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Ungeloste Probleme — Kleine Mitteilung 13

Ungelste Probleme

Nachtrag zu Nr. 14 (El. Math. 77, 134 (1956)).

Herrn W. SierpriNsk1 (Warschau) verdanken wir die folgenden Angaben:

Die von W. MNICH gestellte Frage, ob Summe und Produkt von drei rationalen
Zahlen gleichzeitig 1 sein konnen, ist von J. W. S. CASSELS in seiner Arbeit: On a
diophantine equation (Acta Arithmetica 6, 47-52 (1960)) in negativem Sinn beantwortet
worden. Leider ist der Casselsche Beweis nicht elementar und stiitzt sich auf Resul-
tate verschiedener anderer Autoren. CASSELS hat bewiesen, dass das Problem von
MnICH dquivalent ist mit der Frage, ob die diophantische Gleichung

P = 2t (x4 4P
ausser ¥ = 0, y = 8 weitere Losungen in rationalen Zahlen besitzt. A. SCHINZEL

konnte auf elementarem Wege zeigen, dass diese Gleichung auf jeden Fall keine
welteren Losungen in ganzen Zahlen hat. E. TrosT

Kleine Mitteilung

Simplexungleichungen
Die Ecktransversalen durch einen beliebigen inneren Punkt P des #-dimensionalen

Simplex A; (¢ =1, ..., #n + 1) schneiden die entsprechenden gegeniiberliegenden Grenz-
rdumein B; (i = 1, ..., n + 1). Bezeichnen wirmit¢; (¢ = 1, ..., n + 1) die Strecke 4, B,,
mit d; (¢ = 1, ..., n+ 1) die Strecke PB,, so gilt
n+1 d.
72 = 1. (1)
i=1 ¢
Beweis: Sind xy, #,, ..., %, die baryzentrischen Koordinaten von P beziiglich der
entsprechenden Simplexspitzen, so gilt
di X3
i, nil

woraus (1) unmittelbar folgt.

Bezeichnen wir weiterhin mit »; (¢ = 1, ..., #n + 1) den Abstand des dem A, Simplex-
spitze gegeniiberliegenden Grenzraumes von P, mit 4; (i = 1, ..., n + 1) die zu 4, ange-
horigen Simplexhohen, so ist einfach einzusehen, dass

vi _ 4
g
woraus mit Riicksicht auf (1) .
n+
i

~,

i=1
unmittelbar folgt.
Féllt P mit dem Inhyperkugelmittelpunkt des Simplex zusammen, so wird

Vi=¥e="'" =¥ 1= @
wo ¢ den Inhyperkugelradius bezeichnet. Fiir diesen Fall folgt aus (2):
11 n+ 1
——=—, woraus ——— =(n-+4+1)g.
~ hi Q n+1~];—
= M

Die linke Seite ist aber gleich dem harmonischen Mittel der Simplexhéhen H(%;), also
(n+1)-0=H(h) . (3)
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