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Sur le probleme de Catalan, II
Dans le travail [l]1) j'ai demontre que l'equation

x*-y'=l (1)

n'a pas de Solutions en entiers x, y, z, t plus grand que 1, oü min (x, y) < 22, sauf la
Solution x 3, y 2, z 2, t 3. Ici je demontrerai le theoreme suivant.

Theoreme 1. Si les entiers x, y, z, t plus grands que 1 satisfont ä Vequation (1) et ne sont

pas le Systeme x 3, y 2, z 2, t 3, on a x > 1000 ety> 1000.

Demonstration. Vu les resultats de Lebesgue, Euler, Nagell et Selberg (voir [2])
il suffira de demontrer notre theoreme dans les deux cas suivants:

1) z 2. 2) Tout diviseur premier des nombres z et t est ^5.
Si z 2, et si (x, y, t) + (3, 2, 3), on a t> 50000 [1]. D'autre part, d'apres le

theoreme 2 du travail [1], si z 2 et (x, y, t) + (3, 2, 3), chacun des nombres x et y
a un diviseur premier de la forme kt + 1. Donc, pour z 2, (x, y, t) 4= (3, 2, 3), les

nombres x et y sont > 50000.
Dans le cas 2) soient p et q respectivement des diviseurs premiers des nombres z

et t. D'apres (1) on a alors

(xzlP)P _ (ytky 11 oü p | z, q | t. (2)

D'apres le theoreme 4 du travail [1], on a q r \ xz,p et p s | yz!<*, oü r et s sont respectivement

des nombres premiers de la forme qk + 1 et p k + 1, q J__: 5, p ^5. On a

donc qr\x,ps\y. Donc, si le nombre x ou y avait seulement deux diviseurs premiers,
on aurait soit x q*rß, soit y p*1 sßl. Soit x qclrß. De (1) nous obtenons

(q* rß)z — 1 yl. Le nombre z etant impair, le nombre (q* rß)z — 1 est divisible par la
meme puissance du nombre 2 que le nombre qa rß — 1. Or, le nombre q* rß £tant
impair, on a 2 | qx rß — 1 et, comme q \ t, on trouve

2. | f Yß - 1. (3)

Pareillement, s'il 6tait y p(Xl sßl, on aurait

2P | p«1 sß*+l. (4)

x) Les chiffres en crochets renvoient aux travaux cites ä la page 27.
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Aucun des nombres qarß ou pa% sßl qui sont ^ 1000 (c'est-ä-dire aucun des nombres
5 • 11, 5 • 31, 7 • 29, 5 • 41, 11 • 23, 52 • 11, 7 • 43, 5 • 61, 5 • 71, 7 • 71, 5 • 101, 5 • ll2,
5 • 131,13 • 53, 11 • 67, 5 • 151, 52 • 31, 7 • 113, 7 • 127, 5 *181, 5 • 191, 11 • 89), comme
on le verifie sans peine, ne satisfait pas aux conditions (3) et (4); il en resulte que
chacun des nombres x et y qui sont ^ 1000 et satisfont ä l'equation (1) a plus que
deux diviseurs premiers. Vu que 5 • 11 • 31 > 1000, 7 • 29 • 43 > 1000 et comme
q (q *i + 1) (a k2+ 1)> 1000 pour q ^ 11, le nombre x dans (1) ne peut pas avoir
deux diviseurs premiers distincts de la forme q k + 1. Pareillement le nombre y dans
(1) ne peut pas avoir deux diviseurs premiers distincts de la forme pk + 1. Supposons
qu'on a dans (1) x xx q (q k + l)e ^ 1000 ou bien y yx p (p kx + l)*1 ^ 1000, oü

xx et yx sont des entiers >1 et p, q, p kx + 1, q k + 1 sont des nombres premiers. Vu
que 2 • 5 • ll2 > 1000, on a ici e ex 1. II resulte des in£galit£s xx q 2__ 2-5,
yx p ^ 2 • 5 10, x ^ 1000, y _g 1000 que # £ -f-1< 100 et p kx + 1 < 100. Comme

q (q k + 1) ^ 5 • 11 55 et * ^ 1000, ona^< 1000/55 et 1< xx ^ 18. D'apres (1)

on a

fo? (?* + 1)? yl+ 1, oü? | t, qk + 1< 100 (5)

D'apres le tMoreme 3 du travail [1], si x, y, z, t sont des entiers >1 satisfaisant ä

l'equation (1) et ne sont pas le Systeme x 3, y 2, z 2, t 3, alors % a un diviseur
premier de la forme ^ -f 1 et le nombre y a un diviseur premier de la forme z k + 1.

Donc, si t q*, oü a ä 3, d'apres (5), le nombre x xx q (q k + 1) a un diviseur
premier de la forme 2q(Xk + l>2-5z 250, ce qui, d'apres 1 < xx ^ 18,

q k + 1 < 100 est impossible. D'apres le theoreme 3 du travail [1] pour t q2 le
nombre x xxq (q k + 1), a un diviseur premier de la forme 2 q2 k + 1 et, comme
3 | 2 ?2 + 1 pour q>3, on a £ > 1 et 2?2&+l_^2-52-2-f-l 101, ce qui,
d'apres 1 < xx ^ 18, £ ß + 1 < 100 est impossible. Si le nombre t a un diviseur
premier qlt oü 5 ^ ^ 4= q, alors, d'apr&s le theoreme 3 du travail [1], le nombre x a

un diviseur premier de la forme 2£&+1^2-5*7+l 71. Vule theoreme de

Cassels [2], si xp — y* 1, oü p et q sont des nombres premiers distincts, on a

q \ x et p \ y. Donc, d'apres q\t, qx\t, dans le cas oü t a deux diviseurs premiers
distincts, on a q \ x, qx \ x et x S> £ & • 71 ^ 5 • 7 • 71 > 1000. Donc, si # <: 1000 et
si l'on a la formule (5), on a 2 #. On a donc

[xlq(qk + l)]z y^+l. (6)

On a (f + l)/(y + 1) > y*_1 ^ 2*_1 > # pour q ä 5. Vue que tout diviseur premier
du nombre (yq + 1)1 (y + 1) > q est de la forme q k + 1 ou bien est # et pour
q | y* +1 on a | (y* + l)/(y + 1) et ?2 \' (yi + l)/(y + 1) [3], th. 1042, 1043, p. 320-
322, et le nombre x xx q (q k + 1) n'a qu'un seul diviseur premier de la forme

q k + 1, il resulte de (6) que y + 1 xxz q*-1 et on obtient:

[**(**+iJF-fa'f-1- 1)« + 1. (7)

Comme, pour A;>lona^-(^-l)^ ^~1 + ^~2 (x — 1) + h (x — l)^"1
< £ #*-*, donc, pour # > 1, (# — 1)* > x* — £ ^~1 xp~1 (x — ^), d'oü il resulte

que

(x-iyyxP-1 pour x>p, (8)
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et, d'apres q k + 1 < 100, on a

(xxz qz~x - l)i > (xxz q2-1)«-1 xxz qz xxz^~^ ^-Dto-8)-i :>

215

~5*~

215

^ xxz qz • 25'3 • 5^-D-3-1 xxz qz -^- • 125* > *^ • 125* >[xxq(qk + l)f,
contrairement ä (7).

II doit donc etre x > 1000. Pareillement, s'il etait y yx p (p k + 1) < 1000, alors,

par la meme methode comme dans la demonstration que x > 1000, on obtiendrait
z _= ps xp - 1 [y p (p k + l)]f, x-l yxt p*-1 et

(y<p<-i+l)p-l \yxp(pkx + l)y, (9)

ce qui est impossible, puisque

(yxt1>t-l + 1)*- 1 > (y1tPi~1)p ^yxtptp{t-1)'*-1

yitptp*t-* > y^P'P*' > yi*p* • 125* >[yxp(pk +1)]',

et £ ä + K 100. On a donc y > 1000.

Corollaire. Sauf le cas x 3, y 2, z — 2, t 3, l'equation (1) n'a pas de Solutions en
nombres entiers > 1 pour x am, y bn oü mm (a, b) ^ 1000 et a, b, m et n sont des

nombres naturels.
Une methode pareille permet de demontrer ce

Theoreme 2. Si les nombres entiers x et y plus grands que 1 et les nombres premiers zett
satisfont ä Vequation (1), et ne sont pas le Systeme x 3, y 2, z — 2, t — 3, on a x > 106

et y > 106. A. Rotkiewicz (Varsovie)
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Sur les nombres impairs admettant une seule decomposition en une
somme de deux carres de nombres naturels premiers entre eux

Le but de cet article est de demontrer le theoreme suivant que je suppose etre
nouveau, puisque je ne Tai pas trouve dans la litterature qui m'etait accessible. C'est
le theoreme suivant:

Th6or&me: Pour qu'un nombre impair n soit et d'une seule facon somme de deux
carres de nombres naturels non decroissants premiers entre eux, il faut et il suffit qu'il
soit une puissance ä Vexposant naturel d'un nombre premier de la forme 4 k + l1).

x) A. Ferrier dans son livre Les nombres premiers, Paris 1947 ä la p. 11 6crit: Pour qu'un nombre
4 n + 1, non carri, soit premier, ü faut et ü suffit qu'il soit, et d'une seule facon, somme de deux carris Premiers
entre eux. II ajoute que Euler a utihs£ cette propn£t6 pour reconnattre si un nombre est premier.

Or, cette proposition est eVidemment fausse, vu que, par exemple, le nombre non carre 125 est, comme
on le v&rrfie sans peme, d'une seule facon somme de deux carres premiers entre eux: 125 ll2 + 22.

L. Holzer dans son livre Zahlentheorie, I, Leipzig 1958, ä la p. 53 ecrit: Satz 20: Eine Zahl der Form
4 n + 1 ist dann und nur dann eine Primzahl, wenn sie sich im wesentlichen eindeutig als Summe zweier
teüerfremder Quadrate darstellen lässt.

Im wesentlichen eindeutig heisst: Zwei Darstellungen durch dieselben Summanden in verschiedener
Reihenfolge werden als gleich betrachtet.
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