die Hyperkugelbereiche der vollstindigen Menge M abbilden lassen.

Nun entsteht eine eindeutige, umkehrbare Abbildung zwischen den geschlossenen
Hyperkugelbereichen der vollstindigen Menge M, die in einem Hypersphiroformbereich
eingeschrieben sind, und den geschlossenen Hyperkugelbereichen mit beschrinkten Radien
der vollstindigen Menge M*, die paarweise einen nichtleeren Durchschnitt aufweisen.

Die Hyperkugelbereiche der Menge M sind offenbar mit einem einzigen n-dimensionalen
geschlossenen Hyperkugelbereich vom Durchmesser d nicht abzudecken. Sei nun H, eine
Teilmenge von M, deren n-dimensionale Hyperkugelbereiche sich mit einem einzigen
n-dimensionalen geschlossenen Hyperkugelbereich K; mit dem Mittelpunkt O; und vom

1) Ein n-dimensionaler Raumbereich, dessen beliebige (# — 1)-dimensionale parallele Stiitzriume
den konstanten Abstand d besitzen.



36 Kleine Mitteilungen

Durchmesser d abdecken lassen. Falls ein beliebiger Hyperkugelbereich K, zur H; gehort,
so gilt

d
'—2“ .

0; Oq + 74 < (7)

Die zyklographische Abbildung von K, auf R} gibt einen Punkt O, (einen Hyperkugel-
bereich mit Nullradius), die Projektion von O; auf R*. Dem Hyperkugelbereich K, der
Menge M, entspricht im R} der Hyperkugelbereich K% und aus (3), (4) und (7) folgt
O¥ 0% < r%, das heisst O* ist ein Punkt des geschlossenen Hyperkugelbereiches K% der
Menge M*. Den Hyperkugelbereichen der Teilmenge H, entspricht im R} eine Teilmenge
HY der Hyperkugelbereiche der Menge M*, die einen nichtleeren Durchschnitt, den
Punkt O} besitzen. Es ist auch leicht einzusehen, dass einer — im obigen Sinne definierten —
Teilmenge H} von M*, die Teilmenge H, von M entspricht. Hieraus folgt

Satz 1. Gidt es eine natiivliche Zahl m so, dass die vollstindige Menge der in eine n-dimen-
stonale geschlossene Hypersphivoform vom Durvchmesser d eingeschviebenen geschlossenen
Hyperkugelbeveichen mit m n-dimensionalen geschlossenen Hypevkugelbeveichen vom Durvch-
messey d abdeckbay ist, so ldsst sich die vollstindige Menge — devjenigen n-dimensionalen ge-
schlossenen Hyperkugelbeveiche mit beschvinkten Duvchmessern, die paarweise einen nichi-
leeven Durchschwitt aufweisen — genau in m solche Teilmengen zevlegem, dass die zu der-
selben Teilmenge gehorvigen Hyperkugelbeveiche sdmtlich eimen mnichtleeven Durchschwitt
besitzen.

Laut obigem Gedankengang ist dieser Satz umkehrbar.

Sei nun % die Menge der Punkte der geschlossenen #n-dimensionalen Hypersphidroform
von konstanter Breite 4 im R,. Ihre zyklographische Abbildung in R} ergibt die
vollstindige Menge 2* derjenigen #-dimensionalen geschlossenen Hyperkugelbereiche
vom Durchmesser d, die paarweise einen nichtleeren Durchschnitt besitzen. Hieraus
folgt

Satz I1. Gibt es eine natiirliche Zahl m’ so, dass sich die Menge dev Punkte einer n-dimen-
stonalen geschlossemen Hypevsphdroform vom Durchmesser d mit wm’ n-dimensionalen ge-
schlossenen Hyperkugelbeveichen vom Durchmessey d abdecken ldsst, so ldsst sich die voll-
standige Menge — devjenigen n-dimensionalen geschlossemen Hyperkugelbeveiche von be-
schyvdankitem gleichem Duvchmesser, die paavweise einen nichtleeven Durchschnitt besitzen —
genau in m’ Teilmengen so zerlegen, dass die zu derselben Teilmenge gehdrigen Hyperkugel-
bereiche samtlich einen nichtleeven Durchschnitt besitzen.

Das Problem der Menge M* ist fiir » = 2 bekannt. GALLAI hat vermutet und UNGAR
und SzekERES haben erstmals bewiesen [1, 2], dass es eine natiirliche Zahl m so gibt, dass
die Menge derjenigen geschlossenen ebenen Kreisbereiche, die paarweise einen nichtleeren
Durchschnitt haben, sich in m solche Teilmengen zerlegen lidsst, dass die zu derselben
Teilmenge gehorigen Kreisbereiche simtlich einen nichtleeren Durchschnitt aufweisen.
(Dieser Satz ist auch fiir Kreisbereiche mit unbeschrinkten Radien giiltig. Aus Satz 1
folgt unmittelbar, dass die Menge der obigen geschlossenen Kreisbereiche mit beschrinkten
Radien sich zu einer vollstindigen Menge ergédnzen ldsst.) Aus diesem bekannten Satz und
aus Satz I folgt

Satz Ia. Die volistindige Menge der in einer geschlossenen Orbiforme vom Duvchmesser d
eingeschriebenen geschlossenen Kreisbeveiche lisst sich mit m geschlossenen Kveisbereichen vom
Duvchmesser d abdecken, wo die natitvliche Zahl m mit dev Stichzahl des Gallaischen Problems
iibereinstimmi.

Die Anwendung des Satzes II fiir die Ebene zeigt, dass die Punktmenge einer geschlos-
senen Orbiforme vom Durchmesser d sich mit genau so vielen geschlossenen Kreisbe-
reichen vom Durchmesser d abdecken lisst, wie sich die Menge von geschlossenen Kreis-
bereichen vom gleichen beschrinkten Durchmesser in solche Teilmengen zerlegen lisst,
dass die zu jeder Teilmenge gehorigen Kreisbereiche samtlich einen nichtleeren Durch-
schnitt aufweisen. Beide Probleme sind bekannt und wurden voneinander unabhingig
gelost. Es ist bekannt, dass eine Orbiforme vom Durchmesser d sich mit 3 Kreisen sogar

vom Durchmesser d }/3/2 abdecken lisst [3, 4], und HADWIGER [5) bewies, dass die Menge



Kleine Mitteilungen 37

derjenigen kongruenten ebenen Kreisbereiche, die paarweise einén nichtleeren Durch-
schnitt haben, sich in 3 solche Teilmengen zerlegen lisst, dass die zu derselben Teilmenge
gehorigen Kreisbereiche simtlich einen nichtleeren Durchschnitt aufweisen.

J. Scrorp, Budapest
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Zu einem Konvergenzsatz der elementaren Erneuerungstheorie

Ein Anfangsbestand mit E, Elementen sei einer starren Ausscheideordnung unterwor-
fen, derart, dass am Ende des ersten Jahres w, E; Elemente abgehen, am Ende des zweiten
Jahres w, E,, ... am Ende des k-ten Jahres w;, E,. Der Bestand sei dann ausgestorben, also

Wy + wp + -+ w =15 (1)

dabei setzen wir alle w;, <=1, 2, ... k, grosser als Null voraus, das heisst, kein Jahr
soll ohne Abginge sein. Jedes abgehende Element werde jeweils sofort durch genau ein
zugehendes ersetzt, so dass am Ende des ersten Jahres E; Elemente, am Ende des zweiten
E,, ... am Ende des #-ten Jahres E, Elemente hinzutreten. Sie mégen demselben Aus-
scheidegesetz wie der Anfangsbestand gehorchen. Dann gelten fiir die Erneuerungszahlen
die Beziehungen

E =wE,,

Ey=ws Ey+ w, B, + w, E,,

Ek: wkEo -+ wk_1E1 + o+ W,y Ek—-l .
und allgemein hat man fiir ganze { > %
Ei=w Ey_y+wa By o+ + wi By . (2)

Gewisse Konvergenzeigenschaften der Erneuerungszahlen E, lassen sich in sehr einfacher
Weise unter Ausniitzung rein algebraischer Beziehungen aus (1) und (2) herleiten. Als
fruchtbar erweist sich namentlich die Einfiihrung des Maximums und des Minimums von
k aufeinander folgenden Erneuerungszahlen?).

‘Wir bezeichnen fiir ganze ¢ > %

mit M, das Maximum von E,, E; ,...E; ;_;,
mit m, das Minimum von E;, E;, ;,...E; ;_;.

M, und m, gestatten auf mehreren Wegen den Beweis dafiir, dass die Folge der Erneue-
rungszahlen mit # > oo gegen eine Zahl E konvergiert. Einer dieser Beweise?) macht
zunichst eine Aussage iiber die Konvergenzgeschwindigkeit, indem er zur Ungleichung
fithrt

M, — m,

1+w ’ (3)

Mppr — Mypr <
worin w = Min (w,, w,, ... wy).

1) Siehe z. B. W, SAXER, Versicherungsmathematik I, Springer Verlag 1955, und die dort angegebenen
Literaturhinweise.
%) Siehe das erwidhnte Buch, S. 200.
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Man kann die noch etwas bessere Beziehung
Mo —mpp < (1—w) (M, —m,) (4)

gewinnen, was im nachfolgenden gezeigt sei.

Vorerst stellt man auf Grund von (2) leicht fest, dass fiir £ > 2 M, , < M, und
m; 4 > my ist. Da ausserdem M, > m, gilt, ergibt sich die Existenz eines Grenzwertes
von M, und von m, fiir # > oo aus bekannten Sitzen iiber monotone beschrinkte Folgen.
Zu zeigen wire noch die Identitidt beider Grenzwerte.

Der Fall, dass 2 Erneuerungszahlen hintereinander unter sich gleich sind — welcher
gemiss (1) und (2) von da an sofort zu konstanten Erneuerungszahlen fithrt — geniigt
bereits der Beziehung (4).

E, E; .4, ... E; y_, seien nun nicht alle gleich gross?).

Wir untersuchen den Ausdruck

k
My—Eyp= D) wi (My— Eqyiy_3)
i=1
etwas niher.
Mindestens eine der Erneuerungszahlen rechts ist gleich gross wie M,, so dass deren
Differenz verschwindet. Ersetzen wir das zugehorige w; noch durch das Minimum der
w,;, so kommen wir schliesslich zu

M, —E; < (1—w) (My—m,). (5)

Diese Ungleichung denken wir uns mutatis mutandis angesetzt fiir E, 4, E; 5 1, ...,
E;iox-1, also

My—E;p <(1—w) (M;—my),
M1 — Egip4a < (1 —w) (M — myyy), (6)

M1 — E;+zk—1 <(—w) (M 51— M 5_) -

Wir vergrissern rechts und verkleinern links dergestalt, dass wir die meisten Indizes verein-
heitlichen konnen. Zu diesem Zweck ersetzen wir rechts die Differenzen (M, — m,),
(My,1— my;,4),... durch eine darunter, welche von keiner andern iibertroffen wird,
namlich (M, — m,). Linker Hand ersetzen wir M,, M, ,, ... M, ,_, iiberall durch das
héchstens gleich grosse M, ;. So gewinnen wir Ungleichungen, in denen bloss
die Erneuerungszahlen links verschiedene Indizes ¢ + %, ¢+ & + 1, ... ¢t + 2k — 1 tragen.
Jede dieser modifizierten Ungleichungen ist giiltig; daher gilt — mindestens — eine davon
auch fiir die kleinste unter den Zahlen E, ;, E; ¢, 1, ... E; 2z, das heisst fiir m; ;.
Folglich gelangen wir zur Ungleichung (4), welche sich wie folgt als Satz aussprechen
lasst:

Die Schwankungsbreite von 2 unmittelbar aufeinanderfolgenden Erneuerungszahlen,
welche der Beziehung (1) unterliegen, verringert sich im Verhiltnis zur Schwankungs-
breite der vorangehenden 2 Erneuerungszahlen mindestens so stark, als ob die kleinste
Ausscheidewahrscheinlichkeit weggefallen wére.

Die Schwankungsbreite (M, — m;,) lisst sich mit # > oo beliebig klein machen; denn es
ist fiir eine natiirliche Zahl s

Mo — Mg < (1 — w) (M, —my); (7)

3) Die Erneuerungszahlen und die daraus hervorgehenden Teilbestinde sind selten ganzzahlig. Die
darin liegende Problematik wird gewodhnlich tibergangen. Wir weichen ihr kurzerhand aus, indem wir
die einzelnen Elemente als beliebig unterteilbar voraussetzen. Die Problematik ist dadurch allerdings
nicht eigentlich gelst.
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die rechte Seite geht aber bei festem ¢ und wachsendem s gegen Null. Der Grenzwert E
von E, ergibt sich bekanntlich zu
- E,
w1+2w2+"'+kwk. )

Auf moéglichst kurzem Weg kommen wir so zu dieser Formel: Am Ende des ¢-ten Jahres
(¢ > k), gerade nach dem Abtausch der Abginge und Zuginge, hat der Gesamtbestand
den Umfang E,. Dabei sind iibrig:

(8)

von E, noch alle Elemente ,
von E,_, mnoch alle bis auf w, E,_,,
von E,_, doch alle ausgenommen (w, + w,) E,_,,

von E; ., nochw, E, ;. .,
von E;_; und fritheren keine mehr.

Daher ist

Eo=E; (wy+wy+ "+ wp) + By (wp+ -+ wp) + 0+ Ep_p
oder
Esy=w, Ej+ wy (E,+ Ep )+ +we (Ey + -+ Ep_ji1) (9)

Durch den Grenziibergang E, - E fiir { > oo erhidlt man (8).

Wird mindestens ein w; zu Null und somit auch w, so verliert die Ungleichung (5)
ihre konvergenzerzeugende Wirkung. Da die Ausscheideordnung (w,, w,, ... w;) in jedem
Fall mit dem letzten von Null verschiedenen w; abbricht, gibt es verschwindende w; nur
fiir Indizes 7 < &.

Die Einschrankung, dass durchwegs die w; > 0 sein sollen, ist fiir die Konvergenz der
Erneuerungszahlen in der Tat wesentlich, wie durch das Beispiel 2 = 2, w; = 0, w, =1
belegt wird. Die Erneuerungszahlen sind hier abwechselnd 0 und E,, eine Konvergenz
findet nicht statt.

Die getroffenen Annahmen lassen sich in anderer Hinsicht etwas lockern. Bisher war
unterstellt, der Anfangsbestand FE, sei der nimlichen Ausscheideordnung ausgesetzt wie
die spiter eintretenden Elemente. Diese Bedingung ist nicht notwendig; vielmehr darf
der Anfangsbestand voneiner anderen (starren) Ausscheideordnung p,, p,, ..., p,, beherrscht
sein, mit

Prt+bat o+ P=1. (10)

Da fiir ¢ > » der Anfangsbestand ausgestorben ist, herrscht dann allein die Ausscheide-
ordnung, welche fiir die Erneuerungszahlen massgebend ist; nur sie geht in (4), (7) und
(8) ein. Uberhaupt gelten die Uberlegungen zur Ungleichung (4) und zum Grenzwert E
allgemein, sofern sich nur von einem f an die Ausscheideordnung gemadss (1) vollig durch-
gesetzt hat.

Das Ausscheiden von Elementen und der Neueintritt derjenigen, welche sie zu ersetzen
haben, genau am jeweiligen Jahresende, bedeutet, dass wir es mit sehr speziellen Annah-
men zu tun haben. Weniger einschneidend wire zum Beispiel die Bedingung, dass die
Elemente auch wihrend des Jahres austreten und dass jeweils sofort ihr Ersatz vonstatten
geht. Unter diesen Umstinden bleibt der Umfang der Gesamtheit auch wihrend des
Jahres fest, sofern man noch die Voraussetzung hinzufiigt, dass ein Wiederaustreten der
wihrend des Jahres hinzugekommenen Elemente erst im Folgejahr gemédss Ausscheide-
gesetz beginnen kann. Die bisherigen Aussagen lassen sich dann ohne weiteres iibertragen.
Schwicht man dariiber hinaus die Voraussetzungen noch insofern ab, dass nun der Ersatz
ausgeschiedener Mitglieder irgendwann einmal im gleichen Jahr erfolgen darf, so ver-
ringertu.U. der Bestand wihrend des Jahresseinen Umfang, gehtdann jedocham Jahresende
stets wieder auf die urspriingliche Anzahl E, zuriick. Die bisher gewonnenen Beziehungen
bleiben voll erhalten, bis auf (8), welche nur fiir diskrete Zeitpunkte (ndmlich fiir das
Jahresende) eine Ubereinstimmung von E, und vorhandenem Bestand auszunutzen er-
laubt. B. RoMER, Basel
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