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Lineare Programmierungl)
1. Einleitung

Die Lineare Programmierung ist eine Theorie, die sich nicht ohne weiteres einem
bestimmten Forschungsgebiet unterordnen lasst Gehort sie zur angewandten Mathematik

oder zur Unternehmensforschung Sicher befassen sich Vertreter beider
Richtungen sehr intensiv damit, und deshalb ist es nicht abwegig, einen Kompromiss zu
schhessen, indem man behauptet Die Theorie der Linearen Programmierung gehört
den angewandten Mathematikern und die praktische Verwendung ist Sache der
Unternehmensforscher

In meinen Ausfuhrungen mochte ich m erster Linie vom Standpunkt der
angewandten Mathematik aus sprechen und mich mit einigen Hinweisen auf die Praxis
begnügen Erlauben Sie mir, an dieser Stelle noch eine kleine persönliche Bemerkung
emzuflechten in bezug auf die Lineare Programmierung und die Mittelschulmathe-
matik Ich habe den Eindruck, dass einige Überlegungen, mit denen ich mich hier
auseinander setzen mochte, sich unter Umstanden gar nicht schlecht eignen wurden,
an gewissen Stellen m den Mathematikunterricht eingeflochten zu werden Einerseits
wurde dadurch m den oberen Klassen auf der Gymnasialstufe die Theorie der
Ungleichungen wieder m etwas vermehrtem Masse zu Ehren kommen, und andererseits
hatte dadurch der Schuler die Gelegenheit, schon relativ früh mathematische
Überlegungen an praktischen und realen Beispielen anzuwenden

2. Die Problemstellung der Linearen Programmierung
a) Das Maximumproblem:
Gesucht werden die Grossen xlf x2, xg, fur die der lineare Ausdruck

Q p1x1 + p2x2 + +pgxg (1)

maximal wird unter den Nebenbedingungen

an xx + a12 x2+ + alg xg ^ sx,

^21 ^1 ~T~ ^22 %2 ~T ""•" ^2g %g — ^2 >

(2)

und
*, S 0 1, 2, g) (3)

*) Vortrag, gehalten am 13 Oktober 1960 an der Tagung des Vereins Schweizerischer Mathematik und
Physiklehrer in Zürich
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Die atJ, pt und s, sind gegebene Grossen
Die oben formulierte Aufgabe wird im folgenden als Problem I bezeichnet
Bevor wir in der theoretischen Betrachtung weiterfahren, mochte ich bereits die

Formulierung des Problems I m em ökonomisches Beispiel einkleiden, namhch m die

Produktionsplanung eines Betriebes
Angenommen eine Firma kann g Produkte mit den noch unbekannten Mengen

xx, x2, xg herstellen, fur die sie nach Abzug der Stuckkosten die Nettopreise
Pv > Pgle Stuck losen will Fur die Produktion benotigt man m nicht in beliebiger

Menge vorhandene Produktionsfaktoren wie Arbeitskräfte, Maschinen,
Rohstoffe usw und zwar pro Stuck des Produktes i die Menge a31 des Produktionsfaktors

1 (i 1, g, i 1, ,m) Die Produktionsfaktoren stehen bis zu den

Hochstmengen sx, s2, sm zur Verfugung, gefragt wird nach dem optimalen
Produktionsplan
Man erkennt sofort, dass hier das Problem I zu losen ist, in welchem der Gewinn

durch (1) ausgedruckt wird und die Kapazitatsbe_.chrankungen durch das System (2)

Die Bedingung (3) sagt aus, dass alle Produktionsgrossen nicht-negativ sein dürfen
Im weiteren wollen wir nun eine kleine theoretische Diskussion uber die

Ungleichungssysteme (2) und (3) anbringen Beschranken wir uns der Anschaulichkeit

wegen auf 2 Variable (g 2), so existiert der
Satz A Die Menge der Punkte (xx, x2), welche dem System (2) genügen (bzw den

Systemen (2) und (3), bilden ein konvexes Polyeder
Es gilt jetzt, uber diesem konvexen Polyeder die lineare Funktion (1) zu maxi-

mieren, dafür benutzen wir den

Satz B Eine lineare Funktion px xx + p2 x2, die uber einem konvexen Polyeder
definiert ist, nimmt ihr Maximum in einem Eckpunkt dieses Polyeders an
definiert ist, nimmt ihr Maximum m einem Eckpunkt dieses Polyeders an

Die beiden Satze A und B lassen sich mit elementaren Mitteln der Algebra und der

analytischen Geometrie beweisen Man vergleiche hierzu das sehr gute Werk Finite
Mathematics von Kemeny, Snell und Thomson [6]2)

Die Richtigkeit der beiden Satze können wir durch eine Plausibihtatsbetrachtung
geometrisch fuhren

ß
R

*~ x
P P

Figur 1

Maximierung nach der Simplex Methode

Für m 3 bestimmen die 3 Ungleichungen je eine Halbebene, welche zusammen
mit der Bedingung (3) das konvexe Polyeder P0P1P2PzPi begrenzen Der lineare

2) Die Zahlen in eckigen Klammern beziehen sich auf das Literaturverzeichnis am Schluss der \ibeit
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Ausdruck (1): Q px xx + p2 x2 liefert eine Schar paralleler Hyperebenen (Geraden).
Das Optimum für Q wird erreicht, wenn eine der parallelen Geraden die «äusserste
Ecke» trifft (in unserem Falle P3).

b) Das Minimumproblem:
Neben der oben formulierten Maximumaufgabe ist es sinnvoll, auch von einer

Minimumaufgabe zu sprechen, indem man zum Beispiel verlangt, dass der lineare
Ausdruck T_ ,_v

-

K sx yx + s2 y2 + • • • + sm ym (4)

zum Minimum wird, unter den Restriktionen

alx yx + a21 y2 + • " + ^miym ^Pl
«12^1 + ^22^2+ * • + am2ym ^P2

<*igyi + <*2gy2+ - ' • + <*mg ym s pg

(5)

und

II

y3 _^ 0 / 1, 2, m (6)

Man könnte für das so formulierte Minimumproblem II entsprechende analytische
und geometrische Überlegungen anstellen wie beim Maximumproblem.

Mit voller Absicht habe ich das Problem II in einer gewissen Symmetrie zum
Problem I geschrieben. Die beiden so aufgestellten Probleme I und II heissen dual
zueinander, und für sie gilt das zentrale

Dualitätstheorem: Am Optimalpunkt stimmen die Werte Q und K der beiden
Dualaufgaben I und II überein.

Für diesen Beweis,der nicht mehr ganz elementar verläuft, muss ich Sie auf die

entsprechende Fachliteratur verweisen [7J.

c) Die Überführung der Ungleichungen in Gleichungen:
Im folgenden beschränken wir uns wieder auf das Maximumproblem, für das wir

nun nach expliziten Lösungen suchen wollen. Die entsprechenden Überlegungen für
die Minimumaufgabe sind analog zu denjenigen der Maximumaufgabe.

Der erste Schritt im Lösungsverfahren besteht darin, dass die Ungleichungen des

Systems (2) in Gleichungen überführt werden, denn es ist im allgemeinen angenehmer,
mit Gleichungen als mit Ungleichungen zu rechnen.

Um dies auszuführen, addieren wir zu jeder Ungleichung auf der linken Seite der
Reihe nach die nicht-negativen Schlupfvariablen

xg +1, xg + 2, xg + m xn (7)

hinzu und schreiben das Problem I nochmals in etwas modifizierter Form:
Man maximiere den Ausdruck

Q PXXX+ '- + PgXg + pg + 1Xg + 1+ ••• 4-/)

unter den linearen Restriktionen

^n xx + ''' + aXg xg + xg+x sx,

^21 xx + "' + a2g xg + xg + 2 s2,

(8)

^i% +
und

+ amgXg + Xg + m~ Sm

xx,x2,... ,xg + m ^0,

(9)

(10)

III
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An dieser Stelle ist es zweckmassig (nicht aber unbedingt notig), die Matrix- und
die Vektorschreibweise zu benutzen, denn dadurch lasst sich das Problem III kurzer
und eleganter darstellen

Dazu definieren wir p' als einen Zeilenvektor mit n m + g Elementen

P'=(Pl>p2> >Pg>Pg + l> >Pg + m)

Unter x bzw s verstehen wir Kolonnenvektoren von n bzw m Elementen

Mit A bezeichnen wir eine (m n)-Matrix
a12

a90 a9a 0 1 0
axx a12 alg 1 0 0

A *2\

%m\am2 amg ° °
Unter Benutzung dieser Schreibweise lasst sich Problem III in Problem IV

überfuhren

Man maximiere den linearen Ausdruck

Q p' x (ii)
unter den Nebenbedingungen

Ax s (12) \ IV
und

x ^ 0 (13)

(9) bzw (12) ist jetzt em Gleichungssystem mit m Gleichungen und n Unbekannten
(n g + m), wobei natürlich n> m

Somit können g n — m Unbekannte beliebig vorbestimmt und das System (9)
bzw (12) fur die restlichen m Unbekannten aufgelost werden

In Anlehnung an unsere heuristisch geführten Überlegungen im Zusammenhang
mit den Sätzen A und B formulieren wir nun das fur die lineare Programmierung
geltende

Haupttheorem An der Stelle, an der Q gemäss (8) ein Maximum annimmt, müssen
die n — m vorbestimmten Variablen 0 sein

Fur einen allgemeinen Beweis müssen wir wiederum auf die Fachliteratur
verweisen [7]

3. Das Simplexverfahren
Man kennt heute verschiedene Methoden, um em allgemeines lineares Programm

zu losen Die meistverwendete ist wohl die Simplex-Methode, die vor etwas mehr als
10 Jahren von Dantzig [3] entwickelt wurde Diese Technik ist auch deshalb sehr

verbreitet, weil man heute fur sie ausführliche Programme fur die elektronische
Computerberechnung besitzt

An dieser Stelle mochte ich Ihnen die berühmte Simplex-Methode an einem
einfachen Beispiel erläutern, das auch noch eine elementare geometrische Interpretation
erlaubt (Vgl hierzu auch [9])
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Aufgabe: Man maximiere die lineare Form

Q 3x + 5y + 4z
unter den drei Restriktionen

2x + 3y ^8,
2 y + 5 z ^ 10

3x + 2y + 4z^l5,
x^O, y^O, * ^ 0

(14)

(15)

(16)

In dieser Aufgabe sind: g 3,m 3,n m + g 6.
Wie man leicht erkennt, bestimmen die Restriktionen (15) und (16) einen Polyeder,

der im ersten Oktanten mit lauter positiven Koordinaten liegt (Figur 2).

6M.§)

F/89SO. ÄP/es, tu,
ro.*.oj

^{0,0,2)

(4.1J)

^fao,oj Aß, 0,0)

Figur 2

Restriktionspolyeder

Dieser Polyeder wird begrenzt durch die 6 folgenden Hyperebenen:

2x + 3y 8, x 0,
2 y + 5 z 10 y 0,

3x + 2y + 4z=15, z 0.
(17)

Von der früheren Theorie her wissen wir, dass das Maximum von Q an einer der
8 Ecken des Polyeders angenommen wird. Man könnte also diese 8 Ecken berechnen
und die erhaltenen Werte einzeln in Q einsetzen. Die Ecke, die das grosste Q liefern
würde, musste als Lösung der gestellten Aufgabe betrachtet werden. Ein solches
Verfahren wäre aber viel zu umständlich, vor allem dann, wenn g und m grössere Werte
aufweisen, wie dies in der Praxis häufig der Fall ist.

Dantzig schlägt nun den folgenden Lösungsweg vor:
1. Man bestimme oder suche eine Ecke als Anfangspunkt.
2. Man untersuche jede Kante, die durch diese Ecke verläuft, um zu sehen, ob eine

Verschiebung längs dieser Kante eine Vergrösserung von Q herbeiführen würde. Falls
keine Vergrösserung entsteht, so ist das Problem gelöst. Im anderen Fall fahre man
fort mit Stufe 3.

3. Man wähle diejenige Kante, der entlang eine Verschiebung Q am meisten ver-
grössert, und verfolge sie bis zur nächsten Ecke.
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4. Man wiederhole die Stufen 1, 2 und 3 solange, bis Q nicht mehr weiter vergrössert
werden kann.

Um diese 4 Stufen durchzuführen, bedienen wir uns der 3 nicht-negativen Schlupf-
variablen u, v und w, die die 3 Ungleichungen aus (15) in Gleichungen verwandeln:

2x + 3y +u= 8

2y + 5z + v 10,

3x + 2y + 4z + w=15.
(18)

Nun suchen wir einen Startpunkt, der also in einer Ecke des Polyeders liegt. Dabei
beachten wir, dass sich in jedem Eckpunkt drei der 6 Ebenen

x 0, y 0, z 0, w 0, v 0, w 0

treffen, also sind in jedem Eckpunkt 3 Koordinatenwerte gleich 0 (entsprechend auch
dem Haupttheorem).

Es ist zweckmässig, im Nullpunkt 0 (000) des Polyeders zu starten; das heisst, wir
setzen x y z 0 und suchen die Werte der 3 übrigen Schlupfvariablen.

Dazu lösen wir das System (18) nach den 3 Variablen u, v und w auf, welche die erste
Basis bilden:

u= 8-2#-3y,
v=10-2y-5z, \ (19)

w — 15 — 3 x — 2y — 4z.
Daraus schhessen wir für die
/. Basislösung: u 8, v 10, w 15, x 0, y 0, z 0 und Q 0.

Wir wollen nun diese Lösung, die sicher noch nicht optimal ist, verbessern. Dazu
betrachtet man die drei Kanten durch den Nullpunkt, dargestellt durch die drei
Gleichungspaare:

x=0, y 0,
x 0, z= 0,

y _= 0, Z= 0.

Wenn wir diesen Schnittgeraden entlanggehen, so vergrössern wir z, resp. y, resp. x.
Jede Vergrösserung um eine Einheit von x, y, z vergrössert Q um 3, resp. 5, resp. 4;
somit entschliessen wir uns, y, dem der grosste Zuwachs entspricht, zu vergrössern
und die andern beiden Komponenten, nämlich x und z vorläufig 0 zu belassen.
Durch die Variation von y werden aber auch die drei alten Basisvariablen u, v und
w variiert. Keine davon darf aber negativ werden.

Wir beziehen uns auf das System (19) und stellen fest, dass wir y um 8/3 vergrössern
können, ohne u negativ zu machen; y um 5, ohne v negativ zu machen und schliesslich
um 15/2, ohne w negativ zu machen. Somit ist die maximale Vergrösserung von
y 8/3, und wir bewegen uns vom Nullpunkt zum 2. Simplexpunkt B(0, f, 0).

Wir haben jetzt eine neue Basis, bestehend aus den nicht-negativen Variablen y, v
und w. Um ihre Werte am 2. Simplexpunkt B zu bestimmen, lösen wir das System (18)
nach diesen drei Variablen auf und erhalten
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3

14
3

29
3

1

3U>

5z +

4 z +

(20)

Daraus schhessen wir für die
2. Basislösung: y 8/3, v 14/3, w 29/3, x 0, z 0, u 0,

Wir versuchen, diese Lösung weiter zu verbessern. Die Kanten durch B werden
gegeben durch:

x-=0 \ x 0 z 0 }

BO, BG, BA.
z 0 \ u 0 J w 0 J

Eine Bewegung längs BO kommt sicher nicht in Frage, da wir uns im letzten
Schritt von 0 nach B bewegten.

Bewegung längs BA: z bleibt unverändert. Vergrössern wir x um eine Einheit, so

verkleinern wir laut (20) y um 2/3 Einheiten. Deshalb ändern wir Q für jede Einheits-
vergrösserung von x um 3 • 1 — 5 • 2/3 —1/3. Eine Verschiebung längs BA würde
somit Q wieder verkleinern.

Bewegung längs BG: Hier bleibt x unverändert, nämlich 0 und ebenfalls y. Also
vergrössert sich Q um 4 je Einheit von z. Gemäss der zweiten Gleichung in (20)
können wir z um 14/15 vergrössern, ohne v negativ zu machen, und gemäss der dritten
Gleichung um 29/12, ohne w negativ zu machen. Damit ist die maximal erlaubte
Vergrösserung von z gegeben durch 14/15, wodurch die Bewegung von B nach G

bestimmt wird. Wieder drücken wir die neuen Basisvariablen (Nicht-Null-Variablen)
durch die übrigen aus und erhalten :

y

w —

Daraus schhessen wir für die
3. Basislösung: y 8/3, z 14/15, w 89/15, x 0,

0= 256=17 l
v 15 15

8 2
X

1
U

3 3 3

14 4 2 1
-f- X + U —

15 15 15 5

89 41 2 4
— X ^ u -f-"15 15 15 5

(21)

0.

Wiederholen wir die oben ausgeführten Schritte, so führt uns die nächste Lösung
zum Punkt F mit den Koordinaten

'_89
."41

50
41

62
41 ¦)¦

An diesem Punkt angelangt stellt man fest, dass jede Bewegung längs einer Kante
von F aus die Grösse Q verringern würde. Somit ist man am Optimalpunkt und es

gilt für die



89
41"' y

50 62
41 ' *~~ 41

Y 41
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4. Basislösung: oder Optimallösung:
CO

-, u 0 v 0 w 0

Dass hier die Schlusslösung nur aus eigentlichen Variablen besteht, ist ein Zufall.
Öfters treten auch in der Optimallösung noch positive Schlupfvariable auf.

In der Praxis bedient man sich natürlich auch nicht der hier skizzierten geometrischen

Methode, sondern man kleidet die gemachten Überlegungen rein analytisch
ein und stellt für jeden Iterationsschritt ein sogenanntes Simplex-Tableau auf. Aus
diesem Tableau entnimmt man auf Grund bestimmter Vorschriften sämtliche
Angaben, die einem interessieren, nämlich die Grössen der Variablen, die Grösse von Q
sowie die Strategie für den nächsten Iterationsschritt.

Die Theorie der Linearen Programmierung ist in verschiedenen Werken dargestellt
worden. Aus der deutschsprachigen Literatur sei auf die Darstellung von Krelle
und Künzi verwiesen: Lineare Programmierung [7].

Die praktische Anwendung der Linearen Programmierung wird weitgehend in dem
Buch von Vajda behandelt, das in deutscher Übersetzung vor kurzem erschien [10].

Zu den wichtigsten Anwendungsgebieten, die auch von Vajda behandelt werden,
gehören unter anderem:

Ernährungsprobleme,
Investierungsprobleme,
Lufttransportprobleme,
Mischen von Benzin,
Produktionsplanungen,
Reduktion der Abfallverluste,
Einteilung von Dienstzeiten,
Lagerhaltungsprobleme,
usw.

4. Die Ganzzahlige Programmierung
Eine Zusatzbedingung für die Lösung eines Linearen Problems kann darin bestehen,

dass man ganzzahlige Werte fordert. Dadurch wird man auf die ganzzahlige Programmierung

geführt. Diese relativ einfache Zusatzbedingung erschwert die mathematische

Behandlung ganz wesentlich. Am einfachen zweidimensionalen Fall erkennt
man bereits die neue und tiefere Problematik. Es handelt sich jetzt um ein
Gitterpunktproblem, das sich mit elementaren Mitteln nicht mehr lösen lässt. Statt der

Auffindung der «äussersten Ecke» ist man jetzt auf das Ermitteln des «äussersten

Gitterpunktes» angewiesen.
Eine leichte Überlegung zeigt, dass man die Aufgabe nicht einfach dadurch lösen

kann, dass man sie zuerst allgemein, das heisst nicht-ganzzahlig löst und dann auf
die ganzzahligen Werte auf- oder abrundet.

Beispiel:

Man maximiere
$ -10 xx + 111 x2
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unter den Restriktionen

-xx + 10 x2 ^ 40,5, xx + x2 ^ 20 xx ^ 0, x2 ^ 0

Im gewöhnlichen Falle erhalt man die Werte

xx 14,5 x2 5,5 und Q — 465,5

Wendet man die sogenannte Gomory-Methode [5] an zum Auffinden ganzzahhger
Losungen, so findet man

xx 10 x2 — 5 und Q 455

/*
/^

/?/?
— ^

Figur 3

Maximierung bei der ganzzahhgen Programmierung

5. Das Transportproblem
In einem speziellen Fall ist es immer möglich, die optimale Losung ganzzahlig zu

erhalten, namhch beim sogenannten Transporttypus Mathematisch handelt es sich
dabei um einen Sonderfall der Linearen Programmierung [10].

Als Prototyp einer Transportproblem-Aufgäbe, an der auch die Leitgedanken zur
Losung skizziert werden sollen, diene das

Beispiel Von den Garagen Gx, G2 und Gz (den sogenannten Ausgangsorten), in denen
sich 2, 6 und 7 Taxi befinden, werden in den Hotels (den sogenannten Bestimmungsorten)

A, B, C und D je 3, 3, 4 und 5 Wagen angefordert. Die Entfernungen von den

Garagen zu den Hotels werden durch die Tabelle (22) angegeben. Gefragt wird nach
der Zuordnung der Taxi zu den 4 Hotels, so dass die Anfahrtswege minimal werden.

(22)

Die Anzahl der Taxi, die von den Garagen Gx, G2 und Gz zu den Platzen A, B, C

und D geschickt werden, sei

#n, x12, xX3, xu, x2X x31....
Fur die Taxi, die die Garagen verlassen, gelten die Restriktionen:

%1 ~l~ X12 "f" %3 "J" %4 ~ ^ »

Zu A B C D

Von Gx 13 11 15 20

G2 17 14 12 13

Gs 18 18 15 12

T" X22 + #23 i #24 — ^

+ #32 ~f* #33 4" ^34 '

(23)
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Die Taxi, welche zu den Hotels fahren, werden den Restriktionen unterworfen:

#11 i #21 ' #31 3,

#12 ' #22 ' #32 3,

#13 "T" #23 ~J~ #33 4,

#14 H~ #24 ~T" #34 -5.
ie zu minimierende Distanz beträgt:

K ¦¦ 13 xxx + 11 xX2 + 15 xxs + 20 xu H + 12 x.'34

(24)

(25)

Dieses spezielle Beispiel gibt uns die Anhaltspunkte für das allgemeine Transportproblem.

Hat man m Ausgangsorte und n Bestimmungsorte, so ergeben sich m + n
Restriktionen in Form von Gleichungen (nicht Ungleichungen). Diese m + n
Gleichungen sind dadurch charakterisiert, dass sämtliche Koeffizienten der x(j den Wert
1 haben. Eine nähere Überprüfung zeigt auch, dass von den m + n Gleichungen nur
deren m + n — 1 linear unabhängig sind, das heisst, man kann stets eine der
Gleichungen durch Linearkombination der andern ausdrücken.

Wegen diesen Vereinfachungen gegenüber einem gewöhnlichen Linearen Programm
ist es auch möglich, die Lösung auf einfachere Weise zu finden als mittels der Simplex-
tableaus.

Der Lösungsweg kann folgendermassen skizziert werden: Man stellt ein entsprechendes

Tableau zu (22) auf. Hier ersetzt man in der Kopfzeile die Buchstaben A,
B, C und D durch die Zahlenwerte 3, 3, 4 und 5, die uns die Erfordernisse angeben. Die
Kopfspalte ersetzt man durch die Zahlenwerte 2, 6 und 7, wodurch die Kapazitäten
der Garagen festgehalten werden. Die noch leeren Innenfelder besetzt man mit
m + n — 1 4 + 3— 1 6 Einträgen so, dass die Zeilen- und die Kolonnentotale
jeweils den entsprechenden Einträgen in Kopfzeile und Spalte entsprechen.

Um eine gute erste Lösung zu erhalten, setzen wir die Zahlen vorwiegend in solche

Felder, denen in (22) kurze Distanzen entsprechen. Eine erste Versuchslösung wird
gegeben durch Tabelle (26):

(26)

Diese erste Lösung weist eine Gesamtdistanz von 197 auf. Es ist nun unsere
Aufgabe, diese erste Lösung wenn möglich zu verbessern, dies kann man unter Umständen
durch Verschiebungen der Einträge in (26) erreichen. Man geht hier folgendermassen
vor:

Man betrachtet in der Tabelle (26) irgend eine leere Zelle, zum Beispiel diejenige
von xn. Setzt man dort eine 1 ein, dann muss man zum Ausgleich von x12 eine 1

wegnehmen, dafür wieder eine 1 bei x22 zufügen und zuletzt nochmals eine 1 subtrahieren
von x21. Durch diese Zyklusverschiebung bleiben die geforderten Kolonnen- und
Zeilentotale erhalten.

3 3 4 52.2..6 114.7 2 5
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Auf Grund dieser Transformation wird nun die Totalzeit nach der Tabelle (22) um

13 - 11 + 14 - 17 -1
geändert, das heisst reduziert.

Wird anderseits eine 1 in das leere Feld von xXi gesetzt, so entsteht dadurch eine

Gesamtänderung von
20 - 12 + 18 - 17 + 14 - 11 12

was also auf eine Verlängerung der Distanzen hinauslaufen würde.
Nach diesen Überlegungen wird nun jedes leere Feld behandelt und nachgeprüft,

ob eine Verschiebung die Distanz verkürzen würde oder nicht. Die optimale Lösung
heisst in unserem Beispiel:

3 3 4 5

2 1 1

6 2 4
7 2 5

Wiederum ist zu betonen, dass das hier eingeschlagene Verfahren für praktische
Beispiele zu umständlich ist. Aber auch hier haben sich abgekürzte Tabellenverfahren
entwickelt, die den Anforderungen aus der Praxis gewachsen sind. Besonders
hervorzuheben wäre die bekannte « Stepping-Stone Method» von ChArnes und Cooper, für
die man wiederum vollständige Maschinen-Programme besitzt [2].

Weil das Transportmodell gegenüber dem Simplex-Verfahren einfacher und rascher
arbeitet, hat man versucht, auch etwas allgemeinere Probleme auf den
Transportmodell-Typus zu überführen. Dies gelang in verschiedenen Fällen, und ich verweise Sie

wiederum auf die Beispielsammlung von Vajda, wo unter anderen die folgenden
praktischen Probleme erläutert werden:

Allgemeine Transportaufgaben,
Verpflegungsprobleme,
Produktionsplanungen,
Umladungsprobleme,
Angebotsbewertung,
Netzwerk- und Verkehrsprobleme,
Eisenbahnverladungen,
usw.

6. Rückblick und Ausblick

Werfen wir nochmals einen Blick zurück auf die verschiedenen Problemstellungen
innerhalb der Theorie der Linearen Programmierung, so muss besonders darauf
hingewiesen werden, dass es sich bei dieser Theorie um eine sehr junge Entwicklung
handelt. In den letzten 10 Jahren wurde aber gerade in diesem Gebiet gewaltig
gearbeitet, besonders in den Vereinigten Staaten, so dass wir heute schon über eine
beachtliche Literatur verfügen. Trotzdem ist zu betonen, dass noch sehr viele
Probleme auf Lösungen oder zweckmässigere Verfahren harren. Dies gilt vor allem auch
für die erwähnte ganzzahlige Programmierung.
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Das mathematische Programmieren ist aber bei weitem durch die Lineare
Programmierung noch nicht erschöpft. Ein ebenfalls weites und umfassendes Gebiet
befasst sich mit dem allgemeineren Problem der Nichtlinearen Programmierung [8],
wo die zu optimierende Funktion sowie die Restriktionen nicht mehr linear sind.
Dieses Problem tritt natürlich sehr häufig in praktischen Problemen der
Unternehmungsforschung auf. Ja, man kann sagen, die Lineare Programmierung sei lediglich
ein Spezialfall der soeben erwähnten Programmierung.

Leider ist man heute noch sehr weit von der allgemeinen Lösung des oben formulierten

Programms entfernt. Über einigermassen befriedigende Verfahren verfügt man
erst für das quadratische Programmieren mit linearen Nebenbedingungen. Aber auch
in diesem Fall muss man von der quadratischen Funktion die starke Einschränkung
verlangen, dass sie konvex sei. Man vergleiche hierzu das Verfahren von Wolfe [11].

Ausblickend sei auch noch die Dynamische Programmierung erwähnt, bei der die
zeitliche Variation gegebener Grössen hineinspielt. In dieser Richtung hat sich
Bellman [1] grosse Verdienste erworben. Seine Theorie ist aufs engste mit der

Variationsrechnung und den Integralgleichungen verbunden. Auch hier haben die
Mathematiker noch gewaltige Arbeit zu leisten, bis sich die Theorie sinnvoll der
Praxis zur Verfügung stellen kann.

Auch für die sogenannte Programmierung mit Unsicherheiten [4] ist man noch
nicht weit über einige Ansätze hinausgekommen. Dieser interessante Fall, wo die
Konstanten innerhalb der Programme nur mit einer gewissen Sicherheit oder mit
einer Wahrscheinlichkeitsverteilung angegeben werden können, wäre aber gerade für
die Praxis der allerwichtigste.

Hoffen wir, dass es der Mathematik gelingen werde, innerhalb dieses neuen und
grossen Zweiges des Programmierens weitere Fortschritte zu erzielen, die sich für die

Praxis, besonders in wirtschaftswissenschaftlicher Richtung in fruchtbarer Weise
anwenden Hessen. H. P. Künzi (Zürich)
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