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Neuere Ergebnisse in der diskreten Geometrie

Die Benennung «diskrete Geometrie» wird als Bezeichnung desjenigen Gebietes der
Geometrie beniitzt, dessen Gegenstand aus diskreten Elementen bestehende Mannig-
faltigkeiten bilden. Dieses Gebiet umfasst unter anderem die Theorie der diskonti-
nuierlichen Bewegungsgruppen, der regelméssigen Raumzerlegungen und der Punkt-
gitter und weist daher enge Beziehungen mit der Gruppentheorie, Zahlentheorie,
Algebra, Funktionentheorie und anderen Gebieten der Mathematik auf. In neuerer
Zeit treten aber in der diskreten Geometrie verschiedene Lagerungs-, Uberdeckungs-
und andere Extremalprobleme in Vordergrund, die oft von der Industrie oder von den
Naturwissenschaften gestellt werden.

Eine zusammenfassende Darstellung dieses verhidltnismédssig neueren Problem-
kreises findet sich in meinem Buch Lagerungen in der Ebene, auf der Kugel und im
Raum [17]. In diesem Aufsatz!) méchte ich iiber einige neuere einschligige Ergebnisse
berichten.

Ich beginne mit einigen Lagerungsproblemen in der euklidischen Ebene.

In einem mit MOLNAR gemeinsam geschriebenen Aufsatz haben wir die Uberdek-
kung und Unterdeckung durch inkongruente Kreise untersucht. Stellen wir uns vor,
dass wir iiber einen unerschopflichen Vorrat von Kreisen verfiigen, deren Halbmesser
in einem fest vorgegebenen Intervall (r, R) liegen. Wie miissen die Kreise gewdhlt und
angeordnet werden, um die Ebene méglichst dicht unterzudecken (das heisst auszu-
fiillen) bzw. moglichst diinn iiberzudecken ?

Wir haben fiir die Unterdeckungsdichte eine obere und fiir die Uberdeckungs-
dichte eine untere Schranke s(g) bzw. S(g) (¢ = 7/R) angegeben. Wir betrachten
drei Kreise und variieren sie unter den Bedingungen, dass ihre Radien im Intervall
(r, R) bleiben, dass sie nicht iibereinandergreifen, dass wenigstens ein Kreis die
beiden anderen berithrt und dass endlich kein Kreis die gegeniiberliegende Seite
des durch die Kreismittelpunkte bestimmten Dreiecks 4 trifft. Dann ist s(g) die
grosstmogliche Kreisdichte in 4. In analoger Weise ist S(q) die kleinstmégliche
Dichte von drei Kreisen beziiglich 4, deren Halbmesser > 7 und < R ausfallen
und die einen gemeinsamen Randpunkt, aber keinen gemeinsamen inneren Punkt

aufweisen.

1) Diesem Aufsatz liegt ein Vortrag zugrunde, den der Verfasser am 9. Oktober 1959 an der Geometrie-
Tagung in Oberwolfach gehalten hat.
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Nach sorgfiltigen numerischen Rechnungen scheint s(g) mit folgender Grésse iiber-
einzustimmen: die Dichte von drei einander gegenseitig berithrenden Kreisen vom
Halbmesser 7,7, R in dem von den Kreismittelpunkten bestimmten Dreieck. Der
exakte Beweis ist mit erheblichen rechentechnischen Schwierigkeiten verbunden, die
aber FLORIAN [4] grosstenteils schon beseitigt hat.

Die Schranke S(g) ldsst sich praktisch mit folgender Grésse identifizieren: Man
betrachte drei Kreise vom Radius 7, R, R in einer symmetrischen Lage, die einander
in einem Punkt schneiden. Diese Kreisanordnung hat noch einen Freiheitsgrad. Man
nehme das Minimum der Dichte dieser Kreise im Dreieck ihrer Mittelpunkte.
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Schranken von entgegengesetzter Richtung hat, durch Konstruktion giinstiger
Kreisanordnungen, MOLNAR angegeben. Die oberen und unteren Schranken liegen,
besonders fiir gewisse Werte von ¢ = 7/R, sehr nahe beieinander und stimmen sogar
bei der Uberdeckung fiir ¢ = 0,5 und ¢ = 0,25 praktisch {iiberein, womit gemeint
wird, dass ihre Differenz < 10-% ausfillt (Figuren 1 und 2).
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Figur 2
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Eine Anordnung von kongruenten Kreisen, wobei jeder Punkt der Ebene zu héch-
stens bzw. wenigstens k& Kreisen gehort, wird eine k-fache Kreisunterdeckung bzw.
eine k-fache Kreisiiberdeckung genannt. Dabei sind die Kreise im ersten Fall als
offene, im zweiten als abgeschlossene Scheiben zu betrachten. Gesucht wird die
maximale Dichte d, einer k-fachen Kreisunterdeckung, sowie die minimale Dichte D,
einer k-fachen Kreisiiberdeckung. Diese Probleme scheinen schon fiir & = 2 dusserst
schwierig zu sein. Jedoch gelang es HEPPES [1] bzw. DANZER an je einem geistreichen
Beispiel zu zeigen, dass dy > 2d; und D, < 2 D, ausfillt. Fiir gitterférmige Kreis-
anordnungen wurden diese Probleme von PRACHAR, FEw, BLUNDON und HEPPES [2]
in Angriff genommen, aber abschliessende Ergebnisse sind auch in dieser Richtung
nicht zu erwarten.

Wir wollen in einem vorgegebenen abgeschlossenen Gebiet vom Flidcheninhalt F
n Punkte so verteilen, dass die Lange des sie verbindenden kiirzesten Streckenzuges
den grosstmoglichen Wert L, erreicht. Ich habe vor 20 Jahren die Vermutung ausge-

sprochen [1], dass

L2 2F

lim =% = ——
sses® )3
ausfillt, was bedeuten wiirde, dass bei einer grossen Punktanzahl die Punkte ein

gleichseitiges Dreiecksgitter bilden miissen.
Fiir ein Einheitsquadrat hat FEw — als Verschirfung einer Ungleichung von VER-

BLUNSKY — die Abschitzung L, < V2n + —Z;— angegeben. Wir haben mit ErRDOs in

einem gemeinsamen Aufsatz versucht, die obige, noch immer unbewiesene Vermutung
von einer anderen Richtung anzugreifen. Verbinden wir jeden Punkt mit dem néch-
sten, bilden die totale Linge der entstehenden » Strecken (von denen gewisse zusam-
menfallen kénnen) und betrachten wir das Maximum S, dieser totalen Ldnge, wenn
die Punkte im Gebiet frei variieren. Wir haben gezeigt, dass

Die folgenden Probleme entsprangen aus der Betrachtung einer Figur des beriihm-
ten Buches von THOMPSON, die einen Schnitt des parenchymatischen Gewebes des
Maisstengels darstellt (Figur 3). Hier fiillen die Zellen nicht den ganzen zur Verfiigung
stehenden Raum aus, und es entsteht die Frage, welche Gestalt und Anordnung die
Zellen unter der Wirkung des gegenseitigen Druckes und der Elastizitdt der Zellen-
winde annehmen. Da die Zellen in der Achsenrichtung stark verldngert sind, reduziert
sich die ganze Fragestellung auf ein ebenes Problem.

Es sei in ein vorgegebenes Gebiet eine grosse, aber fest vorgegebene Anzahl von
konvexen Scheiben eingelagert. Es lasst sich dann fragen: 1. Bei welcher Gestalt und
Anordnung wird der Gesamtinhalt der Scheiben maximal, wenn die Scheiben einen
gleichen, vorgegebenen Umfang haben ? 2. Bei welcher Gestalt und Anordnung wird der
Gesamtumfang der Scheiben minimal, wenn die Scheiben einen gleichen, vorgege-
benen Inhalt haben ?

Diese Probleme, die als die isoperimetrischen Grundprobleme fiir 2-dimensionale
Zellenaggregate angesehen werden konnen, wurden von mir [2], bzw. von HEPPES
und mir geldst. Die Extremalfigur entsteht in beiden Fallen, wenn man die Ecken
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eines hexagonalen Mosaiks {6,3} durch kongruente Kreisbégen abrundet. Bemerkens-
wert ist dabei, dass die Kongruenz der Scheiben, sowie ihre regulire Gestalt und
Anordnung automatische Folgerungen einer einzigen Extremalbedingung sind.

Figur 8

Wenn wir etwa sagen, dass die Bienen ihre Waben unter gewissen Bedingungen am
wirtschaftlichsten bauen, so denken wir stillschweigend immer an Waben von sehr
diinner Wanddicke. Ich habe es versucht, in einem derartigen Problem auch die
Wanddicke in Betracht zu ziehen [3]. Wir wollen ein zusammenhingendes Gebiet,
das durch wenigstens zwei geschlossene Kurven begrenzt ist, ein Wandsystem nennen
(Figur 4). Der kleinste Abstand zwischen zwei begrenzenden Kurven sei Wanddicke
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genannt. Wir wollen in ein gegebenes Gebiet ein Wandsystem von vorgegebener Dicke
so einbauen, dass es eine méglichst grosse Zahl von konvexen Zellen von vorgegebenem
- Inhalt enthilt. Ich habe gezeigt, dass fiir grosse Gebiete die Lésung durch das regulédre
hexagonale Wandsystem (Figur 5) geliefert wird. Dies folgt aus folgendem Satz: Liegt
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in einem konvexen Sechseck vom Inhalt A ein Wandsystem von der Dicke 2 d, das
n konvexe Zellen vom Inhalt = 4 enthilt, so gilt

7 Y75 7\2
n < <LH:¥1—2?—> .
Vb +y12d
Lenz [1, 2] hat wertvolle Teilergebnisse im folgenden schwierigen Problem erzielt:
Es sei eine abgeschlossene ebene Punktmenge M und eine natiirliche Zahl 2 vorge-
geben. Gesucht wird die kleinste Zahl d = 4, (M) von der Eigenschaft, dass sich M
durch 2 Punktmengen vom Durchmesser < 4 iiberdecken lisst.
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Figur 5

Ausser kleinen Werten von % betrachtet LENz auch das asymptotische Verhalten
von d, (M) fiir grosse Werte von k. Das Beispiel des Sechseckmosaiks zeigt, dass fiir
eine Punktmenge M vom Jordanschen Mass | M |
8| M|

V27

lim /% d,(M) < V <1241) | M|

k—00

ausfillt. Andererseits gilt nach LENZ:

lim | & d,(M) > 1,19) [M .
k—>00
Lassen wir jetzt einige Zeilen von einem Aufsatz von STEINHAUS folgen: Diverses
questions, par exemple celles des types en anthropologie, ou bien d’fmtres, d’ordre
pratique, comme celles de la normalisation des objets industriels, exigent pour l.eur
solution la détermination de » représentants fictifs d'une nombreuse population,
choisis de maniére 3 réduire autant que possible les écarts entre les éléments de la
population et ceux de 'échantillons, I'écart étant mesuré entre tout élément réel et

I'élément fictif qui lui est le plus proche.



30 L. Fejes T6tH: Neuere Ergebnisse in der diskreten Geometrie

Diese Erwigungen fithrten STEINHAUS zu folgendem Problem: Zu einem vorge-
gebenen (nicht notwendig homogenen) Korper # Punkte P, ..., P, so anzugeben,
dass die Summe T; + +++ 4+ T, den kleinstmoglichen Wert erreicht, wobei T, das auf
P, bezogene Tragheitsmoment desjenigen Teilkorpers bedeutet, dessen Punkte einen
kleineren Abstand von P; als von einem anderen Punkt P; haben.

Ich habe das asymptotische Verhalten der Losung fiir grosse Werte von # im
2-dimensionalen Fall untersucht [4]. Es stellte sich heraus, dass die Teilscheiben
angendhert reguldre Sechsecke von gleichem Trigheitsmoment sein miissen. Dies
kommt im folgenden Satz zum Ausdruck: Wir zerlegen eine konvexe Scheibe S von
der Dichte f(x, y) in n Teilscheiben S, ..., S,, bezeichnen das Tragheitsmoment von
S, in bezug auf seinen Schwerpunkt mit 7°(S;) und betrachten das Minimum M, der
Summe T(S;) + -+ + T(S,), erstreckt iiber alle moglichen Zerlegungen. Dann gilt

lim»n M, = __5_5123__ <// ‘/}‘(xjy)ﬁdx cly)2 .

#—>00

Mein Mitarbeiter MOLNAR versuchte eine extremale Zerlegung in «angendhert»
reguldre Sechsecke von verschiedener Grosse an einer Zeichnung zu veranschaulichen
(Figur 6). Diese Figur entspricht dem Fall, wo die Dichte der Scheibe, und damit

Figur 6

die Anzahldichte der Sechsecke, radial abnimmt. Es stellte sich dabei heraus, dass es
iiberhaupt nicht einfach ist, von den kleinen mittleren Sechsecken so durch einen
stetigen Ubergang zu den grosseren, peripheren zu gelangen, dass die Irregularitit der
Sechsecke wenigstens nicht ins Auge fallen soll. Es ist daher vorstellbar, dass sich
dieser Ubergang in kleinen Spriingen, durch Brechungslinien vollzieht, so dass inner-
halb der kleinen, von den Brechungslinien begrenzten Teilen noch eine grosse Anzahl
von «fast» kongruenten Sechsecken liegt. Einstweilen verfiigen wir aber iiber keine
Methoden, die in die Feinstruktur der extremalen Zerlegung eine so tiefe Einsicht
gewidhrleisten wiirde.

Die folgenden Resultate beziehen sich auf die Kugel. Wenden wir uns zunichst
dem Problem der dichtesten sphirischen Kreisunterdeckung und der diinnsten sphé-
rischen Kreisiiberdeckung zu! Wir wollen also die Kugel mit einer vorgegebenen



L. Fejes T6é6TH: Neuere Ergebnisse in der diskreten Geometrie 31

Anzahl # von moglichst groBen kongruenten Kreisen unterdecken bzw. mit #
moglichst kleinen kongruenten Kreisen iiberdecken. Diese Probleme scheinen
von biologischem Interesse zu sein. Der hollindische Biologe TAMMES versuchte
niamlich, die eigenartige Verteilung der Austrittstellen an den Pollenkérnern ge-
wisser Blumen durch die Voraussetzung zu erkliren, dass die Austrittstellen die
Mittelpunktverteilung einer dichtesten Kreisunterdeckung zu realisieren trachten.
Andererseits kann man aber auch von der Hypothese ausgehen, dass die Verteilung
der Austrittstellen durch das Prinzip der diinnsten Kreisiiberdeckung bedingt wird.
Es ist ndmlich anzunehmen, dass, nachdem der Pollen an der Narbe anhaftet, die
Befruchtung nur dann zustande kommt, wenn der Abstand zwischen dem Haftungs-
punkt und der nédchsten Austrittstelle nicht eine gewisse Grosse r iiberschreitet.
Schldgt man um die Austrittstellen mit dem Radius » Kreise, so ist die Wahrschein-
lichkeit der Befruchtung mit dem Inhalt des iiberdeckten Teiles proportional. Bei
welcher Verteilung erreicht dieser Inhalt den grésstméglichen Wert ? Dieses Problem
ist nur fiir in einem gewissen Intervall liegende Werte von 7 interessant und geht in
den beiden extremen Fillen in das Problem der dichtesten Kreisunterdeckung und
der diinnsten Kreisiiberdeckung iiber.

In dem erwdhnten Buch habe ich eine Abschidtzung angegeben, aus der die Lésung
dieses allgemeinen Problems fiir die Punktanzahl # = 3, 4, 6 und 12 folgt: die extre-
male Punktverteilung ist durch die Ecken eines regelmissigen Dreiecks, Tetraeders,
Oktaeders und Ikosaeders gegeben. Das Problem der dichtesten Kreisunterdeckung
wurde fiir #» = 5 schon durch TaMMES und fiir » = 7, 8 und 9 durch ScHUTTE und
VAN DER WAERDEN (1951) gelost. Ein neueres Ergebnis in dieser Richtung hat
DANZER erreicht, der die Losung fiir » = 11 fand: die extremale Verteilung von
11 Punkten entsteht, wenn von den 12 Ecken eines Ikosaeders eine herausgehoben
wird. Es wire schon, durch Erledigung des Falles #» = 10 die Losungen fiir » < 12
zu vervollstindigen.

In den irreguliren Fillen wurde das Problem der diinnsten sphirischen Kreistiber-
deckung von SCHUTTE in Angriff genommen und fiir » = 5 und 7 geldst. Es stellte
sich heraus, dass die beste Punktverteilung in diesen Féillen (ebenso wie im Fall
n = 6) durch die Ecken einer Doppelpyramide dargestellt wird. Es ist dabei bemer-
kenswert, dass die Losungen der beiden betrachteten Probleme fiir #» = 7 grundver-
schieden sind. Welche Verteilung wird durch die Natur realisiert ? Es wire interessant,
diese Frage durch eine grosse Anzahl von sorgfiltigen Beobachtungen und Messungen
zu entscheiden.

Neulich habe ich das Problem untersucht [5], wie man auf der Kugel » Punkte
verteilen muss, dass die gegenseitige sphirische Abstandssumme der Punkte moglichst
gross ausfillt. Ich habe die Losungen fiir » < 6 angegeben und fiir beliebige Werte
von n Abschitzungen und Vermutungen aufgestellt. Kiirzlich hat SPERLING (Student
in Frankfurt am Main) meine Vermutung bestétigt, dass fiir gerades » die beste Ver-
teilung von zentralsymmetrischen und nur solchen Punktsystemen geliefert wird.
Fiir ungerade Werte von # > 6 ist die Losung noch nicht bekannt. Vermutlich
besteht hier das extremale Punktsystem aus einem, eventuell leeren, zentralsymme-
trischen Teilsystem, wihrend die iibrigen Punkte so auf einem Grosskreis verteilt
sind, dass die von einem Punkt bestimmten beiden offenen Halbkreise eine gleiche

Anzahl von Punkten enthalten.
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Legen wir auf die Kugel » > 2 Grosskreise! Es entsteht ein Netz. Gesucht wird
diejenige Verteilung der Grosskreise, bei der dieses Netz moglichst fein ausfillt, in dem
Sinne, dass seine grosste Kante maximal wird. Da ein jeder Grosskreis von den {ibri-
gen in hochstens 2 (» — 1) Teilbogen zerlegt wird, gibt es auf jedem Grosskreis einen
Teilbogen von der Linge = 27/(2 n — 2). Folglich ist die Linge der grossten Kante
! = n[(n — 1). Ich habe bemerkt [6], dass in dieser Ungleichung Gleichheit fiir und
nur fiir das sphédrische Netz der sogenannten quasireguldren Korper gilt. Diese Korper
sind durch die Kantenmittelpunkte der platonischen Korper bestimmt. Ihre Netze
bestehen aus # = 3, 4 bzw. 6 Grosskreisen (Figur 7).

O,

Figur 8

Wie gross ist der Wert von lim # ! und wie lisst sich das asymptotische Verhalten

7n-—>00

des extremalen Netzes fiir grosse Werte von # kennzeichnen ? Weiterhin kann statt
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der Kugel die Euklidische Ebene in Betracht gezogen werden, wobei die Anzahl der
Grosskreise durch die Geradendichte zu ersetzen ist. Bestimmt dann das extremale
Geradennetz ein halbregulires euklidisches Mosaik (Figur 8), das die Natur im Kiesel-
skelett der Arcella vulgaris in so erstaunlicher Vollkommenheit realisiert ? All diese
Fragen scheinen recht schwierig zu sein.

Mit sphédrischen Lagerungsproblemen hidngen verschiedene Polyeder betreffende
Extremalprobleme zusammen. Ich habe gezeigt, dass das Volumen V eines konvexen
Polyeders vom Inkugelradius » der Ungleichung

V=2 sm—z (tg2 . tg? ;;:« — ])
Gentige leistet, wo ¢, f und % die Ecken-, Flichen- und Kantenzahl bedeuten. Gleich-
heit gilt nur im Fall der platonischen Kérper. Nun hat FLor1AN [1] die analoge, aber
viel schwerere Ungleichung
2k nf nf
V= —3-cosz~—ctg (1 — ctg? eTy ctg? Zk) R3
bewiesen, wobei R den Umkugelradius bedeutet und in der Gleichheit ebenfalls nur

fiir die reguldren Polyeder in Kraft tritt.
Aus den beiden Ungleichungen folgt die weitere nette Ungleichung

R 4 n

S =tgttg o,

y =85 8y

wo p = 2 k/f und g = 2 k/e die mittlere Kantenzahl der Flichen und Ecken bedeutet.
Die erwdhnte Volumenabschitzung nach unten folgt aus einer allgemeineren Un-

gleichung, die es gestattet, eine analoge Abschitzungsformel auch im elliptischen

und hyperbolischen Raum aufzustellen. Diese Ungleichung (FEJES TétH [7]) lautet

folgendermassen:
=f[2k
J @? — sin? »

- cos ¥ -
V_V__/[er—m;~arctg(thxr o5 7 )}dx,

wo

. nf ne
® = sin ﬁ/cos T
ist und » die Raumkriimmung bedeutet.

Hier sei noch auf einige von FLORIAN [2, 3] bzw. mir [8, 9] herriihrende analoge
Ungleichungen fiir Flicheninhalt und Kantenkriimmung, auf verschiedene Verall-
gemeinerungen auf Sternpolyeder, sowie auf einige Extremaleigenschaften der regu-
liren Polytope hingewiesen. Diese Untersuchungen kénnen aber noch nicht als abge-
schlossen angesehen werden.

Wir schliessen unseren Bericht iiber Polyeder mit einem schénen Satz von BEsIco-
vitscH und EGGLESTON, nach dem unter simtlichen konvexen Polyedern, die eine
feste Kugel enthalten, der umbeschriebene Wiirfel die kleinstmégliche Kantenlingen-
summe aufweist. Dies wurde vorher von mir als Vermutung ausgesprochen. Ein
interessantes, bisher noch ungeldstes Problem entsteht, wenn man sich auf Dreiecks-
polyeder beschrinkt. Dann wird nadmlich die kleinstmogliche Kantenlingensumme
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vermutlich von zwei reguliren Korpern, und zwar vom Tetraeder und Oktaeder,
erreicht.

Mehrere neuere Abhandlungen sind dem Problem der dichtesten Kugelunter-
deckung und diinnsten Kugeliiberdeckung gewidmet (BAMBAH [1, 2, 3], BAMBAH und
DAvENPORT, CHABAUTY [1, 2], COXETER, DAVENPORT [1, 2], ErRDOS und ROGERs,
FEjES TOTH (14, 15], RANKIN, ROGERS, WATSON). Wir legen unseren Betrachtungen
einen zn-dimensionalen Raum konstanter Kriimmung zugrunde und schlagen um die
Ecken eines reguldren Simplexes von der Kantenldnge 2 » bzw. vom Umkugelradius »
Kugeln vom Radius 7. Bezeichnen wir die Dichte der Kugeln im Simplex mit d(r)
bzw. D(r), so liegt die Vermutung nahe, dass d(r) eine obere Schranke simtlicher
Kugelunterdeckungen und D(r) eine untere Schranke simtlicher Kugeliiberdeckungen
von Kugeln vom Radius 7 darstellt. Diese Vermutung habe ich im 2-dimensionalen
Fall bewiesen [10, 11] (und im allgemeinen Fall durch einen Beweisansatz unter-
stiitzt [14]). Hieraus folgt, dass die Flacheninkreise und Flichenumkreise der regu-
liren Dreikantmosaike je eine dichteste Kreisunterdeckung bzw. diinnste Kreisiiber-
deckung bilden. Es ldsst sich ferner zeigen, dass in der hyperbolischen Ebene d(r) und

D(r) monoton zu- bzw. abnehmen und fiir # > oo den Grenzwerten 3/% bzw. V12jn
zustreben. Folglich ist in der hyperbolischen Ebene die Kreisunterdeckungsdichte

stets < 3/z und die Kreisiiberdeckungsdichte = V12/m. Es lisst sich zeigen (FEJES
TétH [12, 13]), dass Gleichheit nur fiir gewisse Horozyklenanordnungen, nimlich
fiir die Flachenkreise und Flichenumkreise des Mosaiks {0, 3}, erreicht wird (Figur 9).

Figur 9

Auf die Bedeutung der obigen Vermutung im 3-dimensionalen sphirischen und
besonders im hyperbolischen Raum haben unabhingig von einander COXETER und
ich [15] nachdriicklich hingewiesen. Es scheint, dass im hyperbolischen Raum die
Kugelunterdeckungsdichte stets

1 1 1 1 -

1 1
g(l—{*?—‘zz—‘?‘}“?}‘—l— “85—"°) 20,853.-.
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und die Kugeliiberdeckungsdichte

1 1 1 1

1
z(1-5+ + oy = i

-1
St 4---) = 1,280 ...

ausfillt und Gleichheit nur fiir gewisse Horosphidrenanordnungen, und zwar fiir die
Zelleninkugeln bzw. Zellenumkugeln des Mosaiks {6, 3, 3} in Kraft tritt. Das Ver-
hiltnis dieser Konstanten betrigt 2:3.

Fiir Kugelunterdeckungen im #-dimensionalen Euklidischen Raum hat die Rich-
tigkeit der obigen Vermutung RoGERs dargetan. Dieses Ergebnis, von dem ich erst
kiirzlich Kenntnis bekam, hat mich besonders fasziniert. Es kann zweifelsohne als
einer der wichtigsten neueren Beitrige der diskreten Geometrie angesehen werden.
Fiir den gewohnlichen Raum ergibt sich hieraus fiir die Kugelunterdeckungsdichte
die heute bekannte beste obere Schranke, nimlich

|/1§ (arc cos f; — g) = 0,779 ....

Zum Schluss noch ein Kugeltarnungsproblem. HorNIcH hat die Frage aufgeworfen,
durch wieviele materielle Einheitskugeln sich eine materielle Einheitskugel radial ver-
decken lisst, in dem Sinne, dass jede vom Mittelpunkt der zu verdeckenden Kugel
ausstrahlende Halbgerade eine Deckkugel treffen soll. Trotz des véllig elementaren
Charakters dieses Problems scheint die Lésung fast uniiberwindlichen Schwierig-
keiten zu begegnen. Von den verschiedenen Untersuchungen, die aus diesem Problem
entsprangen (vgl. FEJEs T6TH [16]) sei folgendes, von mir angeregtes Resultat von
GRUNBAUM hervorgehoben: Die Mindestzahl der Einheitskugeln, durch die sich ein
Leuchtpunkt verdecken lisst, betrdgt sechs. . L. FejEs TéTH, Budapest
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