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Lineare Programmierung ")

1. Einleitung

Die Lineare Programmierung ist eine Theorie, die sich nicht ohne weiteres einem
bestimmten Forschungsgebiet unterordnen liasst. Gehort sie zur angewandten Mathe-
matik oder zur Unternehmensforschung ? Sicher befassen sich Vertreter beider Rich-
tungen sehr intensiv damit, und deshalb ist es nicht abwegig, einen Kompromiss zu
schliessen, indem man behauptet: Die Theorie der Linearen Programmierung gehort
den angewandten Mathematikern und die praktische Verwendung ist Sache der
Unternehmensforscher.

In meinen Ausfithrungen mochte ich in erster Linie vom Standpunkt der ange-
wandten Mathematik aus sprechen und mich mit einigen Hinweisen auf die Praxis
begniigen. Erlauben Sie mir, an dieser Stelle noch eine kleine personliche Bemerkung
einzuflechten in bezug auf die Lineare Programmierung und die Mittelschulmathe-
matik. Ich habe den Eindruck, dass einige Uberlegungen, mit denen ich mich hier
auseinander setzen mochte, sich unter Umstdnden gar nicht schlecht eignen wiirden,
an gewissen Stellen in den Mathematikunterricht eingeflochten zu werden. Einerseits
wiirde dadurch in den oberen Klassen auf der Gymnasialstufe die Theorie der Un-
gleichungen wieder in etwas vermehrtem Masse zu Ehren kommen, und andererseits
hitte dadurch der Schiiler die Gelegenheit, schon relativ frith mathematische Uber-
legungen an praktischen und realen Beispielen anzuwenden.

2. Die Problemstellung der Linearen Programmierung

a) Das Maximumproblem:
Gesucht werden die Grossen xy, %,, ... , %,, fiir die der lineare Ausdruck

Q=1p1%+ paXo+ -+ P, %, (1)
maximal wird unter den Nebenbedingungen
A%+ G Xyt 4 X S5,
Ao ¥y + App g+ + Ay, Xy = 55, ( I
: (2)
A1 X1+ CpoXo+ 0+ Ay %, S8, ,

und 2,20 (G=1,2..,¢). (3)

1) Vortrag, gehalten am 13. Oktober 1960 an der Tagung des Vereins Schweizerischer Mathematik- und
Physiklehrer in Ziirich.
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Die a;;, p; und s; sind gegebene Grossen.

Die oben formulierte Aufgabe wird im folgenden als Problem I bezeichnet.

Bevor wir in der theoretischen Betrachtung weiterfahren, mochte ich bereits die
Formulierung des Problems I in ein 6konomisches Beispiel einkleiden, ndmlich in die
Produktionsplanung eines Betriebes:

Angenommen eine Firma kann g Produkte mit den noch unbekannten Mengen

%y, X9, ... , %, herstellen, fiir die sie nach Abzug der Stiickkosten die Nettopreise

p1. ..., b, je Stiick losen will. Fiir die Produktion bendtigt man  nicht in belie-

biger Menge vorhandene Produktionsfaktoren wie Arbeitskriafte, Maschinen, Roh-
stoffe usw., und zwar pro Stiick des Produktes ¢ die Menge a;; des Produktions-
faktors 7 (¢=1,...,¢;7=1, ..., m). Die Produktionsfaktoren stehen bis zu den

Hochstmengen sy, s, ..., s, zur Verfiigung, gefragt wird nach dem optimalen

Produktionsplan.

Man erkennt sofort, dass hier das Problem I zu l6sen ist, in welchem der Gewinn
durch (1) ausgedriickt wird und die Kapazititsbeschrinkungen durch das System (2).
Die Bedingung (3) sagt aus, dass alle Produktionsgrossen nicht-negativ sein diirfen.

Im weiteren wollen wir nun eine kleine theoretische Diskussion tiber die Unglei-
chungssysteme (2) und (3) anbringen. Beschrinken wir uns der Anschaulichkeit
wegen auf 2 Variable (g = 2), so existiert der

Satz A: Die Menge der Punkte (x,, x,), welche dem System (2) geniigen (bzw. den
Systemen (2) und (3), bilden ein konvexes Polyeder.

Es gilt jetzt, iiber diesem konvexen Polyeder die lineare Funktion (1) zu maxi-
mieren ; dafiir beniitzen wir den

Satz B: Eine lineare Funktion p, x; + P, x4, die tiber einem konvexen Polyeder defi-
niert ist, nimmit thy Maximum in einem Eckpunkt dieses Polyeders an.
definiert ist, nimmt ihr Maximum in einem Eckpunkt dieses Polyeders an.

Die beiden Sitze 4 und B lassen sich mit elementaren Mitteln der Algebra und der
analytischen Geometrie beweisen. Man vergleiche hierzu das sehr gute Werk: Finite
Mathematics von KEMENY, SNELL und THOMSON [6]2).

Die Richtigkeit der beiden Sitze konnen wir durch eine Plausibilitdtsbetrachtung
geometrisch fithren.

m

=

%

Figur 1

Maximierung nach der Simplex-Methode

Fiir m = 3 bestimmen die 3 Ungleichungen je eine Halbebene, welche zusammen
mit der Bedingung (3) das konvexe Polyeder Py P, P, P; P, begrenzen. Der lineare

2) Die Zahlen in eckigen Klammern beziehen sich auf das Literaturverzeichnis am Schluss der Arbeit.
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Ausdruck (1): Q = p, x, + p, %, liefert eine Schar paralleler Hyperebenen (Geraden).
Das Optimum fiir Q wird erreicht, wenn eine der parallelen Geraden die «dusserste
Ecke» trifft (in unserem Falle Pj).

b) Das Minimumproblem:

Neben der oben formulierten Maximumaufgabe ist es sinnvoll, auch von einer
Minimumaufgabe zu sprechen, indem man zum Beispiel verlangt, dass der lineare

Ausdruck
K281y1+52y2+"’+3mym (4)

zum Minimum wird, unter den Restriktionen

“11Y14:“213’2+"'+“m1ym2?1:

a1+ e Yo+ "+ AoV = P2 ( I

: (5)
Ao Y1t G, Vot o+ 8, ¥V = Dy s

und v, =0 j=1,2,..,m. (6)

Man konnte fiir das so formulierte Minimumproblem II entsprechende analytische
und geometrische Uberlegungen anstellen wie beim Maximumproblem.

Mit voller Absicht habe ich das Problem II in einer gewissen Symmetrie zum
Problem I geschrieben. Die beiden so aufgestellten Probleme I und II heissen dual
zueinander, und fiir sie gilt das zentrale

Dualititstheorem: Am Optimalpunkt stimmen die Werte Q und K der beiden Dual-
aufgaben I und 11 viberein.

Fiir diesen Beweis,der nicht mehr ganz elementar verlduft, muss ich Sie auf die
entsprechende Fachliteratur verweisen [7].

c) Die Uberfiihrung der Ungleichungen in Gleichungen:

Im folgenden beschrianken wir uns wieder auf das Maximumproblem, fiir das wir
nun nach expliziten Lésungen suchen wollen. Die entsprechenden Uberlegungen fiir
die Minimumaufgabe sind analog zu denjenigen der Maximumaufgabe.

Der erste Schritt im Losungsverfahren besteht darin, dass die Ungleichungen des
Systems (2) in Gleichungen iiberfithrt werden, denn es ist im allgemeinen angenehmer,
mit Gleichungen als mit Ungleichungen zu rechnen.

Um dies auszufiihren, addieren wir zu jeder Ungleichung auf der linken Seite der
Reihe nach die nicht-negativen Schlupfvariablen

Xg+1 Xgi2rooo s Xgam = Xy (7)
hinzu und schreiben das Problem I nochmals in etwas modifizierter Form:
Man maximiere den Ausdruck

Q = ?lxl + o+ pgxg + pg+1xg+1 + o —L— pg+mxg+m (8)
unter den linearen Restriktionen

¥+t Ay Xy Xy =1,

Ao X1+ 00 Bgg Xg + X9 = Sp, I

am1x1+ +amgxg+xg+m: Sm

und Xy Koy oo s Xgymy = 0. (10)
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An dieser Stelle ist es zweckmadssig (nicht aber unbedingt nétig), die Matrix- und
die Vektorschreibweise zu beniitzen, denn dadurch lisst sich das Problem III kiirzer
und eleganter darstellen.

Dazu definieren wir ' als einen Zeilenvektor mit » = m + g Elementen:

p' = (br Do s Py bgrv s Pyam) -

Unter x bzw. s verstehen wir Kolonnenvektoren von # bzw. m Elementen:

X1 $1

X S
x = J2 , s = 2

xg-f—m sm

Mit A bezeichnen wir eine (m n)-Matrix:

Ay g -4, 10 ... 0

B Aoy Agg ... A3, 0 1 ... 0
A= .

A1 Ao - Gy 00 .0 1

Unter Beniitzung dieser Schreibweise ldsst sich Problem III in Problem IV iiber-
fithren:
Man maximiere den linearen Ausdruck

Q=2p"x (11)
unter den Nebenbedingungen
’ Ax=s (12) IV
und
x=0. (13)

(9) bzw. (12) ist jetzt ein Gleichungssystem mit » Gleichungen und » Unbekannten
(n = g + m), wobei natiirlich n > m.

Somit kénnen g = » — m Unbekannte beliebig vorbestimmt und das System (9)
bzw. (12) fiir die restlichen m Unbekannten aufgelost werden.

In Anlehnung an unsere heuristisch gefithrten Uberlegungen im Zusammenhang
mit den Sitzen 4 und B formulieren wir nun das fiir die lineare Programmierung
geltende

Haupttheovem: An der Stelle, an der Q gemdss (8) ein Maximum annimmi, miissen
die n — m vorbestimmien Variablen O sein.

Fiir einen allgemeinen Beweis miissen wir wiederum auf die Fachliteratur ver-
weisen [7].

3. Das Simplexverfahren

Man kennt heute verschiedene Methoden, um ein allgemeines lineares Programm
zu 16sen. Die meistverwendete ist wohl die Simplex-Methode, die vor etwas mehr als
10 Jahren von DaNTzIG [3] entwickelt wurde. Diese Technik ist auch deshalb sehr
verbreitet, weil man heute fiir sie ausfithrliche Programme fiir die elektronische
Computerberechnung besitzt.

An dieser Stelle méchte ich Ihnen die berithmte Simplex-Methode an einem ein-
fachen Beispiel erliutern, das auch noch eine elementare geometrische Interpretation
erlaubt (Vgl. hierzu auch [9]).
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Aufgabe: Man maximiere die lineare Form

Q=3x+5y+4z (14)
unter den drei Restriktionen
2x+4+3y < 8,
2y+52=10, (15)
3x4+2y+42<=15,
x=0, y=0, 2=0. (16)

In dieser Aufgabesind: g=3, m =3, n=m + g = 6.
Wie man leicht erkennt, bestimmen die Restriktionen (15) und (16) einen Polyeder,
der im ersten Oktanten mit lauter positiven Koordinaten liegt (Figur 2).

Z G/ﬂ,?-e,;'?‘/

0/0, 0,2)

bl i X
0/0.0, o/ '4/4,0, o)
Figur 2
Restriktionspolyeder

Dieser Polyeder wird begrenzt durch die 6 folgenden Hyperebenen:
2x+ 3y = 8, e,
2y+52=10, y=20, (17)
3x+2y+4z2z=15, =10,

Von der fritheren Theorie her wissen wir, dass das Maximum von @ an einer der
8 Ecken des Polyeders angenommen wird. Man kénnte also diese 8 Ecken berechnen
und die erhaltenen Werte einzeln in Q einsetzen. Die Ecke, die das grosste Q liefern
wiirde, miisste als Losung der gestellten Aufgabe betrachtet werden. Ein solches Ver-
fahren wire aber viel zu umstidndlich, vor allem dann, wenn g und m grossere Werte
aufweisen, wie dies in der Praxis hdufig der Fall ist.

DanNTz1G schligt nun den folgenden Lésungsweg vor:

1. Man bestimme oder suche eine Ecke als Anfangspunkt.

2. Man untersuche jede Kante, die durch diese Ecke verlduft, um zu sehen, ob eine
Verschiebung lings dieser Kante eine Vergrosserung von Q herbeifithren wiirde. Falls
keine Vergrésserung entsteht, so ist das Problem geldst. Im anderen Fall fahre man
fort mit Stufe 3.

3. Man wihle diejenige Kante, der entlang eine Verschiebung Q am meisten ver-
grossert, und verfolge sie bis zur nichsten Ecke.
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4. Man wiederhole die Stufen 1, 2 und 3 solange, bis Q nicht mehr weiter vergrossert
werden kann.

Um diese 4 Stufen durchzufiihren, bedienen wir uns der 3 nicht-negativen Schlupf-
variablen #, v und w, die die 3 Ungleichungen aus (15) in Gleichungen verwandeln:

2x+ 3y +u= 8,
2y4+52+0v=10, (18)
3x+2y+4z4+w=15.

Nun suchen wir einen Startpunkt, der also in einer Ecke des Polyeders liegt. Dabei
beachten wir, dass sich in jedem Eckpunkt drei der 6 Ebenen

x=0, y=0, 2=0, u=0, v=0, w=0

treffen, also sind in jedem Eckpunkt 3 Koordinatenwerte gleich 0 (entsprechend auch
dem Haupttheorem).
Es ist zweckmissig, im Nullpunkt 0 (000) des Polyeders zu starten; das heisst, wir
setzen ¥ = y = z = 0 und suchen die Werte der 3 iibrigen Schlupfvariablen.
Dazu l6sen wir das System (18) nach den 3 Variablen #, v und w auf, welche die erste
Basis bilden:
u= 8§—-2x—-3y,

v=10—-2y—-52, (19)
w=15—-3x—-2y—4z.

Daraus schliessen wir fiir die

1. Basislosung: u=8,v=10,w=15,2x=0,y=0,2=0und Q = 0.

Wir wollen nun diese Losung, die sicher noch nicht optimal ist, verbessern. Dazu
betrachtet man die drei Kanten durch den Nullpunkt, dargestellt durch die drei
Gleichungspaare :

x=10, y=20,
x=0, z2=0,
y=20, z2=0.

Wenn wir diesen Schnittgeraden entlanggehen, so vergrossern wir z, resp. y, resp. x.
Jede Vergrosserung um eine Einheit von %, y, 2z vergréssert Q um 3, resp. 5, resp. 4;
somit entschliessen wir uns, y, dem der grosste Zuwachs entspricht, zu vergrossern
und die andern beiden Komponenten, nidmlich x und z vorldufig 0 zu belassen.
Durch die Variation von y werden aber auch die drei alten Basisvariablen #, v und
w variiert. Keine davon darf aber negativ werden.

Wir beziehen uns auf das System (19) und stellen fest, dass wir y um 8/3 vergrossern
koénnen, ohne # negativ zu machen; ¥ um 5, ohne v negativ zu machen und schliesslich
um 15/2, ohne w negativ zu machen. Somit ist die maximale Vergrosserung von
y = 8/3, und wir bewegen uns vom Nullpunkt zum 2. Simplexpunkt B(0, §, 0).

Wir haben jetzt eine neue Basis, bestehend aus den nicht-negativen Variablen y, v
und w. Um ihre Werte am 2. Simplexpunkt B zu bestimmen, 16sen wir das System (18)
nach diesen drei Variablen auf und erhalten
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_ 8 _ 2 1
s 3“3 ~3 s
14 4 2
vo=-got g X 52 + 3 % (20)
29 5 2
w= 3 — ;X 42—{—315.

Daraus schliessen wir fiir die
2. Basislosung: vy = 8/3, v=14/3, w = 29/3, x =0, 2 =0, u = 0,
40 1
. Q:_4‘.*:]3 3-
Wir versuchen, diese Losung weiter zu verbessern. Die Kanten durch B werden
gegeben durch:
x:Ol x=0 z=0l

BO, BG,

z=0' u=20 u=0’ B

Eine Bewegung lings BO kommt sicher nicht in Frage, da wir uns im letzten
Schritt von O nach B bewegten.

Bewegung lings BA: z bleibt unveriandert. Vergrossern wir x um eine Einheit, so
verkleinern wir laut (20) ¥ um 2/3 Einheiten. Deshalb d4ndern wir Q fiir jede Einheits-
vergrosserung von x um 3+ 1 — 5-2/3 = —1/3. Eine Verschiebung lings BA wiirde
somit @ wieder verkleinern.

Bewegung lings BG: Hier bleibt x unverindert, nimlich O und ebenfalls y. Also
vergrossert sich Q um 4 je Einheit von z. Gemdiss der zweiten Gleichung in (20)
konnen wir z um 14/15 vergrossern, ohne v negativ zu machen, und gemiss der dritten
Gleichung um 29/12, ohne w negativ zu machen. Damit ist die maximal erlaubte
Vergrosserung von z gegeben durch 14/15, wodurch die Bewegung von B nach G
bestimmt wird. Wieder driicken wir die neuen Basisvariablen (Nicht-Null-Variablen)
durch die iibrigen aus und erhalten:

8 2
y= 37 3*7 -

1%
3 )
14 4 2 1
=g T s ¥t s ¥ 5 Y (21)
89 41 2 4
W=195 "5 ¥t s ¥t 5V

Daraus schliessen wir fiir die
3. Basislosung: y = 8/3, z = 14/15, w = 89/15, x = 0, u = 0, v = 0.

1
Q=15 =175

Wiederholen wir die oben ausgefithrten Schritte, so fithrt uns die nichste Losung
zum Punkt F mit den Koordinaten
89 50 62
F(3 41 %)
An diesem Punkt angelangt stellt man fest, dass jede Bewegung lings einer Kante
von F aus die Grosse Q verringern wiirde. Somit ist man am Optimalpunkt und es
gilt fiir die
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4. Basislosung.: oder Optimallosung:

ng—?—, y=—§—(ll, zz—i%, u=0, v=0, w=0,
765 27
Q=7 =187.

Dass hier die Schlusslésung nur aus eigentlichen Variablen besteht, ist ein Zufall.
Ofters treten auch in der Optimallésung noch positive Schlupfvariable auf.

In der Praxis bedient man sich natiirlich auch nicht der hier skizzierten geometri-
schen Methode, sondern man kleidet die gemachten Uberlegungen rein analytisch
ein und stellt fiir jeden Iterationsschritt ein sogenanntes Simplex-Tableau auf. Aus
diesem Tableau entnimmt man auf Grund bestimmter Vorschriften simtliche An-
gaben, die einem interessieren, nimlich die Grossen der Variablen, die Grosse von Q
sowie die Strategie fiir den nichsten Iterationsschritt.

Die Theorie der Linearen Programmierung ist in verschiedenen Werken dargestellt
worden. Aus der deutschsprachigen Literatur sei auf die Darstellung von KRELLE
und KUNz1 verwiesen: Lineare Programmierung [7].

Die praktische Anwendung der Linearen Programmierung wird weitgehend in dem
Buch von VAjDA behandelt, das in deutscher Ubersetzung vor kurzem erschien [10].

Zu den wichtigsten Anwendungsgebieten, die auch von VAJDA behandelt werden,
gehoren unter anderem:

Erndhrungsprobleme,
Investierungsprobleme,
Lufttransportprobleme,
Mischen von Benzin,
Produktionsplanungen,
Reduktion der Abfallverluste,
Einteilung von Dienstzeiten,
Lagerhaltungsprobleme,

usw.

4. Die Ganzzahlige Programmierung

Eine Zusatzbedingung fiir die Losung eines Linearen Problems kann darin bestehen,
dass man ganzzahlige Werte fordert. Dadurch wird man auf die ganzzahlige Program-
mierung gefithrt. Diese relativ einfache Zusatzbedingung erschwert die mathema-
tische Behandlung ganz wesentlich. Am einfachen zweidimensionalen Fall erkennt
man bereits die neue und tiefere Problematik. Es handelt sich jetzt um ein Gitter-
punktproblem, das sich mit elementaren Mitteln nicht mehr 16sen ldsst. Statt der
Auffindung der «dussersten Ecke» ist man jetzt auf das Ermitteln des «dussersten
Gitterpunktes» angewiesen.

Eine leichte Uberlegung zeigt, dass man die Aufgabe nicht einfach dadurch 16sen
kann, dass man sie zuerst allgemein, das heisst nicht-ganzzahlig 16st und dann auf
die ganzzahligen Werte auf- oder abrundet.

Beispiel:

Man maximiere
Q0=—-10x, + 111 x,
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unter den Restriktionen:
—x;+10x, 40,5, x +2,=20, x =0, %, =0.
Im gewohnlichen Falle erhilt man die Werte
=145, x%,=55 und Q=4655.

Wendet man die sogenannte Gomory-Methode [5] an zum Auffinden ganzzahliger
Losungen, so findet man:
%, =10, x,=5 und Q =455.

Figur 3

Maximierung bei der ganzzahligen Programmierung

5. Das Transportproblem

In einem speziellen Fall ist es immer moglich, die optimale Losung ganzzahlig zu
erhalten, nidmlich beim sogenannten Transporttypus. Mathematisch handelt es sich
dabei um einen Sonderfall der Linearen Programmierung [10].

Als Prototyp einer Transportproblem-Aufgabe, an der auch die Leitgedanken zur
Losung skizziert werden sollen, diene das

Beispiel: Von den Garagen G,, G, und G, (den sogenannten Ausgangsorten), in denen
sich 2, 6 und 7 Taxi befinden, werden in den Hotels (den sogenannten Bestimmungs-
orten) 4, B, C und D je 3, 3, 4 und 5 Wagen angefordert. Die Entfernungen von den
Garagen zu den Hotels werden durch die Tabelle (22) angegeben. Gefragt wird nach
der Zuordnung der Taxi zu den 4 Hotels, so dass die Anfahrtswege minimal werden.

Zu 4 B C D
Von G, 13 11 15 20 (22)
G, 17 14 12 13
Gy 18 18 15 12

Die Anzahl der Taxi, die von den Garagen G,, G, und G4 zu den Plitzen 4, B, C
und D geschickt werden, sei

¥11> %125 ¥13, X145 Xop o ey Xgg eens
Fiir die Taxi, die die Garagen verlassen, gelten die Restriktionen:
K11 + Xyp + Xz + Xg =2,
Koy + Xgg + Xgg + X9y = 6, (23)

X3y + Xgg + Xz + Xz =7 .
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Die Taxi, welche zu den Hotels fahren, werden den Restriktionen unterworfen:
X+ Xop + X =3,

Xyg F X + Xzp = 3,

(24)
X1z + Xog + X3 =4,
Xiq + Xog + %33 =35.
Die zu minimierende Distanz betragt:
K=13x; + 11 x5, + 15233 + 20 x4 + -+ + 12 x5, . (25)

Dieses spezielle Beispiel gibt uns die Anhaltspunkte fiir das allgemeine Transport-
problem. Hat man m Ausgangsorte und » Bestimmungsorte, so ergeben sich m + »
Restriktionen in Form von Gleichungen (nicht Ungleichungen). Diese m + n Glei-
chungen sind dadurch charakterisiert, dass simtliche Koeffizienten der x,; den Wert
1 haben. Eine nihere Uberpriifung zeigt auch, dass von den m + % Gleichungen nur
deren m + » — 1 linear unabhingig sind, das heisst, man kann stets eine der Glei-
chungen durch Linearkombination der andern ausdriicken.

Wegen diesen Vereinfachungen gegeniiber einem gewohnlichen Linearen Programm
ist es auch moéglich, die Losung auf einfachere Weise zu finden als mittels der Simplex-
tableaus.

Der Losungsweg kann folgendermassen skizziert werden: Man stellt ein entspre-
chendes Tableau zu (22) auf. Hier ersetzt man in der Kopfzeile die Buchstaben 4,
B, C und D durch die Zahlenwerte 3, 3, 4 und 5, die uns die Erfordernisse angeben. Die
Kopfspalte ersetzt man durch die Zahlenwerte 2, 6 und 7, wodurch die Kapazitdten
der Garagen festgehalten werden. Die noch leeren Innenfelder besetzt man mit
m+n—1=4+43—1=6 Eintrigen so, dass die Zeilen- und die Kolonnentotale
jeweils den entsprechenden Eintrigen in Kopfzeile und Spalte entsprechen.

Um eine gute erste Losung zu erhalten, setzen wir die Zahlen vorwiegend in solche
Felder, denen in (22) kurze Distanzen entsprechen. Eine erste Versuchslosung wird
gegeben durch Tabelle (26):

3 3 4 5
2 . (26)
6 1 .
7 2 5

Diese erste Losung weist eine Gesamtdistanz von 197 auf. Es ist nun unsere Auf-

gabe, diese erste Lésung wenn mdoglich zu verbessern, dies kann man unter Umsténden
durch Verschiebungen der Eintrige in (26) erreichen. Man geht hier folgendermassen
vor:
Man betrachtet in der Tabelle (26) irgend eine leere Zelle, zum Beispiel diejenige
von #x,;. Setzt man dort eine 1 ein, dann muss man zum Ausgleich von x,, eine 1 weg-
nehmen, dafiir wieder eine 1 bei x,, zufiigen und zuletzt nochmals eine 1 subtrahieren
von %g. Durch diese Zyklusverschiebung bleiben die geforderten Kolonnen- und
Zeilentotale erhalten.
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Auf Grund dieser Transformation wird nun die Totalzeit nach der Tabelle (22) um
13-114+14-17= -1

gedndert, das heisst reduziert.
Wird anderseits eine 1 in das leere Feld von x,, gesetzt, so entsteht dadurch eine
Gesamtdnderung von
20—-12+18—-17+14—-11=12,

was also auf eine Verlingerung der Distanzen hinauslaufen wiirde.

Nach diesen Uberlegungen wird nun jedes leere Feld behandelt und nachgepriift,
ob eine Verschiebung die Distanz verkiirzen wiirde oder nicht. Die optimale Lésung
heisst in unserem Beispiel:

3 3 4 5
2 1 1 .
6 . 2 4 .
7 2 . . 5

Wiederum ist zu betonen, dass das hier eingeschlagene Verfahren fiir praktische
Beispiele zu umstandlich ist. Aber auch hier haben sich abgekiirzte Tabellenverfahren
entwickelt, die den Anforderungen aus der Praxis gewachsen sind. Besonders hervor-
zuheben wire die bekannte « Stepping-Stone Method» von CHARNES und COOPER, fiir
die man wiederum vollstindige Maschinen-Programme besitzt [2].

Weil das Transportmodell gegeniiber dem Simplex-Verfahren einfacher und rascher
arbeitet, hat man versucht, auch etwas allgemeinere Probleme auf den Transport-
modell-Typus zu iiberfithren. Dies gelang in verschiedenen Fillen, und ich verweise Sie
wiederum auf die Beispielsammlung von VAjpA, wo unter anderen die folgenden
praktischen Probleme erldutert werden:

Allgemeine Transportaufgaben,
Verpflegungsprobleme,
Produktionsplanungen,
Umladungsprobleme,
Angebotsbewertung,

Netzwerk- und Verkehrsprobleme,
Eisenbahnverladungen,

usw.

6. Riickblick und Ausblick

Werfen wir nochmals einen Blick zuriick auf die verschiedenen Problemstellungen
innerhalb der Theorie der Linearen Programmierung, so muss besonders darauf hin-
gewiesen werden, dass es sich bei dieser Theorie um eine sehr junge Entwicklung
handelt. In den letzten 10 Jahren wurde aber gerade in diesem Gebiet gewaltig
gearbeitet, besonders in den Vereinigten Staaten, so dass wir heute schon iiber eine
beachtliche Literatur verfiigen. Trotzdem ist zu betonen, dass noch sehr viele Pro-
bleme auf Lsungen oder zweckmadssigere Verfahren harren. Dies gilt vor allem auch
fiir die erwdhnte ganzzahlige Programmierung.
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Das mathematische Programmieren ist aber bei weitem durch die Lineare Pro-
grammierung noch nicht erschopft. Ein ebenfalls weites und umfassendes Gebiet
befasst sich mit dem allgemeineren Problem der Nichtlinearen Programmierung [8],
wo die zu optimierende Funktion sowie die Restriktionen nicht mehr linear sind.
Dieses Problem tritt natiirlich sehr hidufig in praktischen Problemen der Unterneh-
mungsforschung auf. Ja, man kann sagen, die Lineare Programmierung sei lediglich
ein Spezialfall der soeben erwihnten Programmierung.

Leider ist man heute noch sehr weit von der allgemeinen Losung des oben formu-
lierten Programms entfernt. Uber einigermassen befriedigende Verfahren verfiigt man
erst fiir das quadratische Programmieren mit linearen Nebenbedingungen. Aber auch
in diesem Fall muss man von der quadratischen Funktion die starke Einschrankung
verlangen, dass sie konvex sei. Man vergleiche hierzu das Verfahren von WoLFE [11].

Ausblickend sei auch noch die Dynamische Programmierung erwihnt, bei der die
zeitliche Variation gegebener Grossen hineinspielt. In dieser Richtung hat sich
BeLLMAN [1] grosse Verdienste erworben. Seine Theorie ist aufs engste mit der
Variationsrechnung und den Integralgleichungen verbunden. Auch hier haben die
Mathematiker noch gewaltige Arbeit zu leisten, bis sich die Theorie sinnvoll der
Praxis zur Verfiigung stellen kann.

Auch fiir die sogenannte Programmierung mit Unsicherheiten [4] ist man noch
nicht weit iiber einige Ansitze hinausgekommen. Dieser interessante Fall, wo die
Konstanten innerhalb der Programme nur mit einer gewissen Sicherheit oder mit
einer Wahrscheinlichkeitsverteilung angegeben werden kénnen, wire aber gerade fiir
die Praxis der allerwichtigste.

Hoffen wir, dass es der Mathematik gelingen werde, innerhalb dieses neuen und
grossen Zweiges des Programmierens weitere Fortschritte zu erzielen, die sich fiir die
Praxis, besonders in wirtschaftswissenschaftlicher Richtung in fruchtbarer Weise
anwenden liessen. H. P. KU~z (Ziirich)
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