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n — 2, —1, 0, 2, dagegen fraghch bleibt für n 1, 3, 4, 5 und sicher falsch ist für
n 6,7, Dass die Kugel für n ^ 6 ihre Extremaleigenschaft einbüsst, wurde von
Kummer1) nachgewiesen. Da sich in der neueren Fachliteratur auch ein Ergebnis
findet, das diesem Tatbestand widerspricht, wurde der obengenannte theoretisch
ermittelte Befund auch praktisch-numerisch mit Hilfe eines Rechenautomaten
überprüft2). Es sei Ex ein Rotationsellipsoid mit den Halbachsen r, r, x r (1 ^ x < oo),
das mit der Einheitskugel Ex =* K normgleich ist, und es sei

T.(EX)
q(x)

T,(K) [N(EX)=N(K)\

das Verhältnis der entsprechenden sechsten Distanzpotenzintegrale. Wenn q(x) > 1

ausfallen kann, ist offenbar bereits bewiesen, dass die Kugel die hier fraghche
Extremaleigenschaft für n 6 eingebüsst hat. Nun ergibt eine Berechnung, auf die wir hier
verständlicherweise nicht eingehen können:

4096 (x2 - l)6 (16 x2 + 8 X* + 6 x« + 5 x*)

35 {at ]/x^- 1 + ln(x + Yx2 -T)}12
q(x)

Hierzu führen wir einige mit dem Gerät ermittelte numerische Werte an:

X q(x)

1,00
1,40

1,80
2,20
2,60

1,0000000
1,0464592
1,1075398
1,0899263
0,9974864

1,92 1,1117633

Die unterste Zeile gibt das numerisch bestimmte Maximum von q(x); damit ist
belegt, dass das Rotationsellipsoid mit dem Achsenverhältnis x 1,92 das optimale
sechste Distanzpotenzintegral liefert, das etwas grösser ausfällt als dasjenige der
normgleichen Kugel.

Damit resultiert das Problem: Welche konvexen Körper weisen unter allen
normgleichen das grösstmögliche Distanzpotenzintegral auf, wenn n^.6 ist P Diese noch
unbekannten Extremalkörper dürften Zentralsymmetrie aufweisen! H. Hadwiger

*) H. Kummer, Über Sehnenpotenzintegrale konvexer Korper tm k-dimensionalen Raum, Manuskript
(Bern 1957).

a) Ausgeführt im Institut für angewandte Mathematik der Universität Bern, Frühjahr 1959.

Kleine Mitteilungen
A Special Higher Congruence

Let p be a prime >2. If the congruence
xP+l + axP + bx + c 0 (mod p2)

is solvable, then clearly the quadratic congruence
x2 + (a + b) x + c =: 0 (mod p)

is solvable. Thus a necessary condition for the solvability of (1) is that
d (a + b)2-4c

(1)

(2)

(3)
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is either 0 or is a quadratic residue (mod p).
Assume that x0 is a Solution of (2), then it follows that

xg + 1 + axfi+bx0 + c mp (4)

Put x x0 + k p, then xP x£ (mod/?2) and (1) becomes

(xP + 1 + axP+bx0 + c) +pk(x0 + b) =0 (modp2),

which by (4) is equivalent to

m + k (x0 + b) ee 0 (mod p) (5)

Consequently if x0 + b f_= 0 (modp), k is uniquely determined and the Solution x0 of (2)
leads to a unique Solution of (1)

Suppose now that x0 satisfies
x0 — b (modp) (6)

Substitutmg from (6) m (4) we get

c=ab (modp) (7)

Conversely when (7) holds, x — b satisfies (2). Note also that when (7) is satisfied,
(3) becomes

d=(a-b)2 (modp) (8)

and therefore (2) is certamly solvable
If we now put x — b+hp we find that (1) reduces to

bP+i-abP-b2 + c-hp(bP~b)=0 (modp2),
hence

bP+1~abP-b2 + c 0 (mod p2) (9)

Thus if (9) is satisfied, that is, if (1) has the Solution — b, then it follows that —b + hp
is a Solution for all h

To sum up, we may state the following
Theorem: A necessary condition for the solvabihty of (1) is that d (a + b)2 — 4 c 0

or a quadratic residue (modp). If c-^ab (modp), then to each Solution (mod/?) of (2)
corresponds a unique Solution (mod/?2) of (1) However if c ab (modp) and (9) is satisfied,
then to the Solution —b of (2) corresponds p Solutions —b + hp(h 0,l, p — 1) of (1),
if (9) is not satisfied (1) has no Solution —b (modp)

Note that when c =ab, a^b (mod p), then as we have seen above, to the Solution
—a of (2) corresponds a unique Solution of (1)

It follows from the theorem that the number of Solutions AT of (1) is given by the following

formulas when d 0 or a quadratic residue

N ¦ 1 + (4) (c^ab (modP))> N Prl + (^) {p~ab (modp)),

where r\ 1 or 0 according as (9) is or is not satisfied.
To lllustrate, the congruence

x6 + x5 + x + 2 0 (mod 25)

has the two Solutions 2, 11. The congruence

x* + x5 +2#-3=0 (mod 25)

has the Solutions 4, 3, 8, 13, 18, 23, while

^6_2^5_2Ar + 4 0 (mod 25)

has the Solutions 2, 7, 12, 17, 22, on the other hand

xQ-2x5-2x-l=ö (mod 25)

has no Solutions. L. Carlitz, Durham, N. C. (USA)
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Algebraische Ableitung der Heronschen Flächeninhaltsformel aus zwei
Funktionalgleichungen und einer Normierungsbedingung

Eine einfache elementargeometrische Überlegung lehrt dass das Quadrat des Flacheninhaltes

f(x, y, z) eines Dreieckes der Eoene mit den beliebigen Seitenlangen x, y, z
sich durch em homogenes Polynom vierten Grades m x, y und z ausdruckt Beachtung
zweier Funktionalgleichungen Fx und F2 fur f(x, y, z), sowie einer Normierungsbedm-
gung N fuhrt vom allgemeinen Inhalts Ansatz direkt zur Heronschen Formel Sei

f\x, y, z) - axx* + a2 y4 + a3 z* +
+ a4 x3 y + a5 xz z -+ a6 y3 x + a1 y3 z + a8 zz x 4 a9 zz y + (1)

+ a10 x2 y2 + alx x2 z2 + a12 y2 z2

Aus der Symmetrie-Eigenschaft
f2(u, v, w) f2(x, y, z) fur alle \nordnungen (u, v, w) von x, y, z (Fx)

folgt
ax a2 az a, ai — a5 a6 — a7 a8 a9 — b, a10 axl a12 c,

womit f2(x, y, z) übergeht in die Gestalt

f2(x, y, z) a (x* + y4 + z*) + b(x9y + r3 z + y3 x + y3 z +
+ zz x + z3 y) + c (x2 y2 + x2 z2 + y2 z2) ^

Der Spezialfall der Dreiecksungleichung

f(x> y> x + y) 0 (F2)

liefert aus (2) zwei hnear-unabhangige Gleichungen zur Bestimmung von a, b, c

2a-T2b + c=0,
2a+3b + c=Q,

mit den Losungen
c — — 2 a und 6—0

(2) vereinfacht sich dadurch zu

f2(x, y,z) a [(#4 + y4 f- z*) - 2 (x2 y2 + x2 z2 + y2 z2)} (3)

a muss aus einer Normierungsbedingung, etwa aus

(N) /(l, 1, 1)=~
bestimmt werden

Setzt man den sich ergebenden Wert a — 1/16 m (3) ein, so erhalt man nach leichter
Umformung die bekannte Heronsche Formel

«*. y.*=1/^Vz [^F' - *] f—^ - y] [ x + y + z 1- 2 *l

H Wendelin, Graz

Dreieck und Viereck als Extremalpolygone
Bezeichnet A (at) das arithmetische Mittel der Seiten at (i 1, 2, n) eines Polygons,

das einen Kreis vom Radius q ganz enthalt, so gilt die wohlbekannte Ungleichung1)

A (at) ^ 2 q tg— oder Min_4 (at) 2otg^-.

Fur das Dreieck ist Mm A (at) am grossten und betragt 2 q\/3 Ist H(at) das harmonische
Mittel der Seiten at, so drucken wir eine weitere Extremaleigenschaft des Dreiecks unter
den Polygonen aus in folgendem

x) L FejesTöth, Lagerungen tn der Ebene, auf der Kugel und xm Raum (Springer-Verlag,Berhn1953), S 6.
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Satz: Enthält ein Polygon mit den Seiten at einen Kreis mit dem Radius q, so gilt
Mm A(at)
Min H(a,)

mit Gleichheit nur für n 3.
Zum Beweis betrachten wir nacheinander die Fälle n — 3 und n ^ 4, wobei wir zwingend

auf eine Extremaleigenschaft des Vierecks stossen werden.
n 3: Min A(at) 2q\/3. Wir zeigen, dass MmH(at) denselben Wert hat:

3 3

]
1

i<) i<i i<]
wobei man aus A^>G (geometrisches Mittel) leicht

3

1 t<;
gewinnt, das heisst,

9 n»,
i

1 l<1

H{a%) _?

ist F die Fläche, r der Umkreisradius und s der halbe Umfang des Dreiecks, so heisst dies
wegen

3

/ lat 4 r F
l

dann
9 r F r

Der letzte Ausdruck beträgt aber infolge

3r
=_ -j-

mindestens 2 q\/3.

S S -^- |/3

#(a,) ^ 2 £ j/T erlaubt uns übrigens, aus den kürzlich mitgeteilten Ungleichungen2)

2 F -^ a, ~

die Grösse F wie folgt zu eliminieren:

9r
~4F

r -£t a% - 2o
Diese neue Abschätzung von

3
1

4* «_

ist von unten schwächer, von oben jedoch stärker geworden. Den einfachen Nachweis
überlassen wir dem Leser.

a) F. Leuenberger, Einige Dreiecksungleichungen, El. Math. 13, 125 (1958).
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n ^ 4 Es gilt Mm H(at) > 0, eine Ungleichung, welche fur jedes n ^4 scharf ist
H(at) kann etwa so beliebig nahe an 0 herangebracht werden, dass man eine Polygonseite
genügend klein wählt Es gilt deshalb

2 q tg
n Mm A (at) > Min H(at),

womit der Beweis des Satzes geleistet ist
Aus Mm A(at) - MmH(a%) - 0 fur n 3 und Mm_4(at) - Mm H(at) <2q tg(n/n) fur

n ^ 4 folgt zudem noch, dass das Viereck die grosste Differenz der beiden Minima
aufweist, das heisst, Mm A(at) - Mm H(at) <2q gilt stets, ist aber nur scharf für n 4

F Leuenberger, Zuoz

Einige Ungleichungen
Em beliebiges Dreieck ABC mit den Winkeln oc, ß, und y habe den Umkreis (M, R)

und die Flache F, Fv sei die Flache des Fusspunktdreiecks von einem beliebigen Punkte P.
Nach Gergonne gilt die bekannte Formel

Fv — \R2 — d2\ sina sinß siny,

worin MP — d Wahlen wir fur P einen inneren Punkt des Umkreises, dann gilt also

Fv — (R2 — d2) sma siiij. smy (1 — J 2 R2 sina smß smy

und somit, wegen d < R, die Ungleichung

oder

fv<\f (1)

Gleichheit besteht fur den Umkreismittelpunkt M
Es ist interessant, Ungleichung (1) anzuwenden auf den Punkt von Lemoine K, der

fur jedes Dreieck innerhalb des Umkreises hegt Seien x, y und z die Abstände der Seiten
a, b und c des Dreiecks ABC vom Punkte K, dann gelten bekanntlich die Relationen

2F 2F 2F
x —r a, y —— b und z= ^-%

c mit 2>2 a2 + b2 + c2,

welche leicht aus x y z a b c gefolgert werden können
Wir gewinnen also

1 2F2 * 12 JP
Fv y 27*7 siny (i>2)2

27« * smy -j£a*yT • (2)

Anwendung von (1) liefert uns
12 F* ^ 1 -.
(i;a2)2 - 4

woraus wir die bekannte Ungleichung von Weitzenbock (1919) fur ein beliebiges Dreieck

2Ja2^4F\/3

erhalten. Diese Ungleichung ist zwar leichter zu beweisen, aber der Zusammenhang mit
dem Punkte von Lemoine ist em wenig überraschend
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Wir können auch andere Punkte betrachten. Die Fläche des Höhenfusspunktdreiecks
in einem spitzwinkligen Dreiecke (wo also der Höhenpunkt innerhalb des Umkreises liegt)
ist Fv 2 F cosa cos/? cosy, folglich ergibt sich aus (1)

cosa cos/? cosy ^

eine sehr bekannte Ungleichung, die auch für ein stumpfwinkliges Dreieck gilt.
Seien x, y und z bzw. die Abstände der Seiten a, b und c von dem Schwerpunkte,

dann ist
2 F _ IFZ= 3c

und also

und somit

1
z, 2F " AX==-3K=-3a> y^-3j Und

Fv \ Ex y siny |-^S^ \ F^sin2«

i;sin2a^

für jedes Dreieck, woraus leicht folgt £ a2 ^ 9 i?2.

Auch der Mittelpunkt des Inkreises ist für jedes Dreieck ein innerer Punkt des
Umkreises, also darf nun auch Formel (1) angewendet werden.

Leicht zu beweisen ist:
r --.i.

1
2V-

1 r2-2s
2R

und folglich
rF 1

~2F - 4
also R^2r.

Der Zusammenhang zwischen dem Punkt von Lemoine K und die Ungleichung
Ea2 ^ 4 F |/3 kann auch noch auf eine andere Weise schön gezeigt werden. Wir fanden
ja in (2) die Formel

„ 12 F3
Fv - ¦

aber es gilt auch

und also

(2>2)2

MÄ'2\
__

1 / MK2\
~~ 4\l~ R2") F

MK2\12 F3
__

1 /
_

MK2\
a2)2 ~ 4 \ i?2 / '(27«

woraus, wegen R ab c/4 F, gefolgert werden kann:

Also ist

MK•= ü?2 - _
•

(^
R2^

3
->a2&2s2^48F2 ^2^ oder 2>2^4F[/3.

(^) (2>2)2

Man erkennt also die Ähnlichkeit mit der Folgerung von Ungleichungen wie R^2r
aus MI2^R2-2Rr und £a2£9R2 aus MH2 9i?2-2>2.

R. Kooistra, Culemborg (Holland)



Kleine Mitteilungen 81

Extremaleigenschaften der Summe der wichtigsten Ecktransversalen
des n-dimensionalen Simplex

Em w-dimensionales Simplex mit den Ecken At (i 1, 2, n + 1) habe den Schwerpunkt

S, den Umkugelradius R und den Inkugelradius r Die Lange der Schwerehme von
A - durch S sei mt, wahrend A. vom gegenüberliegenden Grenzraum den Abstand ht habe
Bekanntlich gilt r ^R/n1) Bezeichnen H(xt), G(xt), A(xt), Q(xt) das harmonische,
geometrische, arithmetische und quadratische Mittel der Langen x%, so gilt sogar folgender

Satz:
{n + l)r£H(tt)£G(tt) £A(tt)£Q(Q ^ -^±- R,

wobei fur die Ecktransversalen tt entweder ht oder mt gesetzt werden darf
Fur n 2 wurden kurzlich Beweise mitgeteilt2»3), welche sich nicht ohne weiteres auf

beliebiges n übertragen lassen Dagegen sind die Ungleichungen zwischen den einzelnen
Mitteln wohlbekannt Wegen ht ^ m% genügt es deshalb zu zeigen, dass

1 (n + 1) r H(ht) und 2 Q(mt) ^ —— R

Beweis zu 1 Das At gegenüberliegende (n — l)-dimensionale Grenzsimplex habe den
Inhalt B% Dann ergibt sich aus

_»,A,-„J~r2;B,
1

mit / als Inhalt unseres Polytops die Relation

ft + i

l
was mit der Behauptung wegen H(h%) [Aty-1)]"1 übereinstimmt

Beweis zu 2 At sei durch den Ortsvektor at mit dem Ursprung im Mittelpunkt der
M-dimensionalen Umkugel gegeben. Dann ist

1 n

der Schwerpunktsvektor des Grenzsimplex mit dem Inhalt Bn+X, das heisst

Da fur die andern m\ Entsprechendes gilt, fuhrt die Summation auf

1 \ 1 «<; / *<; 1

das heisst
m + l\

*) L Fejes Toth, Lagerungen tn der Ebene, auf der Kugel und tm Raum (Springer-Verlag, Berlin 1953),
S 188

2) F Leuenberger, Ewige Dretecksungleichungen, El Math 13, 121-126 (1958).
3) J. Berkes, Bemerkungen zur Arbeit von F. Leuenberger uber «Einige Dreiecksungktchungem, El. Math.

14, 62-64 (1959)
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wenn wir die (M g1) Kanten des Simplex mit at bezeichnen.
Nun ist aber

1 n + l
n + l ^ l

und schliesslich
/n + 1 \2 1 /n+i

*° (ifW (2>J {nTiW (27«. + *2>.«.

das Quadrat des Ortsvektors von 5. Mithin gilt

i / w. „ __ \ i
/» + i\

+1 \ .12/
Multiplikation von (2) mit [(n + l)/n]2 liefert (1); vermöge dessen folgt

Q(m%) 0±± |/i?2 z 52 <c _>L+A Ä.*v *' « Y n

Gleichheit tritt nur ein, wenn der Schwerpunkt mit dem Umkugelmittelpunkt 0
zusammenfällt.

Betrachten wir die Sachlage im R31 Für die Höhen des Tetraeders T finden wir
4

]Tht^16r
l

mit Gleichheit nur im gleichflächigen Tetraeder, sowie

mit Gleichheit nur im regulären Tetraeder.
Für die Schwerelinien von T dagegen gilt

4

yjm{^ 16 r
l

mit Gleichheit nur, wenn T regulär ist, und

mit Gleichheit nur, wenn S und 0 zusammenfallen, das ist aber im gleichflächigen Tetraeder

der Fall. F. Leuenberger, Zuoz

Eine mögliche Verallgemeinerung der Fibonaccischen Zahlen

Auf die Fibonaccischen Zahlen führt die Aufgabe, die Zahlen von 1 bis n auf zwei
Zeilen so zu verteilen, dass nicht mehr als zwei aufeinanderfolgende Zahlen auf eine Zeile
zu stehen kommen. Die Fibonaccische Zahl f(n) gibt dann die Anzahl der möglichen
Verteilungen an. Es gilt die Rekursionsformel

/(*) /(* - 1) + f(n - 2) (1)

mit /(l) 1 und f(2) 2. (Hierbei sollen Vertauschungen der Zahlen einer Zeile bzw. der
Zeilen untereinander zu keinen neuen Verteilungen führen!)

Die obige Fragestellung ist ein Sonderfall eines allgemeineren Problems: Werden bei den
Verteilungen m aufeinanderfolgende Zahlen auf einer Zeile zugelassen und gibt jetzt
Fm(n) die Anzahl der möglichen Verteilungen an, so gilt diesmal

tn

Fm(«) *»(* - 1) + ^*(« - 2) + + Fm(n -m)=£ F^n ~ <"> <2>
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mit n > m und entsprechend definierten Zahlen Fw(l), Fm(m) Die obengenannten
Fibonaccischen Zahlen smd ersichtlich Spezialfall hiervon fur m — 2

Zum Beweis der angegebenen Rekursionsformel (2) werden die Verteilungen der Zahlen
von 1 bis (n — m) m m Gruppen eingeteilt Die v-te Gruppe wird von allen Verteilungen
gebildet, bei denen genau die letzten v Zahlen (n — m — v + 1), (n — m — v + 2),
(n — m) m einer Zeile stehen Sie haben die Form

(n — m — v + 1) (n — m),
(n — m — v) * '

(Da em Vertauschen der Zahlen einer Zeile unwesentlich ist, dürfen die Zahlen der Grosse
nach angeordnet werden) Die Anzahl der Verteilungen dieser Form sei av, es gilt

m

Fm(n -m)~ 2J av
i

Durch sukzessives Hinzufugen der Zahlen (n — m + 1) bis n und beim Durchlaufen von v
von 1 bis m entstehen alle Verteilungen der in (2) vorkommenden Fm, und im folgenden
sollen sie im einzelnen hingeschrieben werden, um dann die Beziehung (2) nachzuweisen

Fugt man m der obigen v-ten Gruppe die Zahl (n — m + 1) hinzu, so kann das m beiden
Zeilen geschehen, so dass sich die Anzahl der Verteilungen verdoppelt also 2 av wird. Bei
av Verteilungen stehen jetzt (v + 1) aufeinanderfolgende Zahlen auf einer Zeile Beim
Hinzufugen von (n — m + 2) erhalt man 4 av Verteilungen, und es sind jetzt (v + 2)
aufeinanderfolgende Zahlen, die wieder bei av Verteilungen zusammen auf einer Zeile stehen -
So geht es fort bis zur Zahl [n — m + (m — v)] (n — v), denn jetzt - nach dem Hinzufugen

dieser Zahl - stehen die m aufeinanderfolgenden Zahlen (n — m — v + 1) bis (n — v)
bei av Verteilungen auf einer Zeile, bei all den Verteilungen namhch, bei denen die
hinzuzufugende Zahl jedesmal auf die obere Zeile kam Aus den ursprunglichen av Verteilungen
smd so bisher 2m~v av Verteilungen geworden Beim Hinzufugen der nächstfolgenden
Zahl (n — v + 1) bei allen Verteilungen in beiden Zeilen stehen nach dem eben Gesagten
bei av Verteilungen jetzt (m + 1) aufeinanderfolgende Zahlen auf einer Zeile, sie müssen
also wieder gestrichen werden Die neue Anzahl der Verteilungen wird demnach
(2 ™-h-i _ i) av Von nun an verdoppelt sich wieder die Anzahl bei jedem Hinzufugen der
folgenden Zahl

Um bis zur Zahl (n — 1) zu kommen, smd noch (v — 2) Schritte notwendig, so dass die
Anzahl der Verteilungen der Zahlen von 1 bis (n — 1), die aus der ursprünglichen v-ten
Gruppe entstanden smd, auf 2V~2 (2m-v+1 — 1) av gestiegen ist Fur die Verteilungen der
Zahlen von 1 bis n ergibt sich hieraus durch Verdoppeln die Anzahl

2v-l (2m-v+l -1) av, (4)

und die Behauptung ist jetzt, dass diese Anzahl gleich ist der Summe aller bisher
aufgetretenen Ausdrucke Diese waren

av 2 av, 4av 2™~v av (V*-**1) - 1) av 2 (2™-"+* - 1) av 2"~2 (2*-"+i - 1) av

(Man überzeugt sich leicht, dass es m Ausdrucke sind Die Summe wird

[(2^-H-i - 1) + (2"-1 - 1) (2w-"+1 - 1)] av - 2"-1 (2™-"+1 - 1) av

und das ist genau der obige Ausdruck (4) Es gilt also schon fur die einzelnen Gruppen
eine Beziehung entsprechend (2) Die Summierung uber die Gruppen fuhrt dann zur
Rekursionsformel (2) selbst

Es ist jetzt leicht, die oben als noch zu definieren eingeführten Zahlen Fm(l) Fm(m)
hinzuschreiben Ganz sicher muss Fw(l) 1 sein und aus dieser einen Verteilung gehen
durch Hinzufugen der Zahlen 2 bis m die Verteilungen hervor, deren Anzahlen anzugeben
smd Da mit der letzten Zahl m überhaupt erst m aufeinanderfolgende Zahlen auftreten,
leitet sich jedes der gesuchten Fm durch Verdoppeln aus dem vorhergehenden ab Es sind
also die Potenzen von 2, und es gilt

Fm(u) 2"~* (u g m) (5)
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In (3) können fur 2 m > n (> m) negative Zahlen auftreten. Die entsprechenden
Ausdrucke smd keine Verteilungen im obigen Sinne. Ebensowenig fuhrt hier das Hinzufügen
der weiteren Zahlen zu solchen. In diesem Falle smd alle Verteilungen m den übrigen
Gruppen von (3) enthalten. Da bereits fur die einzelnen Gruppen eine Beziehung entsprechend

(2) gilt, können die Ausdrucke mit negativen Zahlen als bedeutungslos fortgelassen
werden. R. Schneiderreit, Berlin

Sur un probleme de M. Erdös
P. Erdos a pos6 le probleme suivant: existe-t-il un nombre premier p > 5 tel que les

residus mod p des nombres 2', 3f, (p — 1)' sont tous distincts Le but de cette note
est de d6montrer que dans ce dernier cas _1° aucun des nombres 2', 3', (p — 1)' n'est congruent mod p au nombre — \?~~-—)'
2° p ss 5 (mod 8) \ 2 /

Demonstration Comme on le sait, pour tout nombre naturel k < p — 1 on a

Ä' (p - 1 - k) l (- 1)*+! (mod p) (1)

__= 1
P-II en resulte d'abord que />=£ 3 (mod 4). En effet, dans le cas contraire on aurait —

(2)

(mod 2) et en posant k ^—^— nous trouvenons

\(*Z M '}2 s 1 (modp), d'oü ft~ X) ' 1 (modp) ou (P~ M ' - 1 (modp).

Vu les theoremes de Leibniz et Wilson tous les deux congruences (2) sont incompatibles
avec la condition du probl&me. On a donc p 1 (mod 4) et

{(¦^i^)'}^-1 (mod^)- (3)

Comme, d'apres la condition du probleme, les residus mod p des nombres 2', 3', (p— 1)'
sont tous distincts et comme leur nombre est p — 2, ils forment une permutation de la
suite 1,2, p — 1 diminu-e d'un seul r6sidu r. On a donc

Pfjt*sJ£^W- (modp)

d'oü
n

p-2n1=1
r TJis 1 (mod p)

1 1

rJJ _
ä » (/> - ä - 1)» 1 (mod />)

En vertu de (1) et (3)
i_*< 2

r
*Sk< 2

d'oü

_%_! (- l)k+1 s - (^T1)' (mod p) • (4)

±(£-Z-y (modp).

Mais, d'apres la definition de r, r n'est congruent ä aucun nombre k' (2 ^ Ä ^ p — 1);
on a donc

_(-_Z_I)i (modp), (5)

d'oü re_ulte la premiere partie de la these. De (4) et (5) on deduit

_7*_, (- 1)t+1 s X (mod P) •
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d'ou

i<,k<-- 2

V (k + l)^-3)JP+l) o (mod 2)
kT-^1 8

2

Comme p _$_ 3 (mod 4), on a p + 3 - 0 (mod 8), c est-a-dire p 5 (mod 8)

II est ä remarquer que la condition du probleme n'est pas remphe, lorsque 1

/ - 23 \ \P'
ou I —-— I — — 1 En effet, dUns le premier cas la congruence x (\ + 1) 1 (mod p) est

resoluble et dans le second cas (en vertu du theoreme de Vorono1-Skolem) la congruence
x (x + 1) (x + 2) 1 (mod p) est resoluble On a alors

(x + 1) ' - (x - 1)' (mod p) ou bien (x + 2) ' (x - 1)' (mod p)

Les seuls nombres premiers p < 1000 pour lesquelles on a p 5 (mod 8), - 1 et
/ - 23 ^'
I—-—j 1 sont les suivants 13, 173, 197, 277, 317, 397, 653, 853, 877, 997 Mais

comme on peut venfier aisement ä l'aide du «Canon anthmeticus» on a 9' 4' (mod 13),
15' 10' (mod 173) 9' 3' (mod 197), 43' 17' (mod 277), 21' 10' (mod 317),
45' 36' (mod 397), 19' 1 651' (mod 653), 38' 30» (mod 853) 100' 84' (mod877)
et 72' 54' (mod 997)

II en resulte que la condition du probleme n'est remphe par aucun nombre premier
p > 5 et < 1000 B Rokowska, Wroclaw et A Schinzel, Varsovie

Aufgaben
Aufgabe 352. Es sei Ox das Orthozentrum des dem Kreis k mit dem Radius r

einbeschriebenen Dreiecks AXA2A3, 02 das Orthozentrum des Dreiecks Bx B2 Bs, das auch dem
Kreise k einbeschrieben ist Man beweise

OxÖ2 < 4f -4 u

wo„ Mm At B3,i,i 1, 2, 3 E Jucovic\ Presow (CSR)

Aufgabe 353. Es sei Tx der Schwerpunkt des dem Kreise k mit dem Radius r
einbeschriebenen Dreiecks AXA2AZ, T2 der Schwerpunkt des ebenfalls k einbeschriebenen
Dreiecks BXB2BZ Man beweise

~- -r, 4 r + u
TXT2< f—,

wou Mm At Bu i,; 1, 2, 3 E. Jucovic, Preüov (CSR)

Lösung und Verallgemeinerung Es sei Tx der Schwerpunkt des der w-dimensionalen
Kugel k(M, r) einbeschriebenen Simplex A% (i 1, n + 1), T2 der Schwerpunkt des
ebenfalls k einbeschriebenen Simplex B3 (; 1, n + 1) Dann gilt

m-=^ 2 nr + u ,„.T*T* <~nTl ' (1)

wo u Mm At B} (i, ] — 1, n + 1)

Beweis Sei Ak ein beliebig gewählter fester Eckpunkt des Simplex At Der Schwerpunkt

Sk des dem Eckpunkte Ak gegenüberliegenden (n - 1)-dimensionalen Grenzraumes

ist ein innerer Punkt von k Der Simplexschwerpunkt Tx teilt die Strecke Ah Sk im
Verhältnis n 1 Die w-dimensionale Pferchkugel des Simplexschwerpunktes Tt ist also eine
w-dimensionale Kugel kx(Mx, rx), welche mit k in emer Homothetie steht, deren Mittelpunkt

Ak ist, und deren Charakteristik n (n+l) betragt Hieraus folgt, dass Mx die

Strecke AkM im Verhältnis n 1 teilt, und rx n r/(n + 1) ist
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