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Exemples de tetraedres equivalents (mod. 0)

Deux polyedres sont dits equivalents (mod. 0) lorsque leur difference est
equivalente ä un cube. Nous allons donner des exemples de couples de tetraedres jouissant
de cette propriete.

1. Soit (a,/?;y) un tetraedre ABCD tel que: AB J_ BCD,J)C J_ CBA, diedre

AB a, diedre CD ß, diedre AD y; AB cotg a, CD cotgß. On a

cos y sin a • sin ß et AD tg y.
Considerons les deux tetraedres (ö, a;7i/3) ABCD et (d, 2 a; a) A'B'CD'.

Comme sin a • sin d 1/2, nous supposerons n\\ > a > nj6.
Les tetraedres (a, d; tz/3) et (2 a, d; a) sont equivalents entre eux (mod. 0).
Montrons d'abord que les conditions necessaires de Dehn pour l'equivalence sont

verifiees. On a pour les diedres les relations:

<£CZ) a; <£C'D' 2a; ^A'D' ol; <£ AB d, <$A'B' dt
les autres diedres etant rationnels enn. II faut donc que les longueursverifien t les relations:

CD 2-CD' + ÄJD'; AB - Äl?,
relations qui sont effectivement remplies puisque

2 CD' + Ä^D' 2 cotg 2a + tg a cotg <x CD;

AB cotg d ÄJß'.

Montrons maintenant que l'equivalence (mod. 0) a
bien lieu. Enlevons du tetraedre ABCD le tetraedre
A'B'CD' de facon que A' - A, B' B, C - E sur
BC, D' F sur BD [fig. 1].

Menons par £ et par F les perpendiculaires au plan
ACD et soient G etH leurs pieds. Tracons encore la droite
AH qui coupe CD en / et soit enfin M le milieu de JC.

Comme <£ AEC n — 2 a et <£ _4CJE? a, la droite EG est la bissectrice de AEC
et la mediatrice de AC. Le triangle AEC est isocele, le plan GEFH est le plan media-

teur de AC, et Ton a ^4F FC tg a. Comme G est au milieu de AC, GH CM M/
et d'autre part, GH F£ cotg 2 a. On a donc:

FC F/= tga; Jd CD-CJ cotg a - 2 cotg 2 a tg a.
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Par consequent: _4F F/ /D; diedre AD nß, diedre AJ nj2, diedre

FD n\2. Le tetraedre AFJD est donc un tetraedre de Hill de premiere espece
equivalent ä un cube. Le polyedre AEFCJ est equivalent ä un cube, comme on le
voit en faisant tourner le tetraedre FHMJ de 180° autour de FH. Par consequent:
AEFCD ~ AFJD + AFECD ~ cube

(a, d; ~) — (2 a, d; ol) (mod. 0), [~ > ol > ~]

2. Considerons encore les deux tetraedres (2 ol, f; n\2 — a) ABEF et

(t - *' *; T) - ABCD (a < T• sin * -2^) [«* 2)

(1)
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Si AHCGEF est le prisme de base ACE et d'arete EF, on a

(2 a, £ ~ - a) - (-y - a, f; ~) — ACDEF ~ AHCGEF - AHDGF ~
-AHDGF (mod.O).

Prenons sur FG un point / et sur FD un point i£ tels que JH ÄF et _3._4 AF.
Ajoutons au polyedre le prisme DGJKPHLN de base DGJK et d'arete G_¥ et le
prisme DAPKMN de base D_4P et d'arete DX [fig. 3]

FAHMLKJ ~ AHDGF (mod.O).

Enlevons de ce nouveau polyedre le polyedre FAHKJ equivalent k un cube et
le prisme MAKSHR [fig. 4]: AHDGF ~ HSLJR (mod. 0).
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Les diedres de ce dernier polyedre ont les valeurs suivantes:

<£ LH <£ HJ ^C LJ <£ SH -J

99

<£RH ~ + ol

<£ JR 7t - <£ JLH - <£ LÄ/ n - (| - a) - 2 a f - a

Comme ce polyedre, equivalent ä — ACDEF, verifie aussi les conditions necessaires
de Dehn pour l'equivalence k un cube, on a la relation

RH=LS + JR

Le triangle HLJ est isocele, HL HJ; designons par T le milieu de LJ. Faisons
enfin tourner le tetraedre HTJR d'un angle n autour de HT [fig. 5]. Le polyedre
HSLJR se transforme dans le tetraedre HR'SR pour lequel

SR' SL+LR'=SL+JR=RH R'H, <SÄ y, <£ SH <£#'# |-.

HR'SR est donc un tetraedre de Hill de premiere espece, equivalent k un cube.
Par consequent:

ACDEF AHDGF ~ - HSLJR ~ - ÄÄ'Si? ~ 0 (mod. 0).
Donc

(2a,f;f-a)~(f -a,*;-J) (mod.O), [a<|] (2)

3. Nous avons etabli dans un precedent travail que

(<*, y; *h) - 05, y\ rj2) ~ (a, ~ - ?y2;"c) - (/?, -|- - ^;"c).

Par consequent, des deux relations (1) et (2) decoulent les deux relations

(«,£-«;_,) ~ (2 ac-J;-») (mod.O) [*>«>*]
et

(¦2.-«,a;o>)~(2a,-J;a>) (mod.O) [a<£].
La relation _tant aussi v.rifi-e pour tt/6, on a donc

(a,^-a;o>)~(2a,-J;o>) (mod.O), [o<a<^]

INTous avons ainsi obtenu trois series infinies de couples de tetraedres dont la
difference est equivalente k un cube, sans qu'ils soient eux-memes en general
equivalents k un cube. J.-P. Sydler, Zürich
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