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nale dar, die wie das Volumen ¥V (4) translationsinvariant und einfach-additiv sind
und also Losungen der beiden Funktionalbedingungen

¢(P) = @@ [P=0l, @P+Q)=q¢P)+¢0Q)

sind, wobei « ~ » die Translationsgleichheit und «+ » die Zusammensetzung im Sinne
der Elementargeometrie bezeichnen.

So ergibt sich jetzt leicht, dass fiir die translative Zerlegungsgleichheit zweier
Polyeder A und B die weiteren Bedingungen '

F(A;u) = F(B, u) b)
L(A;u,v) = L(B, u,v) c)

notwendig sind. Die formal unendlich vielen Bedingungen gemiss der kontinuierlich
vielen wihlbaren Vektoren # und v reduzieren sich in jedem individuellen Fall auf
endlich viele, da diese, wie aus den oben gegebenen Vermerkungen hervorgeht,
«fast immer» auf triviale Weise erfiillt sind.

Das hier vorgetragene speziellere ungeléste Problem lautet:

Sind die fiir die translative Zerlegungsgleichheit zweier Polyeder A und B notwendigen
Bedingungen a), b) und c) auch hinreichend, oder existieren noch weitere unabhingige
Bedingungen ? H. HADWIGER

Kleine Mitteilungen

Ein raumliches Analogon zur Aufgabe von Ottajano

Die im Jahre 1788 von A. GiorDANO aus Ottajano gestellte Aufgabe [1] besteht darin,
ein n-Seit zu konstruieven, das einem gegebemen Krveis ein- und gleichzeitig einem gegebenen
n-Eck umbeschrieben ist. Ersetzt man den Kreis durch einen beliebigen Kegelschnitt, so
entsteht wegen des projektiven Charakters der Aufgabe keine wesentliche Verallgemeine-
rung. Hier soll nun die Ubertragung des Problems auf den Raum vorgenommen werden:
Es ist ein (i. allg. windschiefes) n-Seit gesucht, das einer gegebenen einteiligen Quadrik D ein-
und gleichzeitig einem gegebenen (i. allg. nicht ebenen) n-Eck umbeschrieben ist. Von einem
Sonderfall dieses Schliessungsproblems handelt die in den «Elementen der Mathematik»
erschienene Aufgabe 356 von C. BINDSCHEDLER. Dort wird verlangt, einer gegebenen
Kugel ein i. allg. windschiefes Vierseit einzuschreiben, dessen Seiten durch vier gegebene
Punkte gehen.

Die gegebene Quadrik heisse @, die Eckpunkte des gegebenen n-Ecks werden mit 4,,
die des gesuchten #n-Seits mit P, bezeichnet, wobei P; P; ; mit 4, inzidieren und die Fest-
setzungen 4, , = 4, bzw. P, , = P, gelten sollen. Zur Lésung der Aufgabe projizieren
wir der Reihe nach die Quadrik @ aus den gegebenen Punkten A4,, 4,, ... 4, auf sich
selbst. Einem beliebigen Ausgangspunkt X, der Quadrik @ werden durch diese » Zentral-
projektionen » Bildpunkte X,, X,, ... X,,, zugeordnet. Diese Punkte X, liegen so auf @,
dass der Verbindungsstrahl », = X; X, , durch das Zentrum der ¢-ten Zentralprojektion
A, geht. Die gestellte Aufgabe besteht nun darin, jene Punkte X; der Quadrik @ zu
suchen, fir die X, =X, , gilt. Um diese «geschlossenen Sehstrahlpolygone» x,
(i =1,2,...n) zu finden, haben wir unser Augenmerk auf die Punktverwandtschaft
X, > X, ,, zu richten. Die automorphe Zentralkollineation %; der Quadrik @ mit dem
Zentrum in A, induziert auf @ eine Punktverwandtschaft £, die X; mit X, , vertauscht;
die Zusammensetzung aller ¥, ist eine allgemeine automorphe Kollineation & von &, die
auf @ den Ubergang X, - X, ; bewerkstelligt. & induziert auf & eine Verwandtschaft g,
diese vertauscht jeweils die Erzeugenden und die Kegelschnitte von @ unter sich, ist also
eine «Kegelschnittverwandtschafty auf @. Ferner gilt, dass in entsprechenden Punkten



102 Kleine Mitteilungen

zugeordnete Paare von Fortschreitungsrichtungen mit den Erzeugenden ein gegeniiber
Q invariantes Doppelverhiltnis bilden. Eine automorphe Kollineation von @ wird als
«gleich-» oder «gegensinnig» bezeichnet, je nachdem die beiden Erzeugendenscharen als
Ganzes festbleiben oder vertauscht werden. Da eine automorphe Zentralkollineation die
beiden Erzeugendenscharen vertauscht, ist & «gleich-» bzw. «gegensinnig», je nachdem »
gerade oder ungerade ist. Unsere Aufgabe ist demnach zuriickgefithrt auf die Evmittlung
der Fixpunkte der Verwandtschaft &, die durch eine automorphe Kollineation von @ auf @
induziert wird. Zur konstruktiven Behandlung werden je nach der Realitit der Erzeu-
genden von @ und je nachdem # gerade oder ungerade ist, verschiedene Methoden zu
verwenden sein. Auch beschrianken wir uns im folgenden darauf, dass die auf @ betrachtete
Verwandtschaft eine «allgemeine Kollineation» mit vier getrennten Fixpunkten ist. In-
wieweit besondere Kollineationen (Zentralkollineationen, Achsenkollineationen, usf.) auf-
treten konnen, bedarf einer besonderen Untersuchung, ist aber fiir den prinzipiellen L6-
sungsweg unwichtig.

Fall 1: @ besitzt veelle I'vzeugenden. Ist n gerade, so ruft 8 in jeder Erzeugendenschar
eine Projektivitdt hervor, deren Fixelemente Kanten des Fixtetraeders von & sind. Zur
Konstruktion der Fixelemente von Erzeugendenprojektivitaten ist es zweckmadssig, hiezu
die auf einer Erzeugenden der anderen Schar durch die Schnittpunkte induzierte Projek-
tivitdit heranzuziehen. Das Fixtetraeder von & enthilt somit ein windschiefes Erzeugen-
denvierseit von @, da sich die Tangentialebenen an @ in zwei gegeniiberliegenden Punkten
des Vierseits in der Verbindungsgeraden der beiden iibrigen schneiden, liegen die von den
Erzeugenden von @ verschiedenen Kanten des Fixtetraeders von R in reziproken Polaren
von @. Die Aufgabe hat in diesem Fall vier reelle Losungen oder keine reelle, da reziproke
Polare einer Quadrik mit reellen Erzeugenden entweder beide reell oder beide komplex
schneiden.

Ist dagegen » ungerade, so vertauscht die Iteration K2 von & die Erzeugenden jeder
Schar in projektiver Weise untereinander. Die Fixelemente dieser Erzeugendenprojektivi-
titen ey, e, bzw. f,, f; werden von den in & vertauschbaren Geradenpaaren e,, f, und e,, f,
gebildet, wobei die Schnittpunkte D, = ¢; f, (¢ = 1, 2) Fixpunkte von K sind. Die noch
fehlenden Fixpunkte liegen in der reziproken Polaren d von d = D, D,. V, = ¢, f, und
V, = e, f, liegen auf 4 und sind ein in & vertauschbares Punktepaar, weshalb die restlichen
Fixpunkte D, D, bzgl. V,, V, harmonisch liegen. Ist also & eine gegensinnige auto-
morphe Kollineation von @, so werden die Fixpunkte von & durch die Iteration K2 ent-
weder vertauscht oder festgehalten; genauer gilt, dass & und K2 zwei Fixpunkte und ihre
Fixtetraeder zwei in reziproken Polaren von @ liegende Kanten gemeinsam haben.
Unsere Aufgabe hat in diesem Fall entweder zwei reelle Losungen oder keine reelle.

Fall 2: @ besitzt keine veellen Evzeugenden. In diesem Fall ist es schwierig, die Erzeugen-
denprojektivititen konstruktiv auszuwerten, da die auf einer Erzeugenden der anderen
Schar erzeugte Projektivitit nur durch komplexe Elementenpaare gegeben ist. Die
Gruppe der Projektivititen auf der Geraden als Inbegriff ihrer komplexen Punkte ist
isomorph zur Gruppe der Mobiusschen Kreisverwandtschaften in der Ebene. Diese Zu-
ordnung kann im vorliegenden Fall folgendermassen konkretisiert werden: Wir betrachten
eine Zentralprojektion von @ aus einem ihrer Nabelpunkte auf eine zur Tangentialebene
in diesem Punkt parallele Bildebene. Eine solche «stereographische Projektion» von P
fiihrt die beiden Erzeugendenscharen in die isotropen Geraden der Bildebene iiber; den
Kegelschnitten von @ entsprechen die Kreise der Bildebene. Die Verwandtschaft £ geht
hiebei in eine Kreisverwandtschaft 9t in der Bildebene iiber, die je nachdem » gerade
oder ungerade ist, gleich- oder gegensinnig konform ist. Die Losung des Problems ist
somit zuriickgefiihrt auf die Konstruktion der Fixpunkte einer gleich- bzw. gegensinnig
konformen Kreisverwandtschaft, die etwa bei CooLIDGE [2] durchgefiihrt ist.

Ist n gerade, so sei M durch die drei Paare entsprechender Punkte Y, und Y*, festgelegt.
Wir betrachten die Mébiusinvolution J,, die Y, mit Y,* bzw. Y, mit Y} vertauscht?).

1) Eine Mobiusinvolution ist eine involutorische Kreisverwandtschaft; wihrend jede Kreisverwandt-
schaft zwei zueinander orthogonale Kreis- (oder Geraden-)biischel als Ganzes in sich transformiert, lasst
eine Mobiusinvolution jeden Kreis beider Biischel einzeln fest.
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M I, = I, enthilt dann Y, und Y,als vertauschbares Punktepaar und ist also selbst eine
Moébiusinvolution. Jede gleichsinnig konforme Kreisverwandtschaft 9 lisst sich demnach
als Produkt von zwei Mobiusinvolutionen darstellen, deren Doppelpunkte E,; und E, bzw.
F, und F, selbst eine Mobiusinvolution bestimmen. Die Doppelpunkte der letzten Involu-
tion werden sowohl durch 3, als auch durch 3, vertauscht, sind also die gesuchten Fix-
punkte von IR. Die Konstruktion der Fixpunkte von IR ist demnach zuriickgefithrt auf
die Ermittlung der Fixpunkte von drei Mobiusinvolutionen. Sind Q und Q* ein Paar
entsprechender Punkte einer Mobiusinvolution, so werden die Kreise des durch Q und Q*
bestimmten Biischels untereinarrder vertauscht und zwar ist diese Zuordnung eindeutig.
Betrachtet man in Q entsprechenden Kreisen als Tangenten angehdrende Geraden als
zugeordnet, so entsteht im Strahlbiischel mit dem Scheitel Q eine Involution, deren Fix-
strahlen reell sind und die Richtungen der invarianten Kreise angeben. Eine Wiederholung
dieser Konstruktion liefert abermals zwei invariante Kreise, wodurch jedes der beiden
invarianten Kreisbiischel vollkommen festgelegt ist; in den Grundpunkten dieser Biischel
liegen die Fixpunkte der Moébiusinvolution.

Die gestelite Aufgabe hat in diesem Fall stets zwei reelle Losungen, da von reziproken
Polaren (und in solchen liegen ja zwei Verbindungsgerade der Fixpunkte von &) genau eine
die Quadrik reell schneidet. Ist n dagegen ungerade, so ist & eine ungleichsinnige auto-
morphe Kollineation von @; wie im Fall reeller Erzeugenden verwendet man zweckmaéssig
die iterierte Transformation K2. Sie fiihrt bei stereographischer Projektion von @ auf eine
gleichsinnig konforme Kreisverwandtschaft 9t?, deren Fixpunkte wie oben gefunden
werden koénnen. In diesem Fall hat die Aufgabe zwei reelle oder konjugiert-komplexe

Lésungen.
Abschliessend sei noch auf die duale Aufgabe verwiesen, einer Quadrik @ ein xn-Flach
zu umschreiben, dessen Kanten a; (¢ = 1, 2, ... n) in » vorgegebenen Ebenen =, liegen.

Durch Anwendung der Polaritit auf @ geht diese Aufgabe in die oben behandelte iiber.
H. VoGLER, Wien
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Verallgemeinerung eines Euklidischen Verfahrens

Der Euklidische Beweis fiir die Unendlichkeit der Primzahlmenge beniitzt die Tatsache,
dass aufeinanderfolgende natiirliche Zahlen teilerfremd sind, das heisst, dass a + 1 lauter
Primteiler enthilt, die in a nicht vorkommen. Der Kern des Beweises ist dann, dass sich
leicht Zahlen a angeben lassen, die alle Primzahlen einer gegebenen Menge P enthalten.

Nimmt man fiir P die Menge PB,, der ersten » Primzahlen p,, p,, ..., p,, so enthidlt
also @ + 1 nur Primteiler ¢ P,; doch ist es natiirlich naiv, anzunehmen, a 4+ 1 miisse
selber Primzahl sein, womoglich gleich p,, _ ;.

Nun kann man aber das Verfahren elastischer machen und davon ausgehen, dass aus
(a, b) = 1 stets (a b, a 4 b) = 1 folgt (bei Euklid ist b = 1). Sorgt man dafiir, dass a b
alle Primzahlen aus B, enthilt, so bekommt man in den Primteilern von a + b # 1 Prim-
zahlen ¢ P, und es ist jetzt schon nicht mehr ganz so naiv, zu glauben, die Zahlen a, b
liessen sich so wihlen, dass zum Beispiel a — b = p,, , ist. Tatsdchlich gilt mindestens fiir
kleine # erheblich mehr.

Wir bezeichnen mit M(n) die grosste natiirliche Zahl M, fiir die folgende Aussage
richtig ist: Fiir alle natiirlichen m < M mit (m, p,---p,) = 1 gibt es natiirliche Zahlen
a, b so, dass m = a + b ist und a b genau die Primfaktoren p,, p,, ..., p, enthidlt. Dabei
soll M(n) = 0 bzw. ool) gesetzt werden, wenn die Aussage fiir m = 1 falsch, bzw. fiir alle
in Frage kommenden m > 0 richtig ist.

1) o0 > k fiir jede natiirliche Zahl %.
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Dann ist, wie man ohne Schwierigkeiten feststellt, M(1) = 10, M(2) = 102,
M(3) =z 250, fiir » =4 und 5 jedenfalls M(n) > p2?,., und fiir » = 6 und 7 sicher
M(n) > P, 2.
Von den vielen offenen Fragen hierzu seien nur die folgenden angedeutet:
1. Was ldsst sich iiber die Funktion M (») sagen, ist zum Beispiel stets M(x) > 1 oder
M(n) > p,,,1? Gibt es ein n mit M(n) = oo?
2. Asymptotisches Verhalten bei Verzicht auf die Gréssenbeschrankung von m ?

3. Anzahl der Darstellungen ? EricH TEUFFEL
2)1=296-5-13 — 38-7-11 17 =2-7-183—3-5-11
1=5-11-18—-2-3-7-17 19 =2%2.3-5-17—7-11-13

Bemerkungen zur Zahl e
1. Zuv Herleitung von e

Herr Prof. B. L. vAN DER WAERDEN hat in dieser Zeitschrift (Bd. XII, Nr. 1, Januar
1957), ausgehend von der Definition des natiirlichen Logarithmus als Fliacheninhalt

lna:'/ﬁ;_v,’ .
X
1

die Zehnerlogarithmen und ihre Rechenregeln hergeleitet. Die Zahl ¢ wurde dabei gewis-
sermassen unterwegs iiber die Definitionsgleichung In ¢ = 1 eingefiihrt. Der Nachweis, dass

e* = lim (1 + i)n,
n—> 00 n
ist dann sehr einfach (siehe dort die Formel (27) und folgende). Die letztgenannte Bezie-
hung wird jedoch von aussen herangetragen. Es wére noch natiirlicher, sie aus den vorher-
gehenden Uberlegungen heraus entwickeln zu kénnen.
Wir schlagen nun einen solchen Weg ein, der zugleich Gelegenheit gibt, das eingangs
erwdhnte Integral als Grenzwert zu fassen.

a a
Fiir welchen Wert ¢ > 1 ist f yadx = / E;— gleich Eins?
1 i

Zur Berechnung des Integrals zerlegen wir die Strecke von 1 bis zum beliebigen
x = x,, > 1 auf der x-Achse in m Intervalle mit den Trennstellen

1 1\2 1\m
xo—‘:l, xl:1+*,;;, x2=(1+—h—),...xm=(l+%—)

und den entsprechenden Ordinaten

1 1 1
Yo=1, Y1= - -~ , Yg=- --ym:'——"—i—m—
n

14 (1+i)
n n

n ist wie m eine beliebig vorgegebene natiirliche Zahl. Wir rechnen die inneren Trenn-
stellen jeweils beiden Intervallen zu.
Nun bilden wir die Obersumme mit den Werten y = 1/¥ am linken Intervallrand

b
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desgleichen die Untersumme mit den y-Werten am rechten Intervallrand

1\t
m—-1 m -1 (1+n—) 1

Eyi+1(xz‘+l_xi)22 Ry (1 +~n = 1)=
0

i+1
" (14 5)

-1
e 1 m

1
23& 1 n+1°

0 1+ =
n

Nun setzen wir m = n. Die Obersumme wird dann zu 1, die Untersumme zu n/(n + 1).

» moge iiber alle Grenzen wachsen. Dann strebt auch die Untersumme gegen 1. x,, dagegen
hat den Wert
. 1\»
lim (1 + »«)
n— 00 n

zur Grenze. Dies ist somit das gesuchte a.

2. Die obeve Schranke von e

Dass (1 + 1/#)", » > 0 und ganz, mit » monoton wichst und eine obere Schranke hat,
wird auf verschiedenen Wegen bewiesen. Derjenige iiber die Binomialformel mit Aus-
rechnen und Abschitzen der Glieder ist solange nicht gangbar, als diese Formel von den
Schiilern noch nicht beherrscht wird. Selbst dann aber, wenn man sich auf sie zu stiitzen
vermag, ist dieser Weg etwas umstdndlich.

Kiirzer und einfacher ist das Verfahren, wie es zum Beispiel in einem ilteren Goschen-
bandchen (Differentialrechnung, von Prof. F. JUNKER) geschildert wird:

Ist a > b > 0, » eine natiirliche Zahl, so gilt

antl — pntl = (@ — b) (a™ 4+ a1 b + a" b2 4 oo + b") < (@ — b) (n + 1) a”.

Setzt man a=1+ 1/n, b=1+ 1/(n + 1), so gewinnt man daraus die Monotonie-
Ungleichung

(1+7[) <( +ﬁvz+1)

Setzt man hingegen a = 1 + 1/2#n, b = 1, so gewinnt man eine Ungleichung fiir die
obere Schranke

1 2n
(1 + -—-) < 4.
2n

Soweit die zitierte Quelle.

Die letzte Beziehung ldsst sich aber auch verallgemeinern, indem wir a =1 4 1/k u,

b = 1 setzen; % sei eine ganze Zahl grosser als Eins.
Dann wird nach kurzer Rechnung

1 \kn k k
(1) <)
Ohne den Verlauf der Grosse rechts bei verinderlichen % iiberhaupt genauer verfolgen zu

miissen, gewinnt man rasch recht annehmbare Abschatzungen fiir ¢ nach oben.
Nimmt man zum Beispiel £ = 6, wird der Ausdruck rechts

(6)“_ 46656

11 11
6)\*_ 46656 .. . _ 41 l'fet(——) — 2,853...
5 15625 < 3’ et 110

Zinseszinstabellen mit den Zinsfiissen von beispielsweise 29, und 4%, entnimmt man
miihelos fiir
26 51

28 51
k=26 und k = 51 (_23_) — 1,048 — 2,772... und (3‘6’) — 1,028 — 2,745...

BERNHARD ROMER
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Zerlegung von Tetraedern in Orthogonaltetraeder

In «Ungeloéste Probleme Nr. 13» fithrt H. HADWIGER aus, dass fiir die Dimensionen
k > 2 ungeklirt sei, ob sich ein Simplex in lauter Orthogonalsimplexe zerlegen lasst. In
der Ebene lasst sich jedes Dreieck in zwei rechtwinklige Dreiecke zerlegen. Simplexe héhe-
rer Dimension kann man leicht in Orthogonalsimplexe zerlegen, wenn es einen Punkt des
Simplexes gibt, von dem aus man auf alle eindimensionalen Kanten, mit denen der Punkt
nicht inzidiert, das Lot fillen kann, so dass die Fusspunkte den Kanten angehdren. Aber
schon fiir £ = 3 kann man leicht Tetraeder angeben, bei denen es keinen solchen Punkt
gibt, z. B. das Tetraeder mit den Ecken 4 = (0, 0,0), B = (1,0,1), C = (3,1, 0), D = (4,
1, 0) in einem Kartesischen Koordinatensystem. Alle Punkte des Raumes, von denen aus
man das Lot auf 4B bzw. CD fillen kann, so dass der Fusspunkt auf der betreffenden
Kante liegt, werden durch die Ungleichungen 0 < x + z < 2 bzw. 3 < x = 4 charakteri-
siert. Der Durchschnitt dieser beiden Punktmengen erfiillt die Ungleichung z < — 1, liegt
also ganz ausserhalb des Tetraeders A BCD.

Im allgemeinen Fall ist daher die oben angedeutete Simplexzerlegung nicht anwendbar,
und es wird vermutlich sehr schwierig sein, eine allgemeine Zerlegung in Orthogonalsim-
plexe anzugeben, wenn iiberhaupt eine existiert. Im Fall £ = 3 habe ich jedoch ein Ver-
fahren gefunden, Tetraeder so in Orthogonaltetraeder zu zerlegen, dass deren Anzahl hoch-
stens 12 betrigt.

Zuvor moéchte ich einige abkiirzende Redeweisen einfithren. Wenn man das Lot von
einem festen Punkt auf eine Kante oder Seite eines Polyeders fillen kann, so dass der Fuss-
punkt im Innern der Kante oder Seite liegt, sage ich: Das Lot ldsst sich i» die Kante oder
Seite fidllen. Wenn auch die Randpunkte noch zugelassen sind, sage ich: Das Lot ldsst sich
auf die Kante oder Seite fillen. Ferner bedeutet N die kleinstmoglichste Zahl von Ortho-
gonaltetraedern, in die sich das jeweils betrachtete Tetraeder zerlegen lisst.

Ich untersuche nun zunichst eine besondere Tetraederart T'1, bei der die Ecken so be-
nannt werden kénnen, dass die Kante CD auf der Seite A BC senkrecht steht. Die Ecken
A und B benenne ich so, dass der Winkel BAC spitz ist. 71 unterteile ich weiter:

T1a:Der Winkel A BCist ein rechter. Dann ist A BCDein Orthogonaltetraeder und N = 1.

T1b: Der Winkel A BC ist spitz. Dann fille ich von C in 4 B das Lot mit dem Fusspunkt
E, und ABCD zerfillt in die beiden Orthogonaltetraeder AECD und BECD. N = 2.

T1c: Der Winkel 4 BC ist stumpf. Dann félle ich von B in 4C das Lot mit dem Fuss-
punkt F, und da 4CD ein rechtwinkliges Dreieck ist, kann man von F in die Hypotenuse
AD das Lot mit dem Fusspunkt G fillen. 4 BCD zerfillt nun in die drei Orthogonaltetra-
eder BFCD, BFGD und BFGA, und man hat N = 3.

Unter den iibrigen Tetraedern zeichne ich die Art 72 aus, bei der man von einer Ecke,
genannt D, das Lot auf die Seite 4 BC fdllen kann. T2 unterteile ich weiter:

T2a: Der Fusspunkt E dieses Lotes fillt in eine Kante, etwa in AB. Dann zerfillt
A BCD in die beiden Tetraeder AECD und BECD der Art T'1, und zwar ist héchstens eins
dieser beiden Tetraeder von der Art T'1l¢, da man von E auf AC oder BC das Lot fillen
kann. Daher ist hier N < 5.

T2b: Der Fusspunkt E fillt in die Seite 4 BC. Von E kann man auf h6chstens eine Seite
von A BC nicht das Lot fillen; daher zerfillt A BCD in die drei Tetraeder ABED, ACED
und BCED der Art T1, von denen hdchstens eins von der Art T1c ist. Also ist N < 7.

Um nun iiberhaupt zu zeigen, dass sich jedes Tetraeder in Orthogonaltetraeder zerlegen
lasst, kann man vom Inkugelzentrum Z ausgehend (von dem aus sich die Lote in alle vier
Seiten des Tetraeders stets fidllen lassen) A BCD in die vier Tetraeder ZABC, ZABD,
ZACD und ZBCD der Art T2b zerlegen und hat nun N < 28.

Um eine allgemeine Zerlegung mit N < 12 anzugeben, benétige ich noch einige Hilfs-
sidtze. Soweit sie unmittelbar einleuchten, verzichte ich auf den Beweis. Eine Kante heisse
spitz oder stumpf, wenn der zugehorige Flichenwinkel spitz oder stumpf ist. Unter den
Kanten einer Seite verstehe ich die der Seite anliegenden Kanten.

Hilfssatz 1: Von den drei Kanten einer Tetraederseite ist mindestens eine spitz.

Hilfssatz 2 : Wenn in einer Ecke eines Tetraeders drei nicht spitze Kanten zusammen-
treffen, sind die iibrigen drei Kanten spitz.
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Hilfssatz 3: Ein Tetraeder gehort genau dann zu 71 oder T2, wenn es eine Seite mit
drei nicht stumpfen Kanten besitzt.

Hilfssatz 4: Wenn in einer Tetraederecke eine spitze und zwei stumpfe Kanten zusam-
mentreffen, sind die den stumpfen Kanten gegeniiberliegenden ebenen Winkel ebenfalls
stumpf.

Beweis (mit Hilfe des Winkelkosinussatzes):

Es sei «, f stumpf, y spitz, also cos « < 0, cos f < 0, cos ¥ > 0. Daraus folgt

COS o + €OS f§ cos y

; — <Z 0
sin § sin y

COSs a* =

)

d.h. a ist stumpf.

Hilfssatz 5: Ein Tetraeder kann keine vier stumpfen Kanten haben.

Beweis: Hitte ein Tetraeder vier stumpfe Kanten, so konnten wegen Hilfssatz 1 und 2
nicht drei von ihnen zu derselben Seite oder Ecke gehoren. Es wiirden also in jeder Ecke
zwei stumpfe und eine spitze Kante zusammentreffen. Nach Hilfssatz 4 wiirden daher in
jeder Ecke mindestens zwei stumpfe ebene Winkel zusammentreffen. Da das Tetraeder
aber hochstens vier stumpfe ebene Winkel hat, kann das nicht sein.

Bei den Tetraedern, die nicht zu T'1 oder T2 gehoren, hat jede Seite wegen Hilfssatz 3
mindestens eine stumpfe Kante. Wegen Hilfssatz 5 sind also Tetraederarten mit zwei und
drei stumpfen Kanten zu unterscheiden, die ich 73 und 74 nenne.

T3: Die beiden stumpfen Kanten liegen einander gegeniiber, seien also mit ACund BD
bezeichnet. Den Punkt E auf BD wihle ich so, dass die beiden Ebenen durch 4 BC und
AEC aufeinander senkrecht stehen. Die senkrechte Projektion von BD auf die Ebene
durch A BC schneidet AC in einem Punkte F, weil die Kanten 4B und BC beide nicht
stumpf sind, und F ist der Fusspunkt des Lotes von E auf AC. Das Tetraeder 4 BCE ist
also von der Art T'2a, und das Tetraeder AECD ist von der Art T2b, weil die Kanten seiner
Seite ACD alle nicht stumpf sind. Daher gilt fur 73: N < 12.

T4: Die drei stumpfen Kanten gehoren wegen Hilfssatz 1 bis 3 nicht zu derselben Ecke
oder Seite, man kann sie also mit AC, BC und BD bezeichnen. E wird wie bei T3 bestimmt.
Da die Kanten BC und BD stumpf sind, die Kante 4 B dagegen nach Hilfssatz 2 und 3
spitz sein muss, ist der ebene Winkel 4 BC nach Hilfssatz 4 stumpf, man kann also das
Lot von B in AC fillen. Daher gehort das Tetraeder A BCE wiederum zu T2a und das
Tetraeder AECD wie oben zu T2b, und man hat auch hier N £ 12,

Damit sind alle moglichen Tetraederarten zerlegt mit N < 12. Ich vermute, dass es

Tetraeder gibt, die sich nicht in weniger als 12 Orthogonaltetraeder zerlegen lassen.
H.-Cur. LENHARD (Miinster, Westf.)

Einfache Herleitung des verallgemeinerten Determinanten-
Multiplikationstheorems
(Satz von BINET-CAUCHY) bei rechteckigen Matrizen nebst Erweiterung

Herrn OskAR PERRON zu seinem 80. Geburtstag am 7. Mai 1960 in Verehrung gewidmet
Bekanntlich ist mit unbestimmten Buchstabengréssen

‘abc) xyz)’ _ax+by+cz ak+byn+cl _ ab xy Loac xzly bel'yz
|(aﬂy(517€ | “jax+ By +yve af+ Byt vyl af (En 0 oay; EC T By . nl

der einfachste Fall des sogenannten verallgemeinerten Determinanten-Multiplikations-
theorems mit nicht identisch verschwindender Determinante. Der einfachste Beweis dieses
Theorems ist folgender: Sind 4 und B zwei # - n-Matrizen mit unbestimmten Elemen-
ten, so haben 4 B und BA bekanntlich das gleiche charakteristische Polynom, weil
|AB —AE|=|BA — AE| nach dem gewdhnlichen Determinanten-Multiplikations-
theorem aus B (A B — AE) = (B4 — AE) B folgt (E = Einheitsmatrix). Bestehen in
A genau die letzten m Zeilen und in B genau die letzten m Spalten aus lauter Nullen, so
enthilt 4 B rechts und unten je m Reihen Nullen und | 4 B — 1 E | damit den Faktor A™.
Der zu beweisende Satz von BINET-CAUCHY besagt nun nichts weiter als die Gleichheit
der Koeffizienten der niedrigsten Potenz von A, nimlich dieses A" in [A B — 1 E | und
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| BA — A E|. Das Theorem ist also richtig, was zu beweisen war. Die Gleichheit der
iibrigen je 2 Koeffizienten von 29, ..., A~ (simtlich = 0) und von Am+1 . ., A"~1 liefert
n — 1 weitere Theoreme. Man vergleiche mit dem obigen die Beweise bei

BALTZER, Theorie und Anwendung dev Deteyminanten, 4. Aufl. 1875, S. 46—49.

CEesARo, Elementaves Lehvbuch dev Algebraischen Analysis und der Infinitesimalvechnung,

1904, S. 20-22.

DicksoN-BobewiG, Héhere Algebra, 1929, S. 45-46.

DoLp, Die Determinanten, 5. Aufl. 1899, S. 65-68.

DORRIE, Detevminanten, 1940, S. 45-50.

GANTMACHER, Matrizenvechnung, 1, 1958, S. 8-10.

GROBNER, Matrizenvechnung, 1956, S. 101-104.

Hasse-KLOBE, Aufgabensammiung zuv Hoheven Algebrva, 2. Aufl. 1952, S. 56.

KELLER, Analytische Geometvie und Lineare Algebra, 1957, S. 91-93.

KowaLewskl, Einfithrung in die Deteyminantentheorie, 4. Aufl. 1954, S. 70-77.

LENSE, Vorlesungen iibey héhere Mathematik, 1948, S. 176.

v. MANGoLDT-KNOPP, Einfithvung in die Hoheve Mathematik, 1, 10. Aufl. 1955, S. 98-100.
NEiss, Determinanten und Matvizen, 5. Aufl. 1959, S. 35.

E. PascaL, Die Determinanten, 1900, S. 26-30.

PERRON, Algebra, 1, 3. Aufl. 1951, S. 113-115.

SMIRNOW, Lehvgang dev Hoheven Mathematik, 111/1, 1954, S. 22-24.

SPERNER, Einfithrung in die Analytische Geometrvie und Algebra, 2. Aufl. 1955, S. 191-195.
WEBER, Lehrbuch dev Algebra, 1, 2. Aufl.1898, S. 112-113.

Ausser den beiden Bezeichnungen in der Uberschrift gibt es noch weitere; so spricht
der Jubilar vom symbolischen Produkt zweier Matrizen und versteht darunter die Deter-
minante des Matrizenprodukts. Auch den praktischen Namen Langproduktsatz findet
man, im Gegensatz zu dem einfacheren Kurzproduktsatz, zum Beispiel

an\ [x&\ | faoO\ /x &0\’
() () |- |G
cy) \z¢ cy0/\zL0

Das gewoéhnliche Determinanten-Multiplikationstheorem sowie der Kurzproduktsatz
koénnen als Spezialfille des Langproduktsatzes aufgefasst werden, im obigen Beispiel
des Langproduktsatzes etwa ¢=y =0 und ¢=y=>b=f=0. In der Tat folgert
GANTMACHER das gewohnliche Determinanten-Multiplikationstheorem aus dem Satz von
BINET-CAUCHY. Andererseits definiert er die (quadratische) Diagonalmatrix nicht erst im
§ Quadratische Matrizen, sondern bereits vorher, und spricht schon ab S. 1 von Deter-
minanten, ohne sie zu definieren, weil er Determinantenrechnung voraussetzt.

I. PaascHE, Miinchen

=0-0=0.

Aufgaben

Aufgabe 356. Man konstruiere ein (im allgemeinen windschiefes) Viereck, das einer
gegebenen Kugel einbeschrieben ist, und dessen Seiten der Reihe nach durch vier gegebene
Punkte 4,, 4,, 4,, A, (inallgemeiner Lage) hindurchgehen. C. BINDSCHEDLER, Kiisnacht

Lisung des Aufgabenstellers: Wiahlt man einen variabeln Punkt P auf der Kugel K und
konstruiert den Sehnenzug PA, P, A4, P,A,P;A,P,, so stellt die eineindeutige Abbildung
der Kugel auf sich selbst P - P, eine Kreisverwandtschaft dar. Denn wenn P einen
Kreis von K beschreibt, so gilt dasselbe von P,, P,, P;, P,. (Je zwei aufeinanderfolgende
von diesen fiinf Kreisen sind Wechselschnitte eines Kreiskegels mit einer Spitze 4,).
Projiziert man die Kugel stereographisch auf eine Tangentialebene, so wird die Abbildung
P’ > P; eine Inversion. Die Inversionspotenz ist negativ oder positiv, je nachdem A4,
innerhalb oder ausserhalb der Kugel liegt. In jedem Fall ist A} (das heisst die Projektion
von A4,) Inversionszentrum. Die Abbildung P’ - Pj ist als Produkt von vier Inversionen,
da sie den Winkelsinn erhilt, als lineare Funktion darstellbar, wenn man die Projektions-
ebene als GaulBlsche Zahlenebene verwendet. Es sei etwa

z—v
2 =2

z2—pu
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