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Exemples de tétracdres équivalents (mod. 0)

Deux polyédres sont dits équivalents (mod. 0) lorsque leur différence est équi-
valente 4 un cube. Nous allons donner des exemples de couples de tétra¢dres jouissant
de cette propriété.

1. Soit («, f;y) un tétraédre 4 BCD tel que: . AB | BCD, DC | CBA, diédre
AB =qa, diédre CD =p, diédre AD =y; AB = cotg «, CD = cotgf. On a
cos y = sina * sin f§ et AD = tgy.

Considérons les deux tétraédres (8, o; 7/3) = ABCD et (6,2a;a) = A'B'C'D’.
Comme sin « - sin § = 1/2, nous supposerons 7z/4 > « > 7/6.

Les tétraédres («, 0; 7/3) et (2 o, §; o) sont équivalents entre eux (mod. 0).

Montrons d’abord que les conditions nécessaires de DEHN pour 1'équivalence sont
vérifiées. On a pour les diédres les relations:

XCD=a; XCD =2a; <LAD =a; <LAB=4§, <XA'B =9,
lesautresdiédresétantrationnelsenz. Il faut donc queleslongueurs vérifientlesrelations:
CD=2-C'D'+A'D'; AB=AB,

relations qui sont effectivement remplies puisque
Z-C_'B'-I—AW———Zcotha—}—tgoc=cotgoc= CD;
AB = cotg § = A'B’.

Montrons maintenant que l’équivalence (mod. 0) a
bien lieu. Enlevons du tétraédre A BCD le tétraédre
A'B'C'D' de fagon que A’ = A, B'= B, C' = E sur
BC, D’ = F sur BD [fig. 1].

Menons par E et par F les perpendiculaires au plan
ACDetsoientG et H leurs pieds. Tragons encore la droite Figure 1

AH qui coupe CD en [ et soit enfin M le milieu de JC.
Comme <X AEC =n — 2 et <L ACB = q, la droite EG est la bissectrice de AEC

et la médiatrice de AC. Le triangle AEC est isocéle, le plan GEFH est le plan média-
teur de AC, et 'ona AF = FC = tg «. Comme G est au milieu de AC, GH=CM=M]

et d’autre part, GH = FE = cotg 2 «. On a donc:
FC=FJ=tga; JD=CD—CJ=cotga—2cotg2a=tga.

A
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Par conséquent: AF = FJ = JD; diédre AD =n/3, diédre AJ = n/2, diédre
FD = n2. Le tétraédre AFJD est donc un tétraédre de HiLL de premiére espéce
équivalent 4 un cube. Le polyédre AEFC] est équivalent 4 un cube, comme on le
voit en faisant tourner le tétraedre FHM ] de 180° autour de FH. Par conséquent:
AEFCD ~ AF]JD + AFECD ~ cube

(oc, a;-’;_) ~(2a8; a)| (mod.0), [.24‘. >a> .16‘_] (1)

2. Considérons encore les deux tétraédres (2«, &; #/2 — o) = ABEF et

(F-& %)= A4BCD (a <% siné— 7&1357) lfig. 2)

Figure 2 Figure 3

Si AHCGEF est le prisme de base ACE et d’aréte EF, on a

(2 @ &5 — oc) — (—g- —a, 5;-’31) ~ ACDEF ~ AHCGEF — AHDGF ~
‘ — AHDGF (mod. 0).

Prenons sur FG un point J et sur FD un point K tels que JH = HF et KA = AF.
Ajoutons au polyédre le prisme DGJKPHLN de base DGJK et d’aréte GH et le
prisme DAPKMN de base DAP et d’aréte DK [fig. 3]

FAHMLK] ~ AHDGF (mod. 0).

Enlevons de ce nouveau polyédre le polyédre FAHK ] équivalent & un cube et
le prisme MAKSHR [fig. 4]: AHDGF ~ HSLJR (mod. 0).

Figure 4
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Les diédres de ce dernier polyédre ont les valeurs suivantes:

T

SIH=XHJ=XL]=<SH=2
SLS=7—a; ¥SR=%; SRH=7 4«
XJR=n— & JLH - S LH] =a— (G —a)—2a=5 —a.

Comme ce polyédre, équivalent & — ACDEF, vérifie aussi les conditions nécessaires
de DEHN pour l’équivalence & un cube, on a la relation

RH=1S+ JR

Le triangle HL] est isocéle, HL = Iﬁ ; désignons par T le milieu de LJ. Faisons
enfin tourner le tétraédre HT JR d'un angle » autour de HT [fig. 5]. Le polyédre
HSLJR se transforme dans le tétraédre HR'SR pour lequel

SR=SL+LR =SL+JR=RH=RH, xSR=3, ¥ SH=YRR=7.
HR’SR est donc un tétraédre de HiLL de premiére espéce, équivalent i un cube.

Par conséquent:

ACDEF ~ — AHDGF ~ -~ HSLJR ~ — HR'SR ~ 0 (mod. 0).
Donc

(Za,f;g——a)fw(g——oc,é;—g—) (mod. 0), [oc<%—] (2)

3. Nous avons établi dans un précédent travail que

- - 5 T
(0, i m) — (B, v m) ~ (a% — N2 5) - (ﬁ, 5~ C) -
Par conséquent, des deux relations (1) et (2) découlent les deux relations

(“»g“"a;a)) ~(2cx,%;w) (mod. 0) [-:i> a>%]
et

(izz-—oc, oc;a)) ~(2a,~7~6t—;w) (mod. 0) [oc<16t-].

La relation étant aussi vérifiée pour 76, on a donc

(oc,—;‘—-—oc;w)N(Za,%;w) (mod.0), [O<a<%] .

Nous avons ainsi- obtenu trois séries infinies de couples de tétra¢dres dont la
différence est équivalente & un cube, sans qu’ils soient eux-mémes en général équi-
valents 4 un cube. J.-P. SYDLER, Ziirich
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