Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 15 (1960)

Heft: 4

Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

n=-2,-1,0,2, dagegen fraglich bleibt für n=1,3,4,5 und sicher falsch ist für $n=6,7,\ldots$. Dass die Kugel für $n\geq 6$ ihre Extremaleigenschaft einbüsst, wurde von Kummer¹) nachgewiesen. Da sich in der neueren Fachliteratur auch ein Ergebnis findet, das diesem Tatbestand widerspricht, wurde der obengenannte theoretisch ermittelte Befund auch praktisch-numerisch mit Hilfe eines Rechenautomaten überprüft²). Es sei E_x ein Rotationsellipsoid mit den Halbachsen r, r, x r $(1 \leq x < \infty)$, das mit der Einheitskugel $E_1 = K$ normgleich ist, und es sei

$$q(x) = \frac{T_6(E_x)}{T_6(K)}$$
 $[N(E_x) = N(K)]$

das Verhältnis der entsprechenden sechsten Distanzpotenzintegrale. Wenn q(x) > 1 ausfallen kann, ist offenbar bereits bewiesen, dass die Kugel die hier fragliche Extremaleigenschaft für n = 6 eingebüsst hat. Nun ergibt eine Berechnung, auf die wir hier verständlicherweise nicht eingehen können:

$$q(x) = \frac{4096 (x^2 - 1)^6 (16 x^2 + 8 x^4 + 6 x^6 + 5 x^8)}{35 \left\{ x \sqrt{x^2 - 1} + \ln(x + \sqrt{x^2 - 1}) \right\}^{12}}$$

Hierzu führen wir einige mit dem Gerät ermittelte numerische Werte an:

х	q(x)
1,00	1,0000000
1,40	1,0464592
1,80	1,107 5398
2,20	1,0899263
2,60	0,9974864
1,92	1,1117633

Die unterste Zeile gibt das numerisch bestimmte Maximum von q(x); damit ist belegt, dass das Rotationsellipsoid mit dem Achsenverhältnis x = 1,92 das optimale sechste Distanzpotenzintegral liefert, das etwas grösser ausfällt als dasjenige der normgleichen Kugel.

Damit resultiert das Problem: Welche konvexen Körper weisen unter allen normgleichen das grösstmögliche Distanzpotenzintegral auf, wenn $n \ge 6$ ist? Diese noch unbekannten Extremalkörper dürften Zentralsymmetrie aufweisen! H. HADWIGER

Kleine Mitteilungen

A Special Higher Congruence

Let p be a prime >2. If the congruence

$$x^{p+1} + a x^p + b x + c \equiv 0 \pmod{p^2} \tag{1}$$

is solvable, then clearly the quadratic congruence

$$x^2 + (a+b) x + c \equiv 0 \pmod{p} \tag{2}$$

is solvable. Thus a necessary condition for the solvability of (1) is that

$$d = (a+b)^2 - 4c (3)$$

¹⁾ H. Kummer, Über Sehnenpotenzintegrale konvexer Körper im k-dimensionalen Raum, Manuskript (Bern 1957)

²⁾ Ausgeführt im Institut für angewandte Mathematik der Universität Bern, Frühjahr 1959.

is either $\equiv 0$ or is a quadratic residue (mod p).

Assume that x_0 is a solution of (2); then it follows that

$$x_0^{p+1} + a x_0^p + b x_0 + c = m p.$$
(4)

Put $x = x_0 + k p$; then $x^p \equiv x_0^p \pmod{p^2}$ and (1) becomes

$$(x_0^{p+1} + a x_0^p + b x_0 + c) + p k (x_0 + b) \equiv 0 \quad (\text{mod } p^2)$$

which by (4) is equivalent to

$$m + k (x_0 + b) \equiv 0 \pmod{p}. \tag{5}$$

Consequently if $x_0 + b \not\equiv 0 \pmod{p}$, k is uniquely determined and the solution x_0 of (2) leads to a unique solution of (1).

Suppose now that x_0 satisfies

$$x_0 \equiv -b \pmod{p}. \tag{6}$$

Substituting from (6) in (4) we get

$$c \equiv a b \pmod{p}. \tag{7}$$

Conversely when (7) holds, x = -b satisfies (2). Note also that when (7) is satisfied, (3) becomes

$$d \equiv (a-b)^2 \pmod{p} \tag{8}$$

and therefore (2) is certainly solvable.

If we now put x = -b + h p we find that (1) reduces to

$$b^{p+1} - a b^p - b^2 + c - h p (b^p - b) \equiv 0 \pmod{p^2}$$

hence

$$b^{p+1} - a b^p - b^2 + c \equiv 0 \pmod{p^2}.$$
 (9)

Thus if (9) is satisfied, that is, if (1) has the solution -b, then it follows that -b + h p is a solution for all h.

To sum up, we may state the following

Theorem: A necessary condition for the solvability of (1) is that $d = (a + b)^2 - 4$ $c \equiv 0$ or a quadratic residue (mod p). If $c \not\equiv a \ b \ (\text{mod } p)$, then to each solution (mod p) of (2) corresponds a unique solution $(\text{mod } p^2)$ of (1). However if $c \equiv a \ b \ (\text{mod } p)$ and (9) is satisfied, then to the solution -b of (2) corresponds p solutions $-b + h \ p \ (h = 0, 1, ..., p - 1)$ of (1); if (9) is not satisfied (1) has no solution $\equiv -b \ (\text{mod } p)$.

Note that when $c \equiv a \ b$, $a \not\equiv b \pmod{p}$, then as we have seen above, to the solution -a of (2) corresponds a unique solution of (1).

It follows from the theorem that the number of solutions N of (1) is given by the following formulas when $d \equiv 0$ or a quadratic residue:

$$N = 1 + \left(\frac{d}{p}\right) \quad (c \not\equiv a \, b \pmod{p}), \qquad N = p \, \eta + \left(\frac{d}{p}\right) \quad (c \equiv a \, b \pmod{p}),$$

where $\eta = 1$ or 0 according as (9) is or is not satisfied.

To illustrate, the congruence

$$x^6 + x^5 + x + 2 \equiv 0 \pmod{25}$$

has the two solutions 2, 11. The congruence

$$x^6 + x^5 + 2x - 3 \equiv 0 \pmod{25}$$

has the solutions 4, 3, 8, 13, 18, 23, while

$$x^6 - 2x^5 - 2x + 4 \equiv 0 \pmod{25}$$

has the solutions 2, 7, 12, 17, 22; on the other hand

$$x^6 - 2x^5 - 2x - 1 \equiv 0 \pmod{25}$$

has no solutions.

L. CARLITZ, Durham, N. C. (USA)

Algebraische Ableitung der Heronschen Flächeninhaltsformel aus zwei Funktionalgleichungen und einer Normierungsbedingung

Eine einfache elementargeometrische Überlegung lehrt, dass das Quadrat des Flächeninhaltes f(x, y, z) eines Dreieckes der Ebene mit den beliebigen Seitenlängen x, y, z sich durch ein homogenes Polynom vierten Grades in x, y und z ausdrückt. Beachtung zweier Funktionalgleichungen F_1 und F_2 für f(x, y, z), sowie einer Normierungsbedingung N führt vom allgemeinen Inhalts-Ansatz direkt zur Heronschen Formel. Sei

$$f^{2}(x, y, z) = a_{1} x^{4} + a_{2} y^{4} + a_{3} z^{4} +$$

$$+ a_{4} x^{3} y + a_{5} x^{3} z + a_{6} y^{3} x + a_{7} y^{3} z + a_{8} z^{3} x + a_{9} z^{3} y +$$

$$+ a_{10} x^{2} y^{2} + a_{11} x^{2} z^{2} + a_{12} y^{2} z^{2}.$$

$$(1)$$

Aus der Symmetrie-Eigenschaft

$$f^2(u, v, w) = f^2(x, y, z)$$
 für alle Anordnungen (u, v, w) von x, y, z (F_1)

folgt

$$a_1 = a_2 = a_3 = a$$
; $a_4 = a_5 = a_6 = a_7 = a_8 = a_9 = b$; $a_{10} = a_{11} = a_{12} = c$,

womit $f^2(x, y, z)$ übergeht in die Gestalt

$$f^{2}(x, y, z) = a (x^{4} + y^{4} + z^{4}) + b(x^{3}y + x^{3}z + y^{3}x + y^{3}z + z^{3}x + z^{3}y) + c (x^{2}y^{2} + x^{2}z^{2} + y^{2}z^{2}).$$
(2)

Der Spezialfall der Dreiecksungleichung

$$f(x, y, x + y) = 0 (F_2)$$

liefert aus (2) zwei linear-unabhängige Gleichungen zur Bestimmung von a, b, c:

$$2a + 2b + c = 0$$
,
 $2a + 3b + c = 0$.

mit den Lösungen

$$c = -2 a$$
 und $b = 0$.

(2) vereinfacht sich dadurch zu

$$f^{2}(x, y, z) = a \left[(x^{4} + y^{4} + z^{4}) - 2 (x^{2}y^{2} + x^{2}z^{2} + y^{2}z^{2}) \right].$$
 (3)

a muss aus einer Normierungsbedingung, etwa aus

(N)
$$f(1, 1, 1) = \frac{3}{16}$$

bestimmt werden.

Setzt man den sich ergebenden Wert a=-1/16 in (3) ein, so erhält man nach leichter Umformung die bekannte Heronsche Formel:

$$f(x, y, z) = \sqrt{\frac{x+y+z}{2} \left[\frac{x+y+z}{2} - x\right] \left[\frac{x+y+z}{2} - y\right] \left[\frac{x+y+z}{2} - z\right]}.$$

H. WENDELIN, Graz

Dreieck und Viereck als Extremalpolygone

Bezeichnet $A(a_i)$ das arithmetische Mittel der Seiten a_i (i=1, 2, ..., n) eines Polygons, das einen Kreis vom Radius ϱ ganz enthält, so gilt die wohlbekannte Ungleichung¹)

$$A(a_i) \ge 2 \varrho \operatorname{tg} \frac{\pi}{n}$$
 oder $\operatorname{Min} A(a_i) = 2 \varrho \operatorname{tg} \frac{\pi}{n}$.

Für das Dreieck ist Min $A(a_i)$ am grössten und beträgt $2 \varrho \sqrt{3}$. Ist $H(a_i)$ das harmonische Mittel der Seiten a_i , so drücken wir eine weitere Extremaleigenschaft des Dreiecks unter den Polygonen aus in folgendem

¹⁾ L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum (Springer-Verlag, Berlin 1953), S. 6.

Satz: Enthält ein Polygon mit den Seiten a_i einen Kreis mit dem Radius ϱ , so gilt

$$\frac{\operatorname{Min} A(a_i)}{\operatorname{Min} H(a_i)} \ge 1$$

mit Gleichheit nur für n = 3.

Zum Beweis betrachten wir nacheinander die Fälle n=3 und $n\ge 4$, wobei wir zwingend auf eine Extremaleigenschaft des Vierecks stossen werden.

n=3: Min $A(a_i)=2 \varrho \sqrt{3}$. Wir zeigen, dass Min $H(a_i)$ denselben Wert hat:

$$H(a_i) = 3\left(\sum_{1}^{3} \frac{1}{a_i}\right)^{-1} = \frac{3\prod_{1}^{3} a_i}{\sum_{i < j} a_i a_j} = \frac{9\prod_{1}^{3} a_i}{\sum_{i < j} a_i a_j + 2\sum_{i < i} a_i a_j},$$

wobei man aus $A \ge G$ (geometrisches Mittel) leicht

$$\sum_{1}^{3} a_i^2 \geq \sum_{i < i} a_i a_j$$

gewinnt, das heisst,

$$H(a_i) \ge -rac{9 \prod_{1}^{3} a_i}{\sum_{1}^{2} a_i^2 + 2 \sum_{i < j} a_i a_j};$$

ist F die Fläche, r der Umkreisradius und s der halbe Umfang des Dreiecks, so heisst dies wegen

$$\prod_{1}^{3} a_{i} = 4 r F$$

dann

$$H(a_i) \geq \frac{9 r F}{s^2} = 9 \varrho \frac{r}{s}.$$

Der letzte Ausdruck beträgt aber infolge

$$s \leq \frac{3r}{2} \sqrt{3}$$

mindestens $2 \varrho \sqrt{3}$.

 $H(a_i) \ge 2 \varrho \sqrt{3}$ erlaubt uns übrigens, aus den kürzlich mitgeteilten Ungleichungen²)

$$\frac{9 \varrho}{2 F} \leq \sum_{i=1}^{3} \frac{1}{a_i} \leq \frac{9 r}{4 F}$$

die Grösse F wie folgt zu eliminieren:

$$\frac{\sqrt{3}}{r} \leq \sum_{1}^{3} \frac{1}{a_i} \leq \frac{\sqrt{3}}{2 \varrho}.$$

Diese neue Abschätzung von

$$\sum_{1}^{3} \frac{1}{a_{i}}$$

ist von unten schwächer, von oben jedoch stärker geworden. Den einfachen Nachweis überlassen wir dem Leser.

²⁾ F. LEUENBERGER, Einige Dreiecksungleichungen, El. Math. 13, 125 (1958).

 $n \ge 4$: Es gilt Min $H(a_i) > 0$, eine Ungleichung, welche für jedes $n \ge 4$ scharf ist. $H(a_i)$ kann etwa so beliebig nahe an 0 herangebracht werden, dass man eine Polygonseite genügend klein wählt. Es gilt deshalb

$$2 \varrho \operatorname{tg} \frac{\pi}{n} = \operatorname{Min} A(a_i) > \operatorname{Min} H(a_i)$$
,

womit der Beweis des Satzes geleistet ist.

Aus Min $A(a_i)$ – Min $H(a_i) = 0$ für n = 3 und Min $A(a_i)$ – Min $H(a_i) < 2 \varrho$ tg (π/n) für $n \ge 4$ folgt zudem noch, dass das Viereck die grösste Differenz der beiden Minima aufweist; das heisst, Min $A(a_i)$ – Min $H(a_i) < 2 \varrho$ gilt stets, ist aber nur scharf für n = 4.

F. LEUENBERGER, Zuoz

Einige Ungleichungen

Ein beliebiges Dreieck ABC mit den Winkeln α , β , und γ habe den Umkreis (M, R) und die Fläche F; F_{ν} sei die Fläche des Fusspunktdreiecks von einem beliebigen Punkte P. Nach Gergonne gilt die bekannte Formel

$$F_{
m v}=rac{1}{2}\;|R^2-d^2|\sinlpha\,\sineta\,\sin\gamma$$
 ,

worin MP = d. Wählen wir für P einen inneren Punkt des Umkreises, dann gilt also

$$F_{\nu}=rac{1}{2}\left(R^2-d^2
ight)\sinlpha\,\sineta\,\sin\gamma=rac{1}{4}\left(1-rac{d^2}{R^2}
ight)\,2\,R^2\sinlpha\,\sineta\,\sin\gamma$$

oder

$$F_{
u}=rac{1}{4}\left(1-rac{d^2}{R^2}
ight)F$$

und somit, wegen d < R, die Ungleichung

$$F_{\nu} \leq \frac{1}{4} F. \tag{1}$$

Gleichheit besteht für den Umkreismittelpunkt M.

Es ist interessant, Ungleichung (1) anzuwenden auf den Punkt von Lemoine K, der für jedes Dreieck innerhalb des Umkreises liegt. Seien x, y und z die Abstände der Seiten a, b und c des Dreiecks ABC vom Punkte K, dann gelten bekanntlich die Relationen

$$x = \frac{2 F}{\sum a^2} a$$
, $y = \frac{2 F}{\sum a^2} b$ und $z = \frac{2 F}{\sum a^2} c$ mit $\sum a^2 = a^2 + b^2 + c^2$,

welche leicht aus x:y:z=a:b:c gefolgert werden können.

Wir gewinnen also

$$F_{\nu} = \frac{1}{2} \sum x \, y \sin \gamma = \frac{2 \, F^2}{(\sum a^2)^2} \sum a \, b \, \sin \gamma = \frac{12 \, F^3}{(\sum a^2)^2} \,. \tag{2}$$

Anwendung von (1) liefert uns

$$\frac{12 F^3}{(\sum a^2)^2} \leq \frac{1}{4} F,$$

woraus wir die bekannte Ungleichung von Weitzenböck (1919) für ein beliebiges Dreieck

$$\sum a^2 \ge 4 F \sqrt{3}$$

erhalten. Diese Ungleichung ist zwar leichter zu beweisen, aber der Zusammenhang mit dem Punkte von Lemoine ist ein wenig überraschend.

Wir können auch andere Punkte betrachten. Die Fläche des Höhenfusspunktdreiecks in einem spitzwinkligen Dreiecke (wo also der Höhenpunkt innerhalb des Umkreises liegt) ist $F_{\nu} = 2 F \cos \alpha \cos \beta \cos \gamma$, folglich ergibt sich aus (1)

$$\cos\alpha\cos\beta\cos\gamma \leq \frac{1}{8},$$

eine sehr bekannte Ungleichung, die auch für ein stumpfwinkliges Dreieck gilt.

Seien x, y und z bzw. die Abstände der Seiten a, b und c von dem Schwerpunkte, dann ist

$$x = \frac{1}{3} h_a = \frac{2F}{3a}$$
, $y = \frac{2F}{3b}$ und $z = \frac{2F}{3c}$

und also

$$F_{\nu} = \frac{1}{2} \sum x y \sin \gamma = \frac{2}{9} F^{2} \sum \frac{\sin \gamma}{a b} = \frac{1}{9} F \sum \sin^{2} \alpha$$

und somit

$$\sum \sin^2 \alpha \leq \frac{9}{4}$$

für jedes Dreieck, woraus leicht folgt $\sum a^2 \leq 9 R^2$.

Auch der Mittelpunkt des Inkreises ist für jedes Dreieck ein innerer Punkt des Umkreises, also darf nun auch Formel (1) angewendet werden.

Leicht zu beweisen ist:

$$F_{\nu} = \frac{1}{2} r^2 \sum \sin \alpha = \frac{1}{2} \cdot \frac{r^2 \cdot 2 s}{2 R} = \frac{r}{2 R} F$$

und folglich

$$\frac{rF}{2R} \le \frac{1}{4}F$$
, also $R \ge 2r$.

Der Zusammenhang zwischen dem Punkt von Lemoine K und die Ungleichung $\sum a^2 \ge 4 F \sqrt{3}$ kann auch noch auf eine andere Weise schön gezeigt werden. Wir fanden ja in (2) die Formel

$$F_{\nu} = \frac{12 F^3}{(\sum a^2)^2} ,$$

aber es gilt auch

$$F_{\nu} = \frac{1}{4} \left(1 - \frac{MK^2}{R^2} \right) F$$

und also

$$\frac{12F^3}{(\Sigma a^2)^2} = \frac{1}{4} \left(1 - \frac{MK^2}{R^2} \right) F$$

woraus, wegen R = a b c/4 F, gefolgert werden kann:

$$\overline{MK^2} = R^2 - \frac{3}{\left(\sum \frac{a}{b c}\right)^2}.$$

Also ist

$$R^2 \ge \frac{3}{\left(\sum \frac{a}{b} c^2\right)^2} \to a^2 b^2 c^2 \ge 48 F^2 \frac{a^2 b^2 c^2}{(\sum a^2)^2} \quad \text{oder} \quad \sum a^2 \ge 4 F \sqrt{3}.$$

Man erkennt also die Ähnlichkeit mit der Folgerung von Ungleichungen wie $R \ge 2r$ aus $MI^2 = R^2 - 2Rr$ und $\sum a^2 \le 9R^2$ aus $MH^2 = 9R^2 - \sum a^2$.

R. Kooistra, Culemborg (Holland)

Extremaleigenschaften der Summe der wichtigsten Ecktransversalen des n-dimensionalen Simplex

Ein n-dimensionales Simplex mit den Ecken A_i $(i=1,2,\ldots,n+1)$ habe den Schwerpunkt S, den Umkugelradius R und den Inkugelradius r. Die Länge der Schwerelinie von A_i durch S sei m_i , während A_i vom gegenüberliegenden Grenzraum den Abstand h_i habe. Bekanntlich gilt $r \leq R/n^{-1}$). Bezeichnen $H(x_i)$, $G(x_i)$, $A(x_i)$, $Q(x_i)$ das harmonische, geometrische, arithmetische und quadratische Mittel der Längen x_i , so gilt sogar folgender **Satz:**

$$(n+1)$$
 $r \le H(t_i) \le G(t_i) \le A(t_i) \le Q(t_i) \le \frac{n+1}{n} R$,

wobei für die Ecktransversalen t_i entweder h_i oder m_i gesetzt werden darf.

Für n=2 wurden kürzlich Beweise mitgeteilt^{2, 3}), welche sich nicht ohne weiteres auf beliebiges n übertragen lassen. Dagegen sind die Ungleichungen zwischen den einzelnen Mitteln wohlbekannt. Wegen $h_i \leq m_i$ genügt es deshalb zu zeigen, dass

1.
$$(n+1) r = H(h_i)$$
 und 2. $Q(m_i) \le \frac{n+1}{n} R$.

Beweis zu 1: Das A_i gegenüberliegende (n-1)-dimensionale Grenzsimplex habe den Inhalt B_i . Dann ergibt sich aus

$$B_i h_i = n I = r \sum_{1}^{n+1} B_i$$

mit I als Inhalt unseres Polytops die Relation

$$\sum_{1}^{n+1} h_{i}^{-1} = r^{-1},$$

was mit der Behauptung wegen $H(h_i) = [A(h_i^{-1})]^{-1}$ übereinstimmt.

Beweis zu 2: A_i sei durch den Ortsvektor \mathfrak{a}_i mit dem Ursprung im Mittelpunkt der n-dimensionalen Umkugel gegeben. Dann ist

$$\frac{1}{n}\sum_{1}^{n}a_{i}$$

der Schwerpunktsvektor des Grenzsimplex mit dem Inhalt B_{n+1} , das heisst

$$m_{n+1}^2 = \left(a_{n+1} - \frac{1}{n}\sum_{i=1}^n a_i\right)^2 = \frac{1}{n^2}\left(n a_{n+1} - \sum_{i=1}^n a_i\right)^2.$$

Da für die andern m_i^2 Entsprechendes gilt, führt die Summation auf

$$\sum_{1}^{n+1} m_i^2 = \frac{n+1}{n^2} \left(n \sum_{1}^{n+1} a_i^2 - 2 \sum_{i < j} a_i a_j \right) = \frac{n+1}{n^2} \sum_{i < j} (a_i - a_j)^2 = \frac{n+1}{n^2} \sum_{1}^{\binom{n+1}{2}} a_i^2,$$

das heisst

$$A(m_i^2) = \frac{1}{n^2} \sum_{1}^{\binom{n+1}{2}} a_i^2, \tag{1}$$

¹⁾ L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum (Springer-Verlag, Berlin 1953), S. 188.

²⁾ F. LEUENBERGER, Einige Dreiecksungleichungen, El. Math. 13, 121-126 (1958).

³⁾ J. Berkes, Bemerkungen zur Arbeit von F. Leuenberger über «Einige Dreiecksungleichungen», El. Math. 14, 62-64 (1959).

wenn wir die $\binom{n+1}{2}$ Kanten des Simplex mit a_i bezeichnen.

Nun ist aber

$$R^2 = \frac{1}{n+1} \sum_{1}^{n+1} \mathfrak{a}_i^2$$

und schliesslich

$$\mathfrak{s}^2 = \frac{1}{(n+1)^2} \left(\sum_{i=1}^{n+1} \mathfrak{a}_i \right)^2 = \frac{1}{(n+1)^2} \left(\sum_{i=1}^{n+1} \mathfrak{a}_i^2 + 2 \sum_{i < j} \mathfrak{a}_i \, \mathfrak{a}_j \right)$$

das Quadrat des Ortsvektors von S. Mithin gilt

$$R^{2} - 5^{2} = \frac{1}{(n+1)^{2}} \left(n \sum_{i=1}^{n+1} a_{i}^{2} - 2 \sum_{i < j} a_{i} a_{j} \right) = \frac{1}{(n+1)^{2}} \sum_{i=1}^{\binom{n+1}{2}} a_{i}^{2}.$$
 (2)

Multiplikation von (2) mit $[(n+1)/n]^2$ liefert (1); vermöge dessen folgt

$$Q(m_i) = \frac{n+1}{n} \sqrt{R^2 - \mathfrak{s}^2} \leq \frac{n+1}{n} R.$$

Gleichheit tritt nur ein, wenn der Schwerpunkt mit dem Umkugelmittelpunkt O zusammenfällt.

Betrachten wir die Sachlage im R_3 ! Für die Höhen des Tetraeders T finden wir

$$\sum_{1}^{4} h_{i} \ge 16 \ r$$
 Tetraeder, sowie

mit Gleichheit nur im gleichflächigen Tetraeder, sowie

$$\sum_{1}^{4} h_i \le \frac{16}{3} R$$

mit Gleichheit nur im regulären Tetraeder.

Für die Schwerelinien von T dagegen gilt

$$\sum_{1}^{4} m_i \ge 16 \ r$$

mit Gleichheit nur, wenn T regulär ist, und

$$\sum_{1}^{4} m_i \leq \frac{16}{3} R$$

mit Gleichheit nur, wenn S und O zusammenfallen, das ist aber im gleichflächigen Tetraeder der Fall. F. Leuenberger, Zuoz

Eine mögliche Verallgemeinerung der Fibonaccischen Zahlen

Auf die Fibonaccischen Zahlen führt die Aufgabe, die Zahlen von 1 bis n auf zwei Zeilen so zu verteilen, dass nicht mehr als zwei aufeinanderfolgende Zahlen auf eine Zeile zu stehen kommen. Die Fibonaccische Zahl f(n) gibt dann die Anzahl der möglichen Verteilungen an. Es gilt die Rekursionsformel

$$f(n) = f(n-1) + f(n-2)$$
 (1)

mit f(1) = 1 und f(2) = 2. (Hierbei sollen Vertauschungen der Zahlen einer Zeile bzw. der Zeilen untereinander zu keinen neuen Verteilungen führen!)

Die obige Fragestellung ist ein Sonderfall eines allgemeineren Problems: Werden bei den Verteilungen m aufeinanderfolgende Zahlen auf einer Zeile zugelassen und gibt jetzt $F_m(n)$ die Anzahl der möglichen Verteilungen an, so gilt diesmal

$$F_m(n) = F_m(n-1) + F_m(n-2) + \ldots + F_m(n-m) = \sum_{1}^{m} F_m(n-\mu)$$
 (2)

mit n > m und entsprechend definierten Zahlen $F_m(1), \ldots, F_m(m)$. Die obengenannten Fibonaccischen Zahlen sind ersichtlich Spezialfall hiervon für m = 2.

Zum Beweis der angegebenen Rekursionsformel (2) werden die Verteilungen der Zahlen von 1 bis (n-m) in m Gruppen eingeteilt. Die v-te Gruppe wird von allen Verteilungen gebildet, bei denen genau die letzten v Zahlen (n-m-v+1), (n-m-v+2), ..., (n-m) in einer Zeile stehen. Sie haben die Form

$$\dots (n-m-\nu+1), \dots, (n-m), \\ \dots, (n-m-\nu).$$
 (3)

(Da ein Vertauschen der Zahlen einer Zeile unwesentlich ist, dürfen die Zahlen der Grösse nach angeordnet werden.) Die Anzahl der Verteilungen dieser Form sei a_{ν} , es gilt

$$F_m(n-m)=\sum_{1}^m a_{\nu}.$$

Durch sukzessives Hinzufügen der Zahlen (n-m+1) bis n und beim Durchlaufen von ν von 1 bis m entstehen alle Verteilungen der in (2) vorkommenden F_m , und im folgenden sollen sie im einzelnen hingeschrieben werden, um dann die Beziehung (2) nachzuweisen.

Fügt man in der obigen v-ten Gruppe die Zahl (n-m+1) hinzu, so kann das in beiden Zeilen geschehen, so dass sich die Anzahl der Verteilungen verdoppelt, also $2 a_v$ wird. Bei a_v Verteilungen stehen jetzt (v+1) aufeinanderfolgende Zahlen auf einer Zeile. Beim Hinzufügen von (n-m+2) erhält man $4 a_v$ Verteilungen, und es sind jetzt (v+2) aufeinanderfolgende Zahlen, die wieder bei a_v Verteilungen zusammen auf einer Zeile stehen. So geht es fort bis zur Zahl [n-m+(m-v)]=(n-v), denn jetzt – nach dem Hinzufügen dieser Zahl – stehen die m aufeinanderfolgenden Zahlen (n-m-v+1) bis (n-v) bei a_v Verteilungen auf einer Zeile, bei all den Verteilungen nämlich, bei denen die hinzuzufügende Zahl jedesmal auf die obere Zeile kam. Aus den ursprünglichen a_v Verteilungen sind so bisher $2^{m-v} a_v$ Verteilungen geworden. Beim Hinzufügen der nächstfolgenden Zahl (n-v+1) bei allen Verteilungen in beiden Zeilen stehen nach dem eben Gesagten bei a_v Verteilungen jetzt (m+1) aufeinanderfolgende Zahlen auf einer Zeile, sie müssen also wieder gestrichen werden. Die neue Anzahl der Verteilungen wird demnach $(2^{m-v+1}-1)$ a_v . Von nun an verdoppelt sich wieder die Anzahl bei jedem Hinzufügen der folgenden Zahl.

Um bis zur Zahl (n-1) zu kommen, sind noch $(\nu-2)$ Schritte notwendig, so dass die Anzahl der Verteilungen der Zahlen von 1 bis (n-1), die aus der ursprünglichen ν -ten Gruppe entstanden sind, auf $2^{\nu-2}$ $(2^{m-\nu+1}-1)$ a_{ν} gestiegen ist. Für die Verteilungen der Zahlen von 1 bis n ergibt sich hieraus durch Verdoppeln die Anzahl

$$2^{\nu-1} \left(2^{m-\nu+1}-1\right) a_{\nu} , \qquad (4)$$

und die Behauptung ist jetzt, dass diese Anzahl gleich ist der Summe aller bisher aufgetretenen Ausdrücke. Diese waren

$$a_{\nu}$$
, $2 a_{\nu}$, $4 a_{\nu}$, ..., $2^{m-\nu} a_{\nu}$, $(2^{m-\nu+1}) - 1$) a_{ν} , $2 (2^{m-\nu+1} - 1) a_{\nu}$, ..., $2^{\nu-2} (2^{m-\nu+1} - 1) a_{\nu}$.

(Man überzeugt sich leicht, dass es m Ausdrücke sind.) Die Summe wird

$$[(2^{m-\nu+1}-1)+(2^{\nu-1}-1)(2^{m-\nu+1}-1)]a_{\nu}=2^{\nu-1}(2^{m-\nu+1}-1)a_{\nu}$$

und das ist genau der obige Ausdruck (4). Es gilt also schon für die einzelnen Gruppen eine Beziehung entsprechend (2). Die Summierung über die Gruppen führt dann zur Rekursionsformel (2) selbst.

Es ist jetzt leicht, die oben als noch zu definieren eingeführten Zahlen $F_m(1)$, ..., $F_m(m)$ hinzuschreiben. Ganz sicher muss $F_m(1)=1$ sein und aus dieser einen Verteilung gehen durch Hinzufügen der Zahlen 2 bis m die Verteilungen hervor, deren Anzahlen anzugeben sind. Da mit der letzten Zahl m überhaupt erst m aufeinanderfolgende Zahlen auftreten, leitet sich jedes der gesuchten F_m durch Verdoppeln aus dem vorhergehenden ab. Es sind also die Potenzen von 2, und es gilt

$$F_m(\mu) = 2^{\mu - 1} \quad (\mu \le m) . \tag{5}$$

In (3) können für 2 m > n (> m) negative Zahlen auftreten. Die entsprechenden Ausdrücke sind keine Verteilungen im obigen Sinne. Ebensowenig führt hier das Hinzufügen der weiteren Zahlen zu solchen. In diesem Falle sind alle Verteilungen in den übrigen Gruppen von (3) enthalten. Da bereits für die einzelnen Gruppen eine Beziehung entsprechend (2) gilt, können die Ausdrücke mit negativen Zahlen als bedeutungslos fortgelassen werden.

R. Schneiderreit, Berlin

Sur un problème de M. Erdös

P. Erdős a posé le problème suivant: existe-t-il un nombre premier p > 5 tel que les résidus mod p des nombres 2!, 3!, ..., (p-1)! sont tous distincts? Le but de cette note est de démontrer que dans ce dernier cas

1° aucun des nombres 2!, 3!, ..., (p-1)! n'est congruent mod p au nombre $-\left(\frac{p-1}{2}\right)!$. 2° $p \equiv 5 \pmod{8}$.

Démonstration: Comme on le sait, pour tout nombre naturel k < p-1 on a

$$k! (p-1-k)! \equiv (-1)^{k+1} \pmod{p}$$
 (1)

Il en résulte d'abord que $p \equiv 3 \pmod{4}$. En effet, dans le cas contraire on aurait $\frac{p-1}{2} \equiv 1 \pmod{2}$ et en posant $k = \frac{p-1}{2}$ nous trouverions

$$\left\{\left(\frac{p-1}{2}\right)!\right\}^2 \equiv 1 \pmod{p}, \text{ d'où } \left(\frac{p-1}{2}\right)! \equiv 1 \pmod{p} \text{ ou } \left(\frac{p-1}{2}\right)! \equiv -1 \pmod{p}. \tag{2}$$

Vu les théorèmes de Leibniz et Wilson tous les deux congruences (2) sont incompatibles avec la condition du problème. On a donc $p \equiv 1 \pmod{4}$ et

$$\left\{ \left(\frac{p-1}{2} \right)! \right\}^2 \equiv -1 \pmod{p} . \tag{3}$$

Comme, d'après la condition du problème, les résidus mod p des nombres 2!, 3!, ..., (p-1)! sont tous distincts et comme leur nombre est p-2, ils forment une permutation de la suite 1, 2, ..., p-1 diminuée d'un seul résidu r. On a donc

$$\prod_{i=2}^{p-1} i! \equiv \frac{(p-1)!}{r} \pmod{p}$$

d'où

$$r\prod_{i=1}^{p-2}i!\equiv 1\pmod{p},$$

$$\underset{1 \leq k < \frac{p-1}{2}}{\prod_{p \leq k}} k! (p - k - 1)! \equiv 1 \pmod{p}.$$

En vertu de (1) et (3)

ďoù

$$r \equiv \pm \left(\frac{p-1}{2}\right)! \pmod{p}$$
.

Mais, d'après la définition de r, r n'est congruent à aucun nombre k! ($2 \le k \le p-1$); on a donc

$$r \equiv -\left(\frac{p-1}{2}\right)! \pmod{p} , \qquad (5)$$

d'où résulte la première partie de la thèse. De (4) et (5) on déduit

$$\prod_{1 \le k < \frac{p-1}{2}} (-1)^{k+1} \equiv 1 \pmod{p} ,$$

Aufgaben 85

d'où

$$\sum_{1 \le k < \frac{p-1}{2}} (k+1) \equiv \frac{(p-3)(p+3)}{8} \equiv 0 \pmod{2}.$$

*Comme $p \equiv 3 \pmod{4}$, on a $p + 3 \equiv 0 \pmod{8}$, c'est-à-dire $p = 5 \pmod{8}$.

Il est à remarquer que la condition du problème n'est pas remplie, lorsque $\left(\frac{5}{p}\right) = 1$ ou $\left(\frac{-23}{p}\right) = -1$. En effet, dans le premier cas la congruence $x(x+1) = 1 \pmod{p}$ est résoluble et dans le second cas (en vertu du théorème de Voronoi-Skolem) la congruence x(x+1) $(x+2) \equiv 1 \pmod{p}$ est résoluble. On a alors

$$(x+1)! \equiv (x-1)! \pmod{p}$$
 ou bien $(x+2)! = (x-1)! \pmod{p}$.

Les seuls nombres premiers p < 1000 pour lesquelles on a $p = 5 \pmod{8}$, $\binom{5}{p} = -1$ et $\left(\frac{-23}{p}\right) = 1$ sont les suivants: 13, 173, 197, 277, 317, 397, 653, 853, 877, 997. Mais comme on peut vérifier aisément à l'aide du «Canon arithmeticus» on a $9! \equiv 4! \pmod{13}$, $15! \equiv 10! \pmod{173}$ $9! \equiv 3! \pmod{197}$, $43! \equiv 17! \pmod{277}$, $21! \equiv 10! \pmod{317}$, $45! \equiv 36! \pmod{397}$, $19! \equiv 1 \equiv 651! \pmod{653}$, $38! \equiv 30! \pmod{853}$ $100! \equiv 84! \pmod{877}$ et $72! \equiv 54! \pmod{997}$.

Il en résulte que la condition du problème n'est remplie par aucun nombre premier p>5 et <1000. B. Rokowska, Wrocław et A. Schinzel, Varsovie

Aufgaben

Aufgabe 352. Es sei O_1 das Orthozentrum des dem Kreis k mit dem Radius r einbeschriebenen Dreiecks $A_1A_2A_3$, O_2 das Orthozentrum des Dreiecks B_1 B_2 B_3 , das auch dem Kreise k einbeschrieben ist. Man beweise

$$O_{1}O_{2} < 4 r + u$$
,

wo $u = \text{Min } A_i B_j$, i, j = 1, 2, 3.

E. Jucovič, Prešow (CSR)

Aufgabe 353. Es sei T_1 der Schwerpunkt des dem Kreise k mit dem Radius r einbeschriebenen Dreiecks A_1 A_2 A_3 , T_2 der Schwerpunkt des ebenfalls k einbeschriebenen Dreiecks B_1 B_2 B_3 . Man beweise

$$T_1^-T_2<\frac{4\,r+u}{3}$$
,

wo $u = Min A_i B_j$, i, j = 1, 2, 3.

E. Jucovič, Prešov (CSR)

Lösung und Verallgemeinerung: Es sei T_1 der Schwerpunkt des der n-dimensionalen Kugel k(M, r) einbeschriebenen Simplex A_i (i = 1, ..., n + 1), T_2 der Schwerpunkt des ebenfalls k einbeschriebenen Simplex B_j (j = 1, ..., n + 1). Dann gilt

$$T_{1}T_{2} < \frac{2nv + u}{n+1}, \tag{1}$$

wo $u = \operatorname{Min} \overline{A_i B_j} (i, j = 1, ..., n + 1).$

Beweis: Sei A_k ein beliebig gewählter fester Eckpunkt des Simplex A_i . Der Schwerpunkt S_k des dem Eckpunkte A_k gegenüberliegenden (n-1)-dimensionalen Grenzraumes ist ein innerer Punkt von k. Der Simplexschwerpunkt T_1 teilt die Strecke $\overline{A_k}$ $\overline{S_k}$ im Verhältnis n:1. Die n-dimensionale Pferchkugel des Simplexschwerpunktes T_1 ist also eine n-dimensionale Kugel $k_1(M_1, r_1)$, welche mit k in einer Homothetie steht, deren Mittelpunkt A_k ist, und deren Charakteristik n:(n+1) beträgt. Hieraus folgt, dass M_1 die Strecke $\overline{A_k}$ \overline{M} im Verhältnis n:1 teilt, und $r_1=n$ r/(n+1) ist.