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nale dar, die wie das Volumen V(A) translationsinvariant und einfach-additiv smd
und also Losungen der beiden Funktionalbedmgungen

v(P)=<p(Q) [P Q]> <p(P + Q) v(P) + <p(Q)

smd, wobei «~ » die Translationsgleichheit und «+» die Zusammensetzung im Sinne
der Elementargeometrie bezeichnen

So ergibt sich jetzt leicht, äass fur die translative Zerlegungsgleichheit zweier
Polyeder A und B die weiteren Bedingungen

F(A, u) F(B, u) b)

L(A, u, v) — L(B, u, v) c)

notwendig sind Die formal unendlich vielen Bedingungen gemäss der kontinuierlich
vielen wahlbaren Vektoren u und v reduzieren sich in jedem individuellen Fall auf
endlich viele, da diese, wie aus den oben gegebenen Vermerkungen hervorgeht,
«fast immer» auf triviale Weise erfüllt sind

Das hier vorgetragene speziellere ungelöste Problem lautet

Sind die fur die translative Zerlegungsgleichheit zweier Polyeder A und B notwendigen
Bedingungen a), b) und c) auch hinreichend, oder existieren noch weitere unabhängige
Bedingungen H Hadwiger

Kleine Mitteilungen
Ein räumliches Analogon zur Aufgabe von Ottajano

Die im Jahre 1788 von A Giordano aus Ottajano gestellte Aufgabe [1] besteht dann,
em n-Seit zu konstruieren, das einem gegebenen Kreis em- und gleichzeitig einem gegebenen
n-Eck umbeschrieben ist Ersetzt man den Kreis durch einen beliebigen Kegelschnitt, so
entsteht wegen des projektiven Charakters der Aufgabe keine wesentliche Verallgemeinerung

Hier soll nun die Übertragung des Problems auf den Raum vorgenommen werden
Es ist em (i allg windschiefes) n-Seit gesucht, das einer gegebenen einteiligen Quadrik 0 em-
und gleichzeitig einem gegebenen (i allg nicht ebenen) n-Eck umbeschrieben ist Von einem
Sonderfall dieses Schhessungsproblems handelt die in den «Elementen der Mathematik»
erschienene Aufgabe 356 von C Bindschedler Dort wird verlangt, einer gegebenen
Kugel em 1 allg windschiefes Vierseit einzuschreiben, dessen Seiten durch vier gegebene
Punkte gehen

Die gegebene Quadrik heisse 0, die Eckpunkte des gegebenen n-Ecks werden mit At,
die des gesuchten n-Seits mit Pt bezeichnet, wobei Pt Pt+1 mit At inzidieren und die
Festsetzungen An+1 Ax bzw _Pn+1 Px gelten sollen Zur Losung der Aufgabe projizieren
wir der Reihe nach die Quadrik 0 aus den gegebenen Punkten Ax, A2, An auf sich
selbst Einem behebigen Ausgangspunkt Xx der Quadrik 0 werden durch diese n Zentral-
projektionen n Bildpunkte X2, _Y3, Xn+1 zugeordnet Diese Punkte Xt liegen so auf 0,
dass der Verbindungsstrahl xx Xt Xt + X durch das Zentrum der t-ten Zentralprojektion
At geht Die gestellte Aufgabe besteht nun dann, jene Punkte Xt der Quadrik 0 zu
suchen, fur die Xx Xn + l gilt Um diese «geschlossenen Sehstrahlpolygone» xt
(i 1, 2, n) zu finden, haben wir unser Augenmerk auf die Punktverwandtschaft
Xx ->ATW + 1 zu richten Die automorphe Zentralkollmeation %t der Quadrik 0 mit dem
Zentrum in At induziert auf 0 eine Punktverwandtschaft £., die _Y. mit Xi + 1 vertauscht,
die Zusammensetzung aller %t ist eine allgemeine automorphe Kollmeation 51 von 0, die
auf 0 den Übergang Xx -> Xn+X bewerkstelligt 51 induziert auf 0 eine Verwandtschaft £,
diese vertauscht jeweils die Erzeugenden und die Kegelschnitte von 0 unter sich, ist also
eine «Kegelschnittverwandtschaft» auf 0 Ferner gilt, dass m entsprechenden Punkten
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zugeordnete Paare von Fortschreitungsnchtungen mit den Erzeugenden ein gegenüber
£ invariantes Doppelverhaltnis bilden Eine automorphe Kollmeation von 0 wird als
«gleich-» oder «gegensinnig» bezeichnet, je nachdem die beiden Erzeugendenscharen als
Ganzes festbleiben oder vertauscht werden Da eine automorphe Zentralkollmeation die
beiden Erzeugendenscharen vertauscht, ist 51 «gleich-» bzw «gegensinnig», je nachdem n
gerade oder ungerade ist Unsere Aufgabe ist demnach zurückgeführt auf die Ermittlung
der Fixpunkte der Verwandtschaft £, die durch eine automorphe Kollmeation von 0 auf 0
induziert wird Zur konstruktiven Behandlung werden je nach der Realität der
Erzeugenden von 0 und je nachdem n gerade oder ungerade ist, verschiedene Methoden zu
verwenden sein Auch beschranken wir uns im folgenden darauf, dass die auf 0 betrachtete
Verwandtschaft eine «allgemeine Kollmeation» mit vier getrennten Fixpunkten ist
Inwieweit besondere Kolhneationen (Zentralkolhneationen, Achsenkollmeationen, usf
auftreten können, bedarf einer besonderen Untersuchung, ist aber fur den prinzipiellen
Losungsweg unwichtig

Fall 1 0 besitzt reelle Erzeugenden Ist n gerade, so ruft £ in jeder Erzeugendenschar
eine Projektivität hervor, deren Fixelemente Kanten des Fixtetraeders von 51 sind Zur
Konstruktion der Fixelemente von Erzeugendenprojektivitaten ist es zweckmassig, hiezu
die auf einer Erzeugenden der anderen Schar durch die Schnittpunkte induzierte Projektivität

heranzuziehen Das Fixtetraeder von R enthalt somit em windschiefes Erzeugen-
denvierseit von 0, da sich die Tangentialebenen an 0 in zwei gegenüberliegenden Punkten
des Vierseits in der Verbmdungsgeraden der beiden übrigen schneiden, liegen die von den
Erzeugenden von 0 verschiedenen Kanten des £ ixtetraeders von 5^ in reziproken Polaren
von 0 Die Aufgabe hat in diesem Fall vier reelle Losungen oder keine reelle, da reziproke
Polare einer Quadrik mit reellen Erzeugenden entweder beide reell oder beide komplex
schneiden

Ist dagegen n ungerade, so vertauscht die Iteration 5l2 von R die Erzeugenden jeder
Schar in projektiver Weise untereinander Die Fixelemente dieser Erzeugendenprojektivitaten

elt e2 bzw fx, f2 werden von den m R vertauschbaren Geradenpaaren ev fx und e2, f2
gebildet, wobei die Schnittpunkte Dt etft (i 1, 2) Fixpunkte von R sind Die noch
fehlenden Fixpunkte liegen in der reziproken Polaren cf von d Dx D2. Vx exf2 und
V2 e2 fx liegen auf d und smd ein in R vertauschbares Punktepaar, weshalb die restlichen
Fixpunkte D3, D4 bzgl Vx, V2 harmonisch liegen Ist also R eine gegensinnige
automorphe Kollmeation von 0, so werden die Fixpunkte von R durch die Iteration 5l2
entweder vertauscht oder festgehalten, genauer gilt, dass R und 5l2 zwei Fixpunkte und ihre
Fixtetraeder zwei in reziproken Polaren von 0 liegende Kanten gemeinsam haben
Unsere Aufgabe hat in diesem Fall entweder zwei reelle Losungen oder keine reelle

Fall 2 0 besitzt keine reellen Erzeugenden In diesem Fall ist es schwierig, die
Erzeugendenprojektivitaten konstruktiv auszuwerten, da die auf einer Erzeugenden der anderen
Schar erzeugte Projektivität nur durch komplexe Elementenpaare gegeben ist Die
Gruppe der Projektivitaten auf der Geraden als Inbegriff ihrer komplexen Punkte ist
isomorph zur Gruppe der Mobiusschen Kreisverwandtschaften in der Ebene Diese
Zuordnung kann im vorliegenden Fall folgendermassen konkretisiert werden Wir betrachten
eine Zentralprojektion von 0 aus einem ihrer Nabelpunkte auf eine zur Tangentialebene
in diesem Punkt parallele Bildebene Eine solche «stereographische Projektion» von <_>

fuhrt die beiden Erzeugendenscharen in die isotropen Geraden der Bildebene uber, den
Kegelschnitten von 0 entsprechen die Kreise der Bildebene Die Verwandtschaft £ geht
hiebei in eine Kreisverwandtschaft 501 in der Bildebene uber, die je nachdem n gerade
oder ungerade ist, gleich- oder gegensinnig konform ist Die Losung des Problems ist
somit zurückgeführt auf die Konstruktion der Fixpunkte einer gleich- bzw gegensinnig
konformen Kreisverwandtschaft, die etwa bei Coolidge [2] durchgeführt ist

1st n gerade, so sei 2R durch die drei Paare entsprechender Punkte Yt und Y*t festgelegt
Wir betrachten die Mobiusmvolution 3lf die Yx mit Y2* bzw Y2 mit Yf vertauscht1)

*) Eine Mobiusmvolution ist eine mvolutonsche Kreisverwandtschaft, wahrend jede Kreisverwandtschaft

zwei zueinander orthogonale Kreis (oder Geraden-)buschel als Ganzes in sich transformiert, lasst
eine Mobmsurv olution jeden Kreis beider Büschel einzeln fest.
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301 3r — 32 enthalt dann Yx und Y2 als vertauschbares Punktepaar und ist also selbst eine
Mobiusmvolution Jede gleichsinnig konforme Kreisverwandtschaft $ft lasst sich demnach
als Produkt von zwei Mobiusinvolutionen darstellen, deren Doppelpunkte Ex und E2 bzw
Fx und F3 selbst eine Mobiusmvolution bestimmen Die Doppelpunkte der letzten Involution

werden sowohl durch 3L als auch durch 32 vertauscht, smd also die gesuchten
Fixpunkte von SCR Die Konstruktion der Fixpunkte von $R ist demnach zurückgeführt auf
die Ermittlung der Fixpunkte von drei Mobiusinvolutionen Smd Q und Q* ein Paar
entsprechender Punkte einer Mobiusmvolution, so werden die Kreise des durch Q und Q*
bestimmten Buscheis untereinander vertauscht und zwar ist diese Zuordnung eindeutig
Betrachtet man in Q entsprechenden Kreisen als langenten angehörende Geraden als
zugeordnet so entsteht im Strahlbuschel mit dem Scheitel Q eine Involution, deren
Fixstrahlen reell smd und die Richtungen der invarianten Kreise angeben Eine Wiederholung
dieser Konstruktion liefert abermals zwei invariante Kreise, wodurch jedes der beiden
invarianten Kreisbuschel vollkommen festgelegt ist m den Grundpunkten dieser Büschel
liegen die Fixpunkte der Mobiusmvolution

Die gestellte Aufgabe hat m diesem Fall stets zwei reelle Losungen da von reziproken
Polaren (und in solchen liegen ja zwei Verbindungsgerade der Fixpunkte von 51) genau eine
die Quadrik reell schneidet Ist n dagegen ungerade so ist 51 eine ungleichsmnige
automorphe Kollineation von 0, wie im Fall reeller Erzeugenden verwendet man zweckmassig
die itenerte Transformation R2 Sie fuhrt bei stereographischer Projektion von 0 auf eine
gleichsinnig konforme Kreisverwandtschaft SJl2, deren Fixpunkte wie oben gefunden
werden können In diesem Fall hat die Aufgabe zwei reelle oder konjugiert-komplexe
Losungen

Abschliessend sei noch auf die duale Aufgabe verwiesen, einer Quadrik 0 ein w-Flach
zu umschreiben, dessen Kanten at (i 1, 2, n) in n vorgegebenen Ebenen n% liegen
Durch Anwendung der Polarität auf 0 geht diese Aufgabe in die oben behandelte uber

H VoGLrR, Wien

LITLRATURVERZEICHNIS

[1] A Giordano Mem mat-fis Soc It d sc 4 (1788) vgl Enz d Math Wiss III
AB 9, S 1026

[2] J L Coolidge, A TreaHse on the Circle and the Sphere Oxford university pr 1916,
S 323 f

Verallgemeinerung eines Euklidischen Verfahrens

Der Euklidische Beweis fur die Unendlichkeit der Primzahlmenge benutzt die Tatsache,
dass aufeinanderfolgende natürliche Zahlen teilerfremd sind, das heisst, dass a+l lauter
Primteiler enthalt, die in a nicht vorkommen Der Kern des Beweises ist dann, dass sich
leicht Zahlen a angeben lassen, die alle Primzahlen einer gegebenen Menge ^ enthalten

Nimmt man fur ^5 die Menge tyn der ersten n Primzahlen pv p2, pn, so enthalt
also a+l nur Primteiler £ tyn, doch ist es natürlich naiv, anzunehmen, a+l müsse
selber Primzahl sein, womöglich gleich pn + x

Nun kann man aber das Verfahren elastischer machen und davon ausgehen, dass aus
(a, b) 1 stets (a b, a ± b) 1 folgt (bei Euklid ist 6—1) Sorgt man dafür, dass a b

alle Primzahlen aus ?ßn enthalt, so bekommt man m den Pnmteilern von a ± b # 1

Primzahlen £ Spn, und es ist jetzt schon nicht mehr ganz so naiv, zu glauben, die Zahlen a, b

hessen sich so wählen, dass zum Beispiel a — b pn + x ist Tatsachlich gilt mindestens fur
kleine n erheblich mehr

Wir bezeichnen mit M(n) die grosste natürliche Zahl M, fur die folgende Aussage
richtig ist Fur alle naturhchen m ^ M mit (m, px pn) 1 gibt es natürliche Zahlen
a, b so, dass m a ± b ist und a b genau die Primfaktoren pv p2, pn enthalt Dabei
soll M(n) 0 bzw oo1) gesetzt werden, wenn die Aussage fur m 1 falsch, bzw fur alle
in Frage kommenden m > 0 richtig ist

x) oo > k fur jede naturliche Zahl k
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Dann ist, wie man ohne Schwierigkeiten feststellt, M(l) 10, M(2) 102,
M(3) ^ 250, fur n 4 und 5 jedenfalls M(n) > p2n+x und fur n 6 und 7 sicher
M(») > £n+i2)

Von den vielen offenen Fragen hierzu seien nur die folgenden angedeutet
1 Was lasst sich uber die Funktion M(n) sagen, ist zum Beispiel stets M(n) > 1 oder

M(n) > pn + x^ Gibt es em n mit M(n) oo ">

2 Asymptotisches Verhalten bei Verzicht auf die Grossenbeschrankung von m ">

3 Anzahl der Darstellungen "> Erich Teuffel

2)1=26 5 13-3» 7 11 17-2 7 13 — 3 5 11
1 5 11 13 - 2 3 7 17 19 - 22 3 5 17 - 7 11 13

Bemerkungen zur Zahl e

7 Zur Herleitung von e

Herr Prof B L van der Waerden hat in dieser Zeitschrift (Bd XII, Nr 1, Januar
1957), ausgehend von der Definition des natürlichen Logarithmus als Flächeninhalt

a
i% dx

ln i

/ ax
a / —J *

die Zehnerlogarithmen und ihre Rechenregeln hergeleitet Die Zahl e wurde dabei gewis-
sermassen unterwegs uber die Defmitionsgleichung ln e 1 eingeführt Der Nachweis, dass

ex iim (¦?-)"¦
ist dann sehr einfach (siehe dort die Formel (27) und folgende) Die letztgenannte Beziehung

wird jedoch von aussen herangetragen Es wäre noch natürlicher, sie aus den
vorhergehenden Überlegungen heraus entwickeln zu können

Wir schlagen nun einen solchen Weg em, der zugleich Gelegenheit gibt, das eingangs
erwähnte Integral als Grenzwert zu fassen

a a

Für welchen Wert a > 1 ist I y d x gleich Ems

l i
Zur Berechnung des Integrals zerlegen wir die Strecke von 1 bis zum beliebigen

x xm > 1 auf der #-Achse m m Intervalle mit den Trennstellen

1 / 1\2 / 1\m
„. 1. *. l+¥. ^=(1+^r). ^=(1+^)

und den entsprechenden Ordinaten

1

^» 1- ^= i » y*--7—r^2 * y~ ¦

/ 1 y1 + n

/ 1\2 m /, 1\»(1+n) (1 + n)

n ist wie m eine beliebig vorgegebene natürliche Zahl Wir rechnen die inneren Trennstellen

jeweils beiden Intervallen zu
Nun bilden wir die Obersumme mit den Werten y 1/x am linken Intervallrand

m-1 m-lllH 1 m-1..
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desgleichen die Untersumme mit den y-Werten am rechten Intervallrand

w 1 »-1 H - 1

ml- 1

Y"»
1 1

__
m

2i * 1 r m+ 1

Nun setzen wir m n Die Obersumme wird dann zu 1, die Untersumme zu n/(n + 1).
n möge uber alle Grenzen wachsen Dann strebt auch die Untersumme gegen 1 \m dagegen
hat den Wert

hm (l +
* V

zur Grenze Dies ist somit das gesuchte a

2 Die obere Schranke von e

Dass (1 + l/n)n, n > 0 und ganz, mit n monoton wachst und eine obere Schranke hat,
wird auf verschiedenen Wegen bewiesen Derjenige uber die Bmomialformel mit
Ausrechnen und Abschätzen der Glieder ist solange nicht gangbar, als diese Formel von den
Schulern noch nicht beherrscht wird Selbst dann aber, wenn man sich auf sie zu stutzen
vermag, ist dieser Weg etwas umständlich

Kurzer und einfacher ist das Verfahren, wie es zum Beispiel in einem alteren Goschen-
bandchen (Differentialrechnung, von Prof F Junker) geschildert wird

Ist a > b > 0, n eine natürliche Zahl, so gilt
an+l _ bn+l __. (a _ b) (an + fln-l D + an-2, b2 + + fcn) < (a _ ty (n + 1) an

Setzt man a 1 + 1/n, 6=1 + l/(n + 1), so gewinnt man daraus die Monotonie-
Unsrleichung6 6 / l\n 1 1 \n + l

i1+n) <(1+^t)
Setzt man hingegen a 1 + 1/2 n, b — 1, so gewinnt man eine Ungleichung fur die

obere Schranke
v 2n

< 4/. 1 \2(1+2t)
Soweit die zitierte Quelle

Die letzte Beziehung lasst sich aber auch verallgemeinern, indem wir a 1 + 1/k n,
b 1 setzen, k sei eine ganze Zahl grosser als Ems

Dann wird nach kurzer Rechnung

/ 1 \kn k \k
(i + ^) <U_i)

Ohne den Verlauf der Grosse rechts bei veränderlichen k überhaupt genauer verfolgen zu
müssen, gewinnt man rasch recht annehmbare Abschatzungen fur e nach oben

Nimmt man zum Beispiel k 6, wird der Ausdruck rechts

/6\« 46656 „ 1f - /ll\u ^Qca(T) -15625- < 3 ' * U hefert (lö) 2'853

Zinseszinstabellen mit den Zmsfussen von beispielsweise 2% und 4% entnimmt man
muhelos fur

j^\ .__ i>0426 2,772 und \-^J 1,02" 2,745

Bernhard Romer
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Zerlegung von Tetraedern in Orthogonaltetraeder
In «Ungelöste Probleme Nr 13» fuhrt H Hadwiger aus, dass fur die Dimensionen

k > 2 ungeklärt sei, ob sich em Simplex m lauter Orthogonalsimplexe zerlegen lasst In
der Ebene lasst sich jedes Dreieck m zwei rechtwinklige Dreiecke zerlegen Simplexe höherer

Dimension kann man leicht m Orthogonalsimplexe zerlegen, wenn es einen Punkt des
Simplexes gibt, von dem aus man auf alle eindimensionalen Kanten, mit denen der Punkt
nicht inzidiert, das Lot fallen kann, so dass die Fusspunkte den Kanten angehören Aber
schon fur k 3 kann man leicht Tetraeder angeben, bei denen es keinen solchen Punkt
gibt, z B das Tetraeder mit den Ecken A (0, 0, 0), B (1, 0, 1), C (3, 1, 0), D (4,
1, 0) in einem Kartesischen Koordinatensystem Alle Punkte des Raumes, von denen aus
man das Lot auf AB bzw CD fallen kann, so dass der Fusspunkt auf der betreffenden
Kante hegt, werden durch die Ungleichungen 0 ^ x + z <Z 2 bzw 3 ^ x ~ 4 charakterisiert

Der Durchschnitt dieser beiden Punktmengen erfüllt die Ungleichung z < — 1 hegt
also ganz ausserhalb des Tetraeders ABCD

Im allgemeinen Fall ist daher die oben angedeutete Simplexzerlegung nicht anwendbar,
und es wird vermutlich sehr schwierig sein, eine allgemeine Zerlegung in Orthogonalsimplexe

anzugeben, wenn überhaupt eine existiert Im Fall k 3 habe ich jedoch em Ver
fahren gefunden, Tetraeder so in Orthogonaltetraeder zu zerlegen dass deren Anzahl höchstens

12 betragt
Zuvor mochte ich einige abkürzende Redeweisen einfuhren Wenn man das Lot von

einem festen Punkt auf eine Kante oder Seite eines Polyeders fallen kann, so dass der
Fusspunkt im Innern der Kante oder Seite hegt, sage ich Das Lot lasst sich m die Kante odei
Seite fallen Wenn auch die Randpunkte noch zugelassen smd, sage ich Das Lot lasst sich
auf die Kante oder Seite fallen Ferner bedeutet N die klemstmoghchste Zahl von
Orthogonaltetraedern, in die sich das jeweils betrachtete Tetraeder zerlegen lasst

Ich untersuche nun zunächst eine besondere Tetraederart Tl, bei der die Ecken so
benannt werden können, dass die Kante CD auf der Seite A BC senkrecht steht Die Ecken
A und B benenne ich so, dass der Winkel BA C spitz ist Tl unterteile ich weiter

Tla DerWinkel A BC ist em rechter Dann ist ABCD ein Orthogonaltetraeder und N 1

Tlb Der Winkel ABC ist spitz Dann falle ich von C m AB das Lot mit dem Fusspunkt
E, und ABCD zerfallt m die beiden Orthogonaltetraeder AECD und BECD N 2

Tic Der Winkel ABC ist stumpf Dann falle ich von B m AC das Lot mit dem
Fusspunkt F, und da A CD em rechtwinkliges Dreieck ist, kann man von F in die Hypotenuse
AD das Lot mit dem Fusspunkt G fallen ABCD zerfallt nun m die drei Orthogonaltetraeder

BFCD, BFGD und BFGA, und man hat N 3

Unter den übrigen Tetraedern zeichne ich die Art T2 aus, bei der man von einer Ecke,
genannt D, das Lot auf die Seite ABC fallen kann T2 unterteile ich weiter

T2a Der Fusspunkt E dieses Lotes fallt m eine Kante, etwa in AB Dann zerfallt
A BCD m die beiden Tetraeder AECD und BECD der Art Tl, und zwar ist höchstens eins
dieser beiden Tetraeder von der Art Tic, da man von E auf AC oder BC das Lot fallen
kann Daher ist hier N ^ 5

Tlb Der Fusspunkt E fallt m die Seite A BC Von E kann man auf höchstens eine Seite
von ABC nicht das Lot fallen, daher zerfallt ABCD in die drei Tetraeder ABED, ACED
und BCED der Art Tl, von denen höchstens eins von der Art Tic ist Also ist N ^ 7

Um nun überhaupt zu zeigen, dass sich jedes Tetraeder m Orthogonaltetraeder zerlegen
lasst, kann man vom Inkugelzentrum Z ausgehend (von dem aus sich die Lote m alle vier
Seiten des Tetraeders stets fallen lassen) ABCD m die vier Tetraeder ZABC, ZA BD,
ZACD und ZBCD der Art T2b zerlegen und hat nun _V < 28

Um eine allgemeine Zerlegung mit N ^ 12 anzugeben, benotige ich noch einige Hilfs-
satze Soweit sie unmittelbar einleuchten, verzichte ich auf den Beweis Eine Kante heisse
spitz oder stumpf, wenn der zugehörige Flachenwinkel spitz oder stumpf ist Unter den
Kanten einer Seite verstehe ich die der Seite anliegenden Kanten

Hilfssatz 1 Von den drei Kanten einer Tetraederseite ist mindestens eine spitz
Hilfssatz 2 Wenn m einer Ecke eines Tetraeders drei nicht spitze Kanten zusammentreffen,

sind die übrigen drei Kanten spitz
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Hilfssatz 3 Em Tetraeder gehört genau dann zu Tl oder T2, wenn es eine Seite mit
drei nicht stumpfen Kanten besitzt

Hilfssatz 4 Wenn in einer Tetraederecke eine spitze und zwei stumpfe Kanten
zusammentreffen, smd die den stumpfen Kanten gegenüberliegenden ebenen Winkel ebenfalls
stumpf

Beweis (mit Hilfe des Wmkelkosmussatzes)
Es sei a ß stumpf y spitz, also cos a < 0 cos ß < 0, cos y > 0 Daraus folgt

cos ol + cos ß cos ycos a* „— 0
sin ß sm y

dh a ist stumpf
Hilfssatz 5 Em Tetraeder kann keine vier stumpfen Kanten haben
Beweis Hatte em Tetraeder vier stumpfe Kanten so konnten wegen Hilfssatz 1 und 2

nicht drei von ihnen zu derselben Seite oder Ecke gehören Es wurden also in jeder Ecke
zwei stumpfe und eine spitze Kante zusammentreffen Nach Hilfssatz 4 wurden daher in
jeder Ecke mindestens zwei stumpfe ebene Winkel zusammentreffen Da das I etraeder
aber höchstens vier stumpfe ebene Winkel hat kann das nicht sein

Bei den Tetraedern, die nicht zu Tl oder T2 gehören, hat jede Seite wegen Hilfssatz 3

mindestens eine stumpfe Kante Wegen Hilfssatz 5 sind also Tetraederarten mit zwei und
drei stumpfen Kanten zu unterscheiden die ich T3 und T4 nenne

T3 Die beiden stumpfen Kanten hegen einander gegenüber seien also mit/_C und BD
bezeichnet Den Punkt E auf BD wähle ich so, dass die beiden Ebenen durch ABC und
AEC aufeinander senkrecht stehen Die senkrechte Projektion von BD auf die Ebene
durch ABC schneidet AC in einem Punkte F weil die Kanten AB und BC beide nicht
stumpf smd und F ist der Fusspunkt des Lotes von L auf AC Das Tetraeder ABCE ist
also von der Art T2a, und das Tetraeder AECD ist von der Art T2b, weil die Kanten seiner
Seite ACD alle nicht stumpf sind Daher gilt fur T3 N •£ 12

TA Die drei stumpfen Kanten gehören wegen Hilfssatz 1 bis 3 nicht zu derselben Ecke
oder Seite, man kann sie also mit A C, BC und BD bezeichnen E wird wie bei T3 bestimmt
Da die Kanten BC und BD stumpf smd die Kante AB dagegen nach Hilfssat/ 2 und 3

spitz sein muss, ist der ebene Winkel ABC nach Hilfssatz 4 stumpf, man kann also das
Lot von B in AC fallen Daher gehört das Tetraeder ABCE wiederum zu T2a und das
Tetraeder AECD wie oben zu T2b und man hat auch hier AT <; 12

Damit smd alle möglichen Tetraederarten zerlegt mit JV <; 12 Ich vermute, dass es
Tetraeder gibt, die sich nicht in weniger als 12 Orthogonaltetraeder zerlegen lassen

H Chr Lenhard (Munster, Westf)

Einfache Herleitung des verallgemeinerten Determinanten -
Multiplikationstheorems

(Satz von Binet-Cauchy) bei rechteckigen Matrizen nebst Erweiterung
Herrn Oskar Perron zu seinem 80 Geburtstag am 7 Mai 1960 in Verehrung gewidmet

Bekanntlich ist mit unbestimmten Buchstabengrossen

/ab c\/xy zY
__ ax + by + cz a£ + br) + c£ ^ ab xy ac xz bei yz

\\QLßy)\£r} Cf | \<xx+ßy + yz (xg+ßrj + yC <xß ||*/ ay H ßy\ >/C

der einfachste Fall des sogenannten verallgemeinerten Determinanten-Multiphkations-
theorems mit nicht identisch verschwindender Determinante Der einfachste Beweis dieses
Theorems ist folgender Sind A und B zwei n • w-Matnzen mit unbestimmten Elementen,

so haben A B und BA bekanntlich das gleiche charakteristische Polynom, weil
\ AB — XE \ | BA — XE \ nach dem gewöhnlichen Determmanten-Multiphkations-
theorem aus B (AB - XE) (BA - XE) B folgt (E Einheitsmatrix) Bestehen m
A genau die letzten m Zeilen und in B genau die letzten m Spalten aus lauter Nullen, so
enthalt A B rechts und unten je m Reihen Nullen und \AB - XE \ damit den Faktor Xm

Der zu beweisende Satz von Binet-Cauchy besagt nun nichts weiter als die Gleichheit
der Koeffizienten der niedrigsten Potenz von X, namhch dieses Xm in | A B - X E | und
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| BA — XE |. Das Theorem ist also richtig, was zu beweisen war. Die Gleichheit der
übrigen je 2 Koeffizienten von X°, Xm~x (samtlich 0) und von Xm + 1, Xn~1 liefert
n—l weitere Theoreme. Man vergleiche mit dem obigen die Beweise bei
Baltzer, Theorie und Anwendung der Determinanten, 4. Aufl. 1875, S. 46-49.
Cesäro, Elementares Lehrbuch der Algebraischen Analysis und der Infinitesimalrechnung,

1904, S. 20-22.
Dickson-Bodewig, Höhere Algebra, 1929, S. 45-46.
Do-lp, Die Determinanten, 5. Aufl. 1899, S 65-68.
Dorrie, Determinanten, 1940, S 45-50.
Gantmacher, Matrizenrechnung, I, 1958, S 8-10
Grobner, Matrizenrechnung, 1956, S. 101-104.
Hasse-Klobe, Aufgabensammlung zur Höheren Algebra, 2. Aufl 1952, S 56

Keller, Analytische Geometrie und Lineare Algebra, 1957, S. 91-93
Kowalew'Ski, Emfuht'ung in die Determinantentheorie, 4. Aufl. 1954, S 70-77.
Lense, Vorlesungen uber höhere Mathematik, 1948, S. 176.
v. Mangoldt-Knopp, Einfuhrung m die Höhere Mathematik, I, 10. Aufl 1955, S 98-100.
Neiss, Determinanten und Matrizen, 5. Aufl. 1959, S 35.
E. Pascal, Die Determinanten, 1900, S. 26-30.
Perron, Algebra, I, 3. Aufl. 1951, S. 113-115.
Smirnow, Lehrgang der Höheren Mathematik, HI/1, 1954, S. 22-24.
Sperner, Einfuhrung m die Analytische Geometrie und Algebra, 2 Aufl. 1955, S 191-195.
Weber, Lehrbuch der Algebra, I, 2. Aufl.1898, S. 112-113.

Ausser den beiden Bezeichnungen m der Überschrift gibt es noch weitere, so spricht
der Jubilar vom symbolischen Produkt zweier Matrizen und versteht darunter die
Determinante des Matrizenprodukts. Auch den praktischen Namen Langproduktsatz findet
man, im Gegensatz zu dem einfacheren Kurzproduktsatz, zum Beispiel

aoC\ [x£
bß)[yn 0-0=0

/aoLÖ\ /#|0\
bß0)(yr)0)

\cy0j\zt0j
Das gewöhnliche Determmanten-Multiplikationstheorem sowie der Kurzproduktsatz
können als Spezialfälle des Langproduktsatzes aufgefasst werden, im obigen Beispiel
des Langproduktsatzes etwa c y 0 und c y b ß=-0 In der Tat folgert
Gantmacher das gewöhnliche Determmanten-Multiphkationstheorem aus dem Satz von
Binet-Cauchy. Andererseits definiert er die (quadratische) Diagonalmatrix nicht erst im
§ Quadratische Matrizen, sondern bereits vorher, und spricht schon ab S. 1 von
Determinanten, ohne sie zu definieren, weil er Determinantenrechnung voraussetzt

I Paasche, München

Aufgaben
Aufgabe 356. Man konstruiere em (im allgemeinen windschiefes) Viereck, das einer

gegebenen Kugel einbeschrieben ist, und dessen Seiten der Reihe nach durch vier gegebene
Punkte^!, A2, A3, _44 (m allgemeiner Lage) hindurchgehen. C. Bindschedler, Kusnacht

Losung des A ufgabenstellers. Wählt man einen vanabeln Punkt P auf der Kugel K und
konstruiert den Sehnenzug PAXPXA2P2AZP3A4P4, so stellt die ememdeutige Abbildung
der Kugel auf sich selbst P -> P4 eine Kreisverwandtschaft dar. Denn wenn P einen
Kreis von K beschreibt, so gilt dasselbe von Pv P2, P3, P4. (Je zwei aufeinanderfolgende
von diesen fünf Kreisen sind Wechselschnitte eines Kreiskegeis mit einer Spitze At).
Projiziert man die Kugel stereographisch auf eine Tangentialebene, so wird die Abbildung
P' -> P\ eine Inversion. Die Inversionspotenz ist negativ oder positiv, je nachdem A x

innerhalb oder ausserhalb der Kugel hegt. In jedem Fall ist A\ (das heisst die Projektion
von Ax) Inversionszentrum. Die Abbildung P' -> Pi ist als Produkt von vier Inversionen,
da sie den Winkelsinn erhalt, als lineare Funktion darstellbar, wenn man die Projektionsebene

als Gaußsche Zahlenebene verwendet. Es sei etwa
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