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Die Kegelschnittsfunktionen
1. Schon James Gregory (1638-75) hat in seiner Vera circuli et hyperbolae quadra-

tura, Padua 1667, gezeigt, wie man mit Hilfe einbeschriebener und umbeschriebener
Vielecke die Flächeninhalte von Ellipse und Hyperbel nach demselben elementaren
Verfahren wie beftn Kreis bestimmen kann. Nicht allgemeiner bekannt zu sein
scheint, dass man auch die Theorie der Kreis- und Hyperbelfunktionen als eine
Theorie der Kegelschnittsfunktionen völlig einheitlich und elementar ohne jeden
rechnerischen Grenzübergang aufbauen kann. Zwar weiss jeder, dass Hyperbelsinus und
-cosinus Funktionen nicht des Hyperbelbogens, sondern des doppelten Hyperbelsektors

sind und dass man auch beim Kreis den Bogen als doppelten Sektor auffassen
kann. Weniger bekannt ist, dass diese Dinge der affinen Geometrie angehören und
damit eine ganz elementare Theorie ermöglichen, bei denen Kreis- und
Hyperbelfunktionen in gleicher Bezeichnung erscheinen. Besonders für die gemeinsame
Behandlung der beiden in der nichteukhdischen Geometrie scheint sie mir nützlich zu
sein1).

2. Wir nehmen die Gleichung des Mittelpunktskegelschnitts, bezogen auf ein
affines xx | ^-Koordinatensystem in der Gestalt

x\ + ex\=\ (1)

an. Die Koordinatenachsen sind konjugierte Durchmesser. Ist P(px \ p2) ein Punkt
von (1), so hat der Endpunkt P' des zu OP konjugierten Halbmessers OP' (AOPP'
habe positiven Umlaufsinn) die Koordinaten (— e p2 \ pi)> Dabei ist im Fall der
Hyperbel (e — 1) P' allerdings der reelle Ersatzpunkt auf der konjugierten Hyperbel
e x\ + x\ 1.

Ist ferner Q(qt | q%) ein behebiger von P verschiedener Punkt von (1), so ist

2A OPQ pxqt- p2qx 2A OQP' p1q1 + e p2q2. (2)

Figur 1

*) Vergleiche dazu L. Heffter, Grundlagen und analytischer Aufbau der Geometrie 3, S. 153ff., Stuttgart

1958.
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Nun seien drei Punkte P, Q, P des Kegelschnitts gegeben (Figur l)2). Die Aufgabe
sei, Q so zu bestimmen, dass

A OPQ A OPQ (3)
wird.

Ist M die Mitte von QP, so existiert eine Affinspiegelung mit OM als Achse und QP
als Richtung, die A OPQ in A OPQ überführt, wodurch Q eindeutig bestimmt ist.

Es gilt nun

AOPQ AOPQ (3i)

AOQP AOQP

OPQP OQQP

APQP AQQP

AOPP -AOQQ, (4_)

und aus (4X) folgt rückwärts wieder (3X).

Man kann so fortfahren:

AORS --AORS (34)

AORR -AOSS (44)

A OPP -- oss (4.)

AOPS -- OPS. (26)

ist, so folgt
A OPP A OPtPt,

und damit

Ist R ein weiterer Punkt von (1), so gibt
es einen Punkt R auf (1), dass

nach (4X):

ist.

Geht man zu je n + 2 Punkten P, Px,

P2,...,Pn,Q und P,PX,P2,..., Pn,

Q über, so dass

A OPPx A OPPx,

AOPlPt + x AOPtPl + x

i=l,2, ...n-1

AOQR-- AOQR (32)

A OQQ - AORR (42)

AOPP-- ORR (43)

A OPR AOPR (38)

i= 1, 2, ,n

A OPQ A OPQ

A OPnQ A OPnQ

AOQQ

(2)

(3)

(4)

Gilt umgekehrt (4) und dazu (2) ohne A OPnQ — A OPnQ, so gilt auch das letztere.
Wir haben in gleicher Weise für Ellipse und Hyperbel den

Satz 1. Sind einem Mittelpunktskegelschnitt eine Kette von Dreiecken OPPx,
OPiPi+1 (i 1, 2, n — l),OPnQ sowie eine Kette von gleichvielen ihnen paarweise

inhaltsgleichen Dreiecken OPPx, OPtPt fl, OPnQ einbeschrieben, so sind auch die
Dreiecke OPQ und OPQ flächengleich, und sind umgekehrt diese flächengleich, so
kann man die vorige Kette wiederfinden und zwar für jede beliebige Anzahl n von
Kettengliedern und ganz unabhängig von der Wahl der Ecken Pv P2, Pn auf
dem Kegelschnitt.

a) Ein Mittelpunktskegelschnitt ist durch den Mittelpunkt und drei Punkte bestimmt, daher ist in
Figur 1 OPQPQ exakt, dagegen R schematisch hinzugefügt.



126 K. Fladt: Die Kegelschnittsfunktionen

Schaltet man nun nicht endlich viele Zwischenpunkte ein, sondern geht zur
Grenze n -> oo über, so gehen die beiden Dreiecksketten, die ja flächengleich sind,

in die beiden Kurvensektoren OPQ und OPQ über: Diese sind also flächengleich. Wir
haben daher ohne jeden rechnerischen Grenzübergang den

Satz 2. Haben in einem Mittelpunktskegelschnitt zwei von je zwei Halbmessern
und einer Sehne begrenzte Dreiecke denselben Flächeninhalt, so sind auch die Flächen
der von den Halbmesserpaaren begrenzten Sektoren gleich.

Wir können Satz 2 auch so ausdrücken:

Satz 3. Bei einem Mittelpunktskegelschnitt ist der Flächeninhalt eines von zwei
Halbmessern begrenzten Sektors nur von der Fläche des von den Halbmessern und
der zugehörigen Sehne begrenzten Dreiecks abhängig, nicht von der Lage des
Dreiecks.

Durch indirekten Beweis folgt die Umkehrung von Satz 3:

Satz 4. Bei einem Mittelpunktskegelschnitt ist der Flächeninhalt eines von zwei
Halbmessern und der zugehörigen Sehne begrenzten Dreiecks nur von der Fläche
des zugehörigen Kegelschnittssektors abhängig, nicht von der Lage des Dreiecks:

2AOPQ p1qt-ptq1=F1(2 0PQ). (5)

3. Wir können aber sofort ein zweites solches Dreieck angeben, nämlich das in 2.

eingeführte:
2A OQP' pxqx + ep2q2=F2(2 OPQ). (6)

Denn es gilt die Lagrangesche Identität

(Pt + e Pt) fa? + e qt) (px qx + ep2 q2Y + e (px q2 - p2 qx)* (7)

und die entsprechende für die Punkte P, P', Q. Aus (1), (5) und (7) folgt sofort

A OQP' A OQP', (8)

womit (6) erwiesen ist. Wir wählen in (5) und (6) den doppelten Flächensektor

2ÖPQ (p (9)

als unabhängige Veränderliche und setzen

Cs<p C<p p1q1 + ep2q2, Se<p S <p pxq2- p2qx (10)

C<p heisse der allgemeine Cosinus, S<p der allgemeine Sinus.

Nach Lagrange gilt dann
C*<p + eS2<p=l. (11)

Ist A der Punkt 11 0, B der Punkt 0 | 1 (auch bei der Hyperbel als Punkt der
konjugierten Hyperbel), und ist

2 OAP <p2, 2 OAQ <px, (12)

so ist

20PQ~q>t~q>2t (13)
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ferner
C (px qx, Scpx q2, C 9?2 px, S<p2 p2.

Also kommt aus (10) das Subtraktionstheorem

c (<Pi - ^2) C cpx C cp2 + e S (px S <p2, S (<px — q>2) S(pxC<p2- S<p2C(px (14)

und wenn man <px <p2 + <p setzt, durch Auflösen nach C (px und S cpx mittels (11) das
Additionstheorem

c (q>i + 9^) C<px Ccp2 - e S<px Scp2, S (<px + <p2) S<pxC(p2+ S<p2C<px, (15)

womit unsere Aufgabe im wesenthchen gelöst ist.
Wir bemerken noch, dass sich wegen

lim-^- l (16)

die Ableitungen

ergeben und dass aus (15)

C (<Pi + <p2) + j/^S (cpx + cp2) (Ccpx + j/-7s <px) (C <p2 + |/C7s q>2) (18)

folgt. Damit ergibt sich dann durch Überlegungen, die der Analysis angehören und
hier nicht zur Diskussion stehen,

(19)

C<p+)/-eS<p eV-e'p

c?, l(/-£> + .-^>), sy=
2

i_ (g'/-^-,-^.
Für s + 1 ist also (20a) C cp — cos cp, S cp sin 9p,

für s — 1 aber (20b) C cp ch cp, S<p sh<p

wie es ja schon per definitionem sein muss.
Natürlich muss man dann noch die allgemeinen Funktionen Tangens und Cotan-

gens vermöge

TV T%- Ci^^h (20)

einfÜhren'
K. Fladt, Calw

Eine neue Methode zum Zeichnen einer Schrägperspektive
mittels einer Frontalperspektive

Beim Zeichnen einer Zentralperspektive machen unzugängliche Fluchtpunkte
häufig unliebsame Schwierigkeiten. Diese Schwierigkeiten können zwar mittels
graphischer Ausweichkonstruktionen oder mechanischer Hilfsmittel bewältigt werden,
verursachen aber doch Verluste an Zeit und Genauigkeit. In der vorliegenden Mit-


	Die Kegelschnittsfunktionen

