Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 16 (1961)

Heft: 2

Artikel: Sur le problème de Catalan. Part II

Autor: Rotkiewicz, A.

DOI: https://doi.org/10.5169/seals-21284

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik und zur Förderung des mathematisch-physikalischen Unterrichts Organ für den Verein Schweizerischer Mathematik- und Physiklehrer

Publiziert mit Unterstützung des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung

El. Math. Band XVI Nr. 2 Seiten 25-48 Basel, 10. März 1961

Sur le problème de Catalan, II

Dans le travail [1]¹) j'ai démontré que l'équation

$$x^z - y^t = 1 \tag{1}$$

n'a pas de solutions en entiers x, y, z, t plus grand que 1, où min (x, y) < 22, sauf la solution x = 3, y = 2, z = 2, t = 3. Ici je démontrerai le théorème suivant.

Théorème 1. Si les entiers x, y, z, t plus grands que 1 satisfont à l'équation (1) et ne sont pas le système x = 3, y = 2, z = 2, t = 3, on a x > 1000 et y > 1000.

Démonstration. Vu les résultats de Lebesgue, Euler, Nagell et Selberg (voir [2]) il suffira de démontrer notre théorème dans les deux cas suivants:

1) z = 2. 2) Tout diviseur premier des nombres z et t est ≥ 5 .

Si z = 2, et si $(x, y, t) \neq (3, 2, 3)$, on a t > 50000 [1]. D'autre part, d'après le théorème 2 du travail [1], si z = 2 et $(x, y, t) \neq (3, 2, 3)$, chacun des nombres x et y a un diviseur premier de la forme k t + 1. Donc, pour z = 2, $(x, y, t) \neq (3, 2, 3)$, les nombres x et y sont y = 50000.

Dans le cas 2) soient p et q respectivement des diviseurs premiers des nombres z et t. D'après (1) on a alors

$$(x^{z|p})^p - (y^{t|q})^q = 1$$
, où $p \mid z, q \mid t$. (2)

$$2^{q} \mid q^{\alpha} r^{\beta} - 1. \tag{3}$$

Pareillement, s'il était $y = p^{\alpha_1} s^{\beta_1}$, on aurait

$$2^{p} \mid p^{\alpha_{1}} s^{\beta_{1}} + 1. \tag{4}$$

¹⁾ Les chiffres en crochets renvoient aux travaux cités à la page 27.

Aucun des nombres $q^{\alpha}r^{\beta}$ ou $p^{\alpha_1}s^{\beta_1}$ qui sont ≤ 1000 (c'est-à-dire aucun des nombres $5 \cdot 11$, $5 \cdot 31$, $7 \cdot 29$, $5 \cdot 41$, $11 \cdot 23$, $5^2 \cdot 11$, $7 \cdot 43$, $5 \cdot 61$, $5 \cdot 71$, $7 \cdot 71$, $5 \cdot 101$, $5 \cdot 11^2$, $5 \cdot 131$, $13 \cdot 53$, $11 \cdot 67$, $5 \cdot 151$, $5^2 \cdot 31$, $7 \cdot 113$, $7 \cdot 127$, $5 \cdot 181$, $5 \cdot 191$, $11 \cdot 89$), comme on le vérifie sans peine, ne satisfait pas aux conditions (3) et (4); il en résulte que chacun des nombres x et y qui sont ≤ 1000 et satisfont à l'équation (1) a plus que deux diviseurs premiers. Vu que $5 \cdot 11 \cdot 31 > 1000$, $7 \cdot 29 \cdot 43 > 1000$ et comme q (q $k_1 + 1$) (q $k_2 + 1$) > 1000 pour $q \geq 11$, le nombre x dans (1) ne peut pas avoir deux diviseurs premiers distincts de la forme q k + 1. Pareillement le nombre y dans (1) ne peut pas avoir deux diviseurs premiers distincts de la forme p k + 1. Supposons qu'on a dans (1) $x = x_1 q$ (q k + 1) ≤ 1000 ou bien $y = y_1 p$ (p $k_1 + 1$) ≤ 1000 , où x_1 et y_1 sont des entiers >1 et p, q, p $k_1 + 1$, q k + 1 sont des nombres premiers. Vu que $2 \cdot 5 \cdot 11^2 > 1000$, on a ici $\varepsilon = \varepsilon_1 = 1$. Il résulte des inégalités $x_1 q \geq 2 \cdot 5$, $y_1 p \geq 2 \cdot 5 = 10$, $x \leq 1000$, $y \leq 1000$ que q k + 1 < 100 et p $k_1 + 1 < 100$. Comme q (q k + 1) $\geq 5 \cdot 11 = 55$ et $x \leq 1000$, on a $x_1 < 1000/55$ et $1 < x_1 \leq 18$. D'après (1) on a

$$[x_1 q (q k + 1)]^z = y^t + 1, \text{ où } q \mid t, q k + 1 < 100.$$
 (5)

$$[x_1 \ q \ (q \ k+1)]^z = y^q + 1 \ . \tag{6}$$

On a $(y^q + 1)/(y + 1) > y^{q-1} \ge 2^{q-1} > q$ pour $q \ge 5$. Vue que tout diviseur premier du nombre $(y^q + 1)/(y + 1) > q$ est de la forme q + 1 ou bien est q = q et pour $q \mid y^q + 1$ on a $q \mid (y^q + 1)/(y + 1)$ et $q^2 \not \mid (y^q + 1)/(y + 1)$ [3], th. 1042, 1043, p. 320–322, et le nombre $x = x_1 q (q + 1)$ n'a qu'un seul diviseur premier de la forme q + 1, il résulte de (6) que $y + 1 = x_1^z q^{z-1}$ et on obtient:

$$[x_1 q (q k + 1)]^z = (x_1^z q^{z-1} - 1)^q + 1. (7)$$

Comme, pour x > 1 on a $x^p - (x-1)^p = x^{p-1} + x^{p-2}(x-1) + \cdots + (x-1)^{p-1} , donc, pour <math>x > 1$, $(x-1)^p > x^p - p x^{p-1} = x^{p-1}(x-p)$, d'où il résulte que

$$(x-1)^{p} > x^{p-1} \text{ pour } x > p$$
, (8)

et, d'après $q k + 1 \le 100$, on a

$$\begin{split} &(x_{1}^{z} q^{z-1}-1)^{q} > (x_{1}^{z} q^{z-1})^{q-1} = x_{1}^{z} q^{z} x_{1}^{z(q-2)} q^{(z-1)(q-2)-1} \geqq \\ & \geqq x_{1}^{z} q^{z} \cdot 2^{5 \cdot 3} \cdot 5^{(z-1) \cdot 3-1} = x_{1}^{z} q^{z} \frac{2^{15}}{5^{4}} \cdot 125^{z} > x_{1}^{z} q^{z} \cdot 125^{z} > [x_{1} q (q k+1)]^{z}, \end{split}$$

contrairement à (7).

Il doit donc être x > 1000. Pareillement, s'il était $y = y_1 \not p (\not p k + 1) < 1000$, alors, par la même méthode comme dans la démonstration que x > 1000, on obtiendrait $z = \not p$, $x^p - 1 = [y \not p (\not p k + 1)]^t$, $x - 1 = y_1^t \not p^{t-1}$ et

$$(y^{t} p^{t-1} + 1)^{p} - 1 = [y_{1} p (p k_{1} + 1)]^{t},$$
(9)

ce qui est impossible, puisque

$$\begin{split} &(y_{1}{}^{t} \not p^{t-1} + 1)^{p} - 1 > (y_{1}{}^{t} \not p^{t-1})^{p} \ge y_{1}{}^{t} \not p^{t} \not p^{(t-1) \cdot 4 - 1} = \\ &= y_{1}{}^{t} \not p^{t} \not p^{4 \cdot t - 5} \ge y_{1}{}^{t} \not p^{t} \not p^{3t} \ge y_{1}{}^{t} \not p^{t} \cdot 125{}^{t} > [y_{1} \not p (p \cdot k + 1)]^{t}, \end{split}$$

et $p k + 1 \le 100$. On a donc y > 1000.

Corollaire. Sauf le cas x = 3, y = 2, z = 2, t = 3, l'équation (1) n'a pas de solutions en nombres entiers > 1 pour $x = a^m$, $y = b^n$ où min $(a, b) \le 1000$ et a, b, m et n sont des nombres naturels.

Une méthode pareille permet de démontrer ce

Théorème 2. Si les nombres entiers x et y plus grands que 1 et les nombres premiers z et t satisfont à l'équation (1), et ne sont pas le système x=3, y=2, z=2, t=3, on a $x>10^6$ et $y>10^6$.

A. ROTKIEWICZ (Varsovie)

- [1] A. Rotkiewicz, Sur le problème de Catalan, El. Math., 15, 121-124 (1960).
- [2] J. W. S. Cassels, On the equation $a^x b^y = 1$, II. Proc. Cambridge Phil. Soc. [2], 56, (1960), p. 97-103.
- [3] E. LANDAU, Vorlesungen über Zahlentheorie, Bd. III (New York 1945).

Sur les nombres impairs admettant une seule décomposition en une somme de deux carrés de nombres naturels premiers entre eux

Le but de cet article est de démontrer le théorème suivant que je suppose être nouveau, puisque je ne l'ai pas trouvé dans la littérature qui m'était accessible. C'est le théorème suivant:

Théorème: Pour qu'un nombre impair n soit et d'une seule façon somme de deux carrés de nombres naturels non décroissants premiers entre eux, il faut et il suffit qu'il soit une puissance à l'exposant naturel d'un nombre premier de la forme $4k + 1^{1}$.

¹⁾ A. Ferrier dans son livre Les nombres premiers, Paris 1947 à la p. 11 écrit: Pour qu'un nombre 4n+1, non carré, soit premier, il faut et il suffit qu'il soit, et d'une seule façon, somme de deux carrés premiers entre eux. Il ajoute que Euler a utilisé cette propriété pour reconnaître si un nombre est premier.

Or, cette proposition est évidemment fausse, vu que, par exemple, le nombre non carré 125 est, comme on le vérifie sans peine, d'une seule façon somme de deux carrés premiers entre eux: $125 = 11^2 + 2^2$.

L. Holzer dans son livre Zahlentheorie, I, Leipzig 1958, à la p. 53 écrit: Satz 20: Eine Zahl der Form 4n+1 ist dann und nur dann eine Primzahl, wenn sie sich im wesentlichen eindeutig als Summe zweier teilerfremder Quadrate darstellen lässt.

Im wesentlichen eindeutig heisst: Zwei Darstellungen durch dieselben Summanden in verschiedener Reihenfolge werden als gleich betrachtet.