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32 Kleine Mitteilungen

Kleine Mitteilungen
Über ein Problem der Differenzenrechnung

Die Glieder der Reihe

* „ 111 ,11log 2 1 - — + — - 4- + - • • • x0= 1, xx -j, xz —, • • •

sind, wie man sich leicht durch Ausrechnen überzeugt, dadurch ausgezeichnet, dass die
Anfangsglieder Anx0 (n 1, 2, 3, der Folgen der ersten Differenzen, der zweiten
Differenzen, mit den Gliedern der Reihe übereinstimmen, so dass Anx0 l/(n + 1).
Es ist von Interesse, die allgemeine Frage zu stellen: Wie muss die Folge (x0, xx, x2,
beschaffen sein, damit

A"x0 xn} (1)

Wenn wir uns das Schema der Folge und der aufeinander folgenden Differenzen hinschreiben

Xq, xx, x2, x$,

Ax0, Axx, Ax2,

A2x0, A2xx,

A*xn,

wobei jede Differenz An + 1 xk Anxk+X — Anxk unter der Lücke der Glieder steht,
deren Differenz sie ist, so soll also die Folge (Ax0, A2x0, A3x0, mit der Folge
(%v %2> %z> • • •) übereinstimmen.

Aus der Differenzenrechnung ist folgende Formel bekannt:

***0 *0 - (i)*l + (*)*! - + '•• + (- l)Wf)*n ' (2)

Es soll demnach sein:

^2W-^0 ~ Hn-X *. - fV 1)*l + (2nf1)*2- + '" + (llZ 2)*2n-2 "
- 2^2n_1=0,

A%n xQ — x2n x0 — l i J^i + I 2 l*2 ^ ' ~^~

\2 n — 2/ 2n~2 ~~

-(2»-l)^«-i 0' («=1.2.3,...).

(3)

(4)

Die Gleichungen (3) und (4) sind Beziehungen zwischen denselben Zahlen x0, xx, x2n_x.
Sie stehen aber nicht im Widerspruch zueinander. Vielmehr ist Gleichung (4) eine Folge
der vorhergehenden Gleichungen Ax0 — xx 0, A2x0 — x2 0, A2n~x x0 — x2n_x 0.
Zum Nachweis dieser Behauptung beweisen wir zunächst den

Hilfssatz: Für zwei positive ganze rationale Zahlen a und b,a > b, ist der A usdruck

MsK:1)fr)+(^2)(U2)-+-+
+(-')-,-'(.-i)(%')+<-')-0(?)-»- I

Beweis: Eine Umformung des allgemeinen Gliedes von A ergibt

/ a \ (b + r\ a (a - 1) (a - b - r + 1) (b + r) (b + r - 1) (r + 1)

\b + r)\ b )-

(5)

(b + r)\ b\

a (a — 1) (a — b — r + 1) _ a \ ja — b\
hui -or:')-
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daher

Md(V)-G)(aiV(-)(V)-+ +(-^(ö(::J)
(*) (1 - 1)-» 0

Wir bringen nun den Beweis der obigen Behauptung und setzen

AinX0 - X2n X0- (^") Xx + (22W) X3 - + -(2„2!l)*!»-l= 9.» (x«. *\> X2n-l) ¦

Da nun xx Ax0, x2 A1 x0, ^2„_x A™'1 x„ sein soll, so ist

¥_„(*». *i- ^„-1)=^o-(21W)^o + (22M)zl^o-+ -(2«-l)J,""l*o
-o - (\W) (-o - *,) + (22M) (*. " *x + *.) - (\n) (*. - *, + Q *, - *.)

+ - -(2^i)(*.-(2V>t + (2V1)*.-+ —)-
=rV|(?)-(//i)f l 'K+^C t2)- + (- v»(zi* i)(2 v ')}

r - 0

und nach (5)
2w-l _ v

2n 1

^2n
'

r - 0 r - 0

"~ ^n 0*0» xl> x2n-l) >

daher
9?2n (X0>XV *2n-l) °>

das heisst
_J n#0 9?2n (xQ, Xx, %2n-l) + *2w x2n

Dabei darf fur x2n jeder beliebige Wert angenommen werden Obige Behauptung ist
somit bewiesen Zusammenfassend kommen wir zu folgendem

Satz: Um Zahlenfolgen (x0, xx, x2, mit der Bedingung An x0 xn zu bilden, darf man
die Zahlen mit geradem Index beliebig annehmen, wahrend die mit ungeradem Index sich
sukzessive aus den Gleichungen

*o~~( i l^i + l
2 i2 ^ "^ \2 n — 2/ x*n-* ~ % %2n-i — ®

>

n=l,2, 3,
oder

xo~ y i j #i 4- y 2 *a I- + \2n - 2J *2n-2 ~ \i n _ ij *2n-i ° >

n=l,2, 3,
ergeben

Als Anwendung der allgemeinen Betrachtung untersuchen wir die Folge, die durch die
Bedingungen

#0=1, x2n 0 (n 1, 2, 3,

gegeben ist (3) und (4) gehen dadurch uber m

H'v'h-Cv1)*«—(i::i)*..-.-2*__---o, «.

HW-ft")*.- -(2.2*i)*.-i-o o
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Um einen geschlossenen Ausdruck fur x2n_x zu erhalten, machen wir Gebrauch von den
Potenzreihen der beiden hyperbolischen Funktionen

ex + e~x x 2x
x coth x x — — und

ex _ e-x gjnk x ex _ e-x
Beide lassen sich, da sie gerade Funktionen sind, nach Potenzen von x2 entwickeln,
beginnend mit dem Glied 1 Man kann also setzen

*coth*-l_n^HlT* + £*3 + T>*6+ )-**W
Daher

(ex _ e-x) <p(^ __, ex + e-x _ 2

/ X xz x6 \mM X2 X* X6

(TT+3T+5T+ )*W _T+4F+6T +
Vergleichung der Koeffizienten von x2n auf beiden Seiten liefert

/i_ a» n 1

(2n-l)»H ^ (^n-^)^^^ ^ ^ li(2w-l)i (2m)''
oder

i-(V)*-(W -(2^1)-.--«».
eine Rekursionsformel der a2n_x, die mit (7) übereinstimmt, daher

x2n-l a2n-l
Die a2n_! lassen sich leicht angeben, da die Potenzreihen von x coth x und #/sinh# bekannt
smd, namhch

22 R 24 "R 22n 7?

*coth*=l+^-„a-^-*<+- (-l)»-i_t--^L*««+
— TZ < X < + 71

x _ 2(2i- 1} « 2 (23 _ x) jBg

smh¥ ~" 1
2« * + 41 * ~

2 /22n_1 —DB-+ (-l)w—l To x,
; w *2n + -at<#<4-:rc,

(z n)
folglich

________ # _ n — 1)™-! n (22n I 2 22w~1 — 2^
(2»-1)1 *«»-*- (2n- 1)» a«»-i- * ^ (2w)!(^ +/ ^ ^'

'in-i-t-l)"-1^1"-!). (8)

ßi /o« ix B*'2*-l. x„=^(2*
also

*_ ^M2»-1). *t«-^-(2«-l), *5-=^-3 (2«-l)
(Bx, B2, Bz, Bernoullische Zahlen)

Wir erhalten somit folgenden
Satz: JBesfemmi man /wr <fo* _Fo/g£

1, ^ (22 - 1) 0, - ~ 2 (2* - 1) 0, ?± (2« - 1) 0,

die aufeinander folgenden Differenzenreihen, so stimmt die Folge der Anfangsgheder der
Differenzenreihen mit der Zahlenfolge uberem

Wie unmittelbar einleuchtet, smd die Bernoullischen Zahlen die einzigen rationalen
Zahlen, die man fur Bx, B%, Bz, setzen kann, damit die Aussage des Satzes richtig ist
Man kann in ihr also geradezu eine Definition dieser Zahlen sehen Eine weitere Eigenschaft

ergibt sich aus (3) Diesen Gleichungen zufolge sind 2 xx, 22 xz, 28 xB, 2n x2n_x,
ganze Zahlen Damit ist in einfacher Weise bewiesen

Satz: Der Ausdruck 2n (22n — 1) BJn ist eine ganze Zahl
W Janichen, Berlm-Zehlendorf
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Über den Zusammenhang zwischen zwei Abdeckungsproblemen von
n-dimensionalen Hyperkugelbereichen

Seien Rn und R* im (n + 1)-dimensionalen euklidischen Raum eingebettete vollständig
parallele ^-dimensionale Räume, deren Abstand d/2 betragt Sei weiterhin D em w-dimen-
sionaler geschlossener Hyperspharoformbereich *) von konstantem Durchmesser d

Sei weiterhin M die vollständige Menge derjenigen w-dimensionalen geschlossenen
Hyperkugelbereiche K^, die D eingeschrieben smd Sind K^ bzw Kß zwei beliebige
Hyperkugelbereiche der Menge M, mit den Mittelpunkten Oa bzw Og und mit den
Radien ra bzw rß, so gilt offenbar

•0 ^ ra rß £ Q < d2 (1)

(wo q den Inhyperkugelradius von D bezeichnet) und

OaOß + r^ + re Sd (2)

Man betrachte_die Hyperkugelbereiche der Menge M als zyklographische Abbildung einer
Punktmenge M des (n + 1)-dimensionalen Raumes, die im (n + 1)-dimensionalen
Raumstreifen zwischen Rn und R* hegt Der beliebige Hyperkugelbereich jF_"a_der Menge M ist
also als zyklographisches Bild desjenigen Punktes A der Punktmenge M zu betrachten,
der auf dem Lot durch Oa auf Rn und im (n + 1)-dimensionalen Raumstreifen so hegt,
dass Oa A — fa ist Bildet man zyklographisch die Punktmenge M auf JR* ab, so entsteht
im R* eine Menge M* von Hyperkugelbereichen K$ Waren Ka und Kß zwei beliebige
Hyperkugelbereiche der Menge M, so entsprechen ihnen zwei Hyperkugelbereiche K$
und Kß der Menge M*, ihre Mittelpunkte ÖJ bzw O* smd die Projektionen von Oa bzw
Oß auf R*, woraus

0«Oß=0*0*ß (3)

Da der Abstand zwischen Rn und R* d/2 betragt, gilt fur die Radien r% bzw r*ß der
Hyperkugelbereiche K% und K*

r* + r*
2 rß+r*ß= 2

(4)

Mit Rucksicht auf (2) und (3) folgt hieraus

ÖfÖf £r* + r*ß (5)
Aus (1) und (4) folgt weiterhin

(_-*)*•*. -?sj. (6)

(5) und (6) zeigen, dass die Hyperkugelbereiche JF_"J der Menge M* paarweise einen
nichtleeren Durchschnitt aufweisen, und ihre Radien beschrankt sind Es ist leicht einzusehen,
dass die Menge M* auch vollständig ist, und dass sie nur einen einzigen Hyperkugelbereich

mit dem minimalen Radius d/2 — q besitzt Es lasst sich weiterhin auch leicht
zeigen, dass laut obigem Verfahren die Hyperkugelbereiche der vollständigen Menge M*
sich genau auf die Hyperkugelbereiche der vollständigen Menge M abbilden lassen

Nun entsteht eine eindeutige, umkehrbare Abbildung zwischen den geschlossenen
Hyperkugelbereichen der vollständigen Menge M, die in einem Hyperspharoformbereich
eingeschrieben smd, und den geschlossenen Hyperkugelbereichen mit beschrankten Radien
der vollständigen Menge M*, die paarweise einen nichtleeren Durchschnitt aufweisen.

Die Hyperkugelbereiche der Menge M smd offenbar mit einem einzigen w-dimensionalen
geschlossenen Hyperkugelbereich vom Durchmesser d nicht abzudecken Sei nun H^ eine
Teilmenge von M, deren w-dimensionale Hyperkugelbereiche sich mit einem einzigen
«-dimensionalen geschlossenen Hyperkugelbereich K4 mit dem Mittelpunkt 0{ und vom

x) Ein »-dimensionaler Raumbereich, dessen beliebige (n — l)-dimensionale parallele Stutzraume
den konstanten Abstand d besitzen
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Durchmesser d abdecken lassen Falls em beliebiger Hyperkugelbereich J_"a zur Ht gehört,
so gilt

ÖTO« + ra ^ -| (7)

Die zyklographische Abbildung von Kt auf R* gibt einen Punkt Of (einen Hyperkugelbereich

mit Nullradius), die Projektion von Ot auf R* Dem Hyperkugelbereich i_"a der
Menge M% entspricht im R* der Hyperkugelbereich Ki und aus (3), (4) und (7) folgt
0f0% ^*r£, das heisst Of ist em Punkt des geschlossenen Hyperkugelbereiches K$ der
Menge M* Den Hyperkugelbereichen der Teilmenge Ht entspricht im R* eine Teilmenge
Hf der Hyperkugelbereiche der Menge M*, die einen nichtleeren Durchschnitt, den
Punkt Of besitzen Es ist auch leicht einzusehen, dass einer - im obigen Sinne definierten -
Teilmenge Hf von M*, die Teilmenge Ht von M entspricht Hieraus folgt

Satz I Gibt es eine natürliche Zahl m so dass die vollständige Menge der in eine n-dimen-
sionale geschlossene Hyperspharoform vom Durchmesser d eingeschriebenen geschlossenen
Hyperkugelbereichen mit m n-dimensionalen geschlossenen Hyperkugelbereichen vom Durchmesser

d abdeckbar ist, so lasst sich die vollständige Menge - derjenigen n-dimensionalen
geschlossenen Hyperkugelbereiche mit beschrankten Durchmessern, die paarweise einen
nichtleeren Durchschnitt aufweisen - genau in m solche Teilmengen zerlegen, dass die zu
derselben Teilmenge gehörigen Hyperkugelbereiche sämtlich einen nichtleeren Durchschnitt
besitzen

Laut obigem Gedankengang ist dieser Satz umkehrbar
Sei nun h die Menge der Punkte der geschlossenen «-dimensionalen Hyperspharoform

von konstanter Breite d im Rn Ihre zyklographische Abbildung m i_* ergibt die
vollständige Menge h* derjenigen «-dimensionalen geschlossenen Hyperkugelbereiche
vom Durchmesser d, die paarweise einen nichtleeren Durchschnitt besitzen Hieraus
folgt

Satz II Gibt es eine natürliche Zahl m' so, dass sich die Menge der Punkte einer n-dimen-
sionalen geschlossenen Hyperspharoform vom Durchmesser d mit m/ n-dimensionalen
geschlossenen Hyperkugelbereichen vom Durchmesser d abdecken lasst, so lasst sich die voll-
standige Menge - derjenigen n-dimensionalen geschlossenen Hyperkugelbereiche von
beschranktem gleichem Durchmesser, die paarweise einen nichtleeren Durchschnitt besitzen -
genau in m' Teilmengen so zerlegen, dass die zu derselben Teilmenge gehörigen Hyperkugelbereiche

sämtlich einen nichtleeren Durchschnitt besitzen
Das Problem der Menge M* ist fur n 2 bekannt Gallai hat vermutet und Ungar

und Szekeres haben erstmals bewiesen [1, 2], dass es eine natürliche Zahl m so gibt, dass
die Menge derjenigen geschlossenen ebenen Kreisbereiche, die paarweise einen nichtleeren
Durchschnitt haben, sich m m solche Teilmengen zerlegen lasst, dass die zu derselben
Teilmenge gehörigen Kreisbereiche sämtlich einen nichtleeren Durchschnitt aufweisen
(Dieser Satz ist auch fur Kreisbereiche mit unbeschrankten Radien gültig Aus Satz I
folgt unmittelbar, dass die Menge der obigen geschlossenen Kreisbereiche mit beschrankten
Radien sich zu einer vollständigen Menge erganzen lasst) Aus diesem bekannten Satz und
aus Satz I folgt

Satz Ia Die vollständige Menge der in einer geschlossenen Orbiforme vom Durchmesser d
eingeschriebenen geschlossenen Kreisbereiche lasst sich mit m geschlossenen Kreisbereichen vom
Durchmesser d abdecken, wo die natürliche Zahl m mit der Stichzahl des Gallaischen Problems
übereinstimmt

Die Anwendung des Satzes II fur die Ebene zeigt, dass die Punktmenge einer geschlossenen

Orbiforme vom Durchmesser d sich mit genau so vielen geschlossenen Kreisbereichen

vom Durchmesser d abdecken lasst, wie sich die Menge von geschlossenen Kreis-
bereichen vom gleichen beschrankten Durchmesser in solche Teilmengen zerlegen lasst,
dass die zu jeder Teilmenge gehörigen Kreisbereiche sämtlich einen nichtleeren
Durchschnitt aufweisen Beide Probleme sind bekannt und wurden voneinander unabhängig
gelost. Es ist bekannt, dass eine Orbiforme vom Durchmesser d sich mit 3 Kreisen sogar
vom Durchmesser d ^3/2 abdecken lasst [3, 4], und Hadwiger [5] bewies, dass die Menge
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derjenigen kongruenten ebenen Kreisbereiche, die paarweise einen nichtleeren
Durchschnitt haben, sich in 3 solche Teilmengen zerlegen lasst, dass die zu derselben Teilmenge
gehörigen Kreisbereiche samtlich einen nichtleeren Durchschnitt aufweisen

J Schopp, Budapest
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Zu einem Konvergenzsatz der elementaren Erneuerungstheorie
Ein Anfangsbestand mit E0 Elementen sei einer starren Ausscheideordnung unterworfen,

derart, dass am Ende des ersten Jahres wx E0 Elemente abgehen, am Ende des zweiten
Jahres w2 E0, am Ende des k ten Jahres wk E0 Der Bestand sei dann ausgestorben, also

wx + w2+ + wk= 1 (1)

dabei setzen wir alle w%, i — 1 2, k, grosser als Null voraus, das heisst, kein Jahr
soll ohne Abgange sein Jedes abgehende Element werde jeweils sofort durch genau ein
zugehendes ersetzt, so dass am Ende des ersten Jahres Ex Elemente, am Ende des zweiten
E2, am Ende des 2-ten Jahres Et Elemente hinzutreten Sie mögen demselben
Ausscheidegesetz wie der Anfangsbestand gehorchen Dann gelten fur die Erneuerungszahlen
die Beziehungen

Ex wx E0

E2 w2E0 + wx Ex,
Ez w3E0 + w2 Ex + wxE2,

Ek= wkE0+ wk_xEx + + wxEk_x,

und allgemein hat man fur ganze t > k

Et=wxEt_x+w2Et_2+ + wkEt_k (2)

Gewisse Konvergenzeigenschaften der Erneuerungszahlen Et lassen sich in sehr einfacher
Weise unter Ausnutzung rem algebraischer Beziehungen aus (1) und (2) herleiten Als
fruchtbar erweist sich namentlich die Einführung des Maximums und des Minimums von
k aufeinander folgenden Erneuerungszahlen1)

Wir bezeichnen fur ganze t > k

mit Mt das Maximum von Et, ^t+i > Et+k-l
mit mt das Minimum von Et, Et + i > Et+k-1

Mt und mt gestatten auf mehreren Wegen den Beweis dafür, dass die Folge der
Erneuerungszahlen mit t -> oo gegen eine Zahl E konvergiert Einer dieser Beweise2) macht
zunächst eine Aussage uber die Konvergenzgeschwindigkeit, indem er zur Ungleichung
fuhrt

mf
1 + w

worin w Mm (wx, w%, wk)

x) Siehe z B W S_axer, Versicherungsmathemahk I, Springer Verlag 1955, und die dort angegebenen
Litera turhinweise

2) Siehe das erwähnte Buch, S 200

Mt+k - mt+k < /^ m>

* (3)
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Man kann die noch etwas bessere Beziehung

Mt+k - mt + k <(l-w) (Mt - mt) (4)

gewinnen, was im nachfolgenden gezeigt sei
Vorerst stellt man auf Grund von (2) leicht fest, dass fur t > k Mt + 1 < Mt und

mt + i > mt 1S* L>a ausserdem Mt > mt gilt, ergibt sich die Existenz eines Grenzwertes
von Mt und von mt fur t ->¦ cx> aus bekannten Sätzen uber monotone beschrankte Folgen
Zu zeigen wäre noch die Identität beider Grenzwerte

Der Fall, dass k Erneuerungszahlen hintereinander unter sich gleich sind - welcher
gemäss (1) und (2) von da an sofort zu konstanten Erneuerungszahlen fuhrt - genügt
bereits der Beziehung (4)

Et, Et+X, Et+k_x seien nun nicht alle gleich gross3)
Wir untersuchen den Ausdruck

k

E
t -1

Mt - Et + k 2>. Wt - Et + k_t)

etwas naher
Mindestens eine der Erneuerungszahlen rechts ist gleich gross wie Mt so dass deren

Differenz verschwindet Ersetzen wir das zugehörige w% noch durch das Minimum der
wv so kommen wir schliesslich zu

Mt - Et+k < (1 - w) (Mt - mt) (5)

Diese Ungleichung denken wir uns mutatis mutandis angesetzt fur Et+k, Et + k+1,
Et + 2k-l> also

Mt - Et + k <(l-w) (Mt - mt)

Mt+X - Et+k+x <(l-w) (Mt + X - mt+x)

Mt+k_x - Et + 2k_x < (1 - w) (Mt+k_x - mt+k_x)

(6)

Wir vergrössern rechts und verkleinern links dergestalt, dass wir die meisten Indizes
vereinheitlichen können Zu diesem Zweck ersetzen wir rechts die Differenzen (Mf — mt),
(Mt+X — mt+x) durch eine darunter, welche von keiner andern ubertroffen wird,
namhch (Mt — mt) Linker Hand ersetzen wir Mt, Mt + X Mt+k_x überall durch das
höchstens gleich grosse Mt+k So gewinnen wir Ungleichungen, m denen bloss
die Erneuerungszahlen links verschiedene Indizes t + k, t + k + 1, t + 2 k — 1 tragen
Jede dieser modifizierten Ungleichungen ist gültig, daher gilt - mindestens - eine davon
auch fur die kleinste unter den Zahlen Et+k, Et+k+x, Et+2k_x, das heisst fur mt+k
Folglich gelangen wir zur Ungleichung (4), welche sich wie folgt als Satz aussprechen
lasst

Die Schwankungsbreite von k unmittelbar aufeinanderfolgenden Erneuerungszahlen,
welche der Beziehung (1) unterliegen, verringert sich im Verhältnis zur Schwankungsbreite

der vorangehenden k Erneuerungszahlen mindestens so stark, als ob die kleinste
Ausscheidewahrschemhchkeit weggefallen wäre

Die Schwankungsbreite (Mt — mt) lasst sich mit t -> oo beliebig klein machen, denn es
ist fur eine natürliche Zahl s

Mt+8h - mt+sk < (1 - w)s (Mt - mt), (7)

a) Die Erneuerungszahlen und die daraus hervorgehenden Teilbestande sind selten ganzzahlig Die
darin hegende Problematik wird gewohnbeh übergangen Wir weichen ihr kurzerhand aus, indem wir
die einzelnen Elemente als beliebig unterteilbar voraussetzen Die Problematik ist dadurch allerdings
nicht eigentlich gelost.
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die rechte Seite geht aber bei festem t und wachsendem s gegen Null Der Grenzwert E
von Et ergibt sich bekanntlich zu

E =__ _ Jh (8)
wx+ 2 w2+ + k wk

Auf möglichst kurzem Weg kommen wir so zu dieser Formel Am Ende des t-ten Jahres
(/ > k), gerade nach dem Abtausch der Abgange und Zugange, hat der Gesamtbestand
den Umfang EQ Dabei sind übrig

von Et noch alle Elemente
von Et_x noch alle bis auf wx Et_x,
von Et_2 doch alle ausgenommen (wx + w2) Et__2>

von Et_k + X noch wk Et_k + X,

von Et_k und früheren keine mehr

Daher ist

EQ-=Et(wx+w2 + + wk) +Et__x(w2+ +wk)+ +Lt_k + Xwk
oder

E0 - wxEt + w2 (Et + Et_J + + wk(Et+ + Et k + 1) (9)

Durch den Grenzübergang Et -> E fur t -> oo erhalt man (8)
Wird mindestens em w% zu Null und somit auch w, so verliert die Ungleichung (5)

ihre konvergenzerzeugende Wirkung Da die Ausscheideordnung (wx, w2, wk) in jedem
Fall mit dem letzten von Null verschiedenen wt abbricht, gibt es verschwindende w% nur
fur Indizes i < k

Die Einschränkung, dass durchwegs die wt > 0 sein sollen, ist fur die Konvergenz der
Erneuerungszahlen m der Tat wesentlich, wie durch das Beispiel k 2, wx 0, w2 1

belegt wird Die Erneuerungszahlen smd hier abwechselnd 0 und E0, eine Konvergenz
findet nicht statt

Die getroffenen Annahmen lassen sich m anderer Hinsicht etwas lockern Bisher war
unterstellt, der Anfangsbestand E0 sei der nämlichen Ausscheideordnung ausgesetzt wie
die spater eintretenden Elemente Diese Bedingung ist nicht notwendig, vielmehr darf
derAnfangsbestand von eineranderen (starren) Ausscheideordnun g px, p2, pn beherrscht
sein, mit

P1 + P2+ +Pn~l (10)

Da fur t > n der Anfangsbestand ausgestorben ist, herrscht dann allein die Ausscheideordnung,

welche fur die Erneuerungszahlen massgebend ist, nur sie geht in (4), (7) und
(8) em Überhaupt gelten die Überlegungen zur Ungleichung (4) und zum Grenzwert E
allgemein, sofern sich nur von einem t an die Ausscheideordnung gemäss (1) völlig
durchgesetzt hat

Das Ausscheiden von Elementen und der Neueintritt derjenigen, welche sie zu ersetzen
haben, genau am jeweiligen Jahresende, bedeutet, dass wir es mit sehr speziellen Annahmen

zu tun haben Weniger einschneidend wäre zum Beispiel die Bedingung, dass die
Elemente auch wahrend des Jahres austreten und dass jeweils sofort ihr Ersatz vonstatten
geht Unter diesen Umstanden bleibt der Umfang der Gesamtheit auch wahrend des
Jahres fest, sofern man noch die Voraussetzung hinzufügt, dass em Wiederaustreten der
wahrend des Jahres hinzugekommenen Elemente erst im Folgejahr gemäss Ausscheidegesetz

beginnen kann Die bisherigen Aussagen lassen sich dann ohne weiteres übertragen
Schwächt man darüber hinaus die Voraussetzungen noch insofern ab, dass nun der Ersatz
ausgeschiedener Mitglieder irgendwann einmal im gleichen Jahr erfolgen darf, so
verringert u U derBestand wahrend des Jahres seinen Umfang, gehtdann jedoch am Jahresende
stets wieder auf die ursprüngliche Anzahl E0 zurück Die bisher gewonnenen Beziehungen
bleiben voll erhalten, bis auf (8), welche nur fur diskrete Zeitpunkte (namhch fur das
Jahresende) eme Übereinstimmung von E0 und vorhandenem Bestand auszunutzen
erlaubt B Romer, Basel
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