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n = —2,-1,0, 2, dagegen fraglich bleibt fiir » =1, 3, 4, 5 und sicher falsch ist fiir
n==6,7,.... Dass die Kugel fiir » = 6 ihre Extremaleigenschaft einbiisst, wurde von
KuMMER?) nachgewiesen. Da sich in der neueren Fachliteratur auch ein Ergebnis
findet, das diesem Tatbestand widerspricht, wurde der obengenannte theoretisch
ermittelte Befund auch praktisch-numerisch mit Hilfe eines Rechenautomaten iiber-
priift?). Es sei E, ein Rotationsellipsoid mit den Halbachsen 7,7, x 7 (1 < x < 00),
das mit der Einheitskugel E; = K normgleich ist, und es sei
T4(E,) -
q(x) - TG(K) [N(Ex) - N(A)J
das Verhiltnis der entsprechenden sechsten Distanzpotenzintegrale. Wenn ¢(x) > 1
ausfallen kann, ist offenbar bereits bewiesen, dass die Kugel die hier fragliche Extre-
maleigenschaft fiir » = 6 eingebiisst hat. Nun ergibt eine Berechnung, auf die wir hier
verstindlicherweise nicht eingehen kénnen:
() H0% (=)0 (1672 £ 8 4 62 4 5.0
# B{xya—1+m(r+ 1)}

Hierzu fiithren wir einige mit dem Gerit ermittelte numerische Werte an:

x q(x)
1,00 1,0000000
1,40 1,0464592
1,80 1,1075398
2,20 1,089926 3
2,60 0,997 4864
1,92 1,1117633

Die unterste Zeile gibt das numerisch bestimmte Maximum von ¢(x); damit ist
belegt, dass das Rotationsellipsoid mit dem Achsenverhiltnis ¥ = 1,92 das optimale
sechste Distanzpotenzintegral liefert, das etwas grosser ausfillt als dasjenige der
normgleichen Kugel.

Damit resultiert das Problem: Welche konvexen Kirper weisen unter allen norm-
gleichen das grosstmogliche Distanzpotenzintegral auf, wenn n = 6 ist? Diese noch un-
bekannten Extremalkorper diirften Zentralsymmetrie aufweisen!  H. HADWIGER

1y H. KuMMmeR, Uber Sehnenpotenzintegrale konvexer Korper im k-dimensionalen Raum, Manuskript
(Bern 1957).
2) Ausgefiihrt im Institut fiir angewandte Mathematik der Universitidt Bern, Friihjahr 1959.
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A Special Higher Congruence
Let p be a prime > 2. If the congruence

Pttt axP+brx+c=0 (mod p?) (1)
is solvable, then clearly the quadratic congruence
2+ (@a+b)xr+c=0 (mod p) (2)

is solvable. Thus a necessary condition for the solvability of (1) is that
d=(a+0b%*—4c (3)
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is either = 0 or is a quadratic residue (mod p).
Assume that x, is a solution of (2); then it follows that

s taxl+brytc=mp. (4)
Put x = %+ k p; then x? = x? (mod p?) and (1) becomes

(x(f+1+ax(f+bxo+c)+pk(x0+b)50 (mod p?),
which by (4) is equivalent to
m+k(xg+b) =0 (mod p). (5)

Consequently if xy+ b # 0 (mod p), & is uniquely determined and the solution x, of (2)
leads to a unique solution of (1).
Suppose now that x, satisfies

%o
Substituting from (6) in (4) we get
c=ab (mod p). (7)

Conversely when (7) holds, » = —b satisfies (2). Note also that when (7) is satisfied,
(3) becomes

il

—b  (modp). (6)

d = (a —b)? (mod p) (8)
and therefore (2) is certainly solvable.
If we now put x = —b + & p we find that (1) reduces to

b+l —a bt —b2+c—hp (b —-0b) =0 (mod p2),
hence
P+l g bt —p24 ¢ =0 (mod p?). (9)

Thus if (9) is satisfied, that is, if (1) has the solution —b, then it follows that —b + A p
is a solution for all 4.

To sum up, we may state the following

Theorem: A necessary condition for the solvability of (1) is that d ={(a +b)2 —-4c=0
or a quadvatic vesidue (mod p). If ¢ # a b (mod p), then to each solution (mod p) of (2)
covresponds a unique solution (mod p2) of (1). However if ¢ = a b (mod p) and (9) is satisfied,
then to the solution —b of (2) corvesponds p solutions —b +hp (h=0,1,...,p —1) of (1);
1f (9) 1s mot satisfied (1) has no solution = —b (mod p).

Note that when ¢ =a b, a # b (mod p), then as we have seen above, to the solution
—a of (2) corresponds a unique solution of (1).

It follows from the theorem that the number of solutions N of (1) is given by the follow-
ing formulas when d = 0 or a quadratic residue:

N:l-}-(—z;) (c£ab (modp)), szn-{—(—g—) (c=ab (modp)),

where 7 = 1 or 0 according as (9) is or is not satisfied.
To illustrate, the congruence

445 4+2x+2=0 (mod 25)
has the two solutions 2, 11. The congruénce

4+ 4+2x-3=0 (mod 25)
has the solutions 4, 3, 8, 13, 18, 23, while

28 —225—-2x4+4=0 (mod 25)
has the solutions 2, 7, 12, 17, 22; on the other hand

8 —225—-2x—-1=0 (mod 25)
has no solutions. L.Carritz, Durham, N.C. (USA)
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Algebraische Ableitung der Heronschen Flicheninhaltsformel aus zwei
Funktionalgleichungen und einer Normierungsbedingung
Eine einfache elementargeometrische Uberlegung lehrt, dass das Quadrat des Flichen-
inhaltes f(#, y, z) eines Dreieckes der Ebene mit den beliebigen Seitenlingen x,y, z
sich durch ein homogenes Polynom vierten Grades in #, y und z ausdriickt. Beachtung
zweier Funktionalgleichungen F, und F, fiir f(x, y, 2), sowie einer Normierungsbedin-
gung N fiihrt vom allgemeinen Inhalts-Ansatz direkt zur Heronschen Formel. Sei
P,y 2) = ay ¥* + ay y* + ay 2* +
ta By taz Pzt agy r+a; 932+ a8 x4 ag2ty + (1)
+ A X2 Y+ ay X2+ ag, P 22,
Aus der Symmetrie-Eigenschaft

f2(u, v, w) = f%(x, y, 2) fiir alle Anordnungen (%, v, w) von %, ¥, z (F,)
folgt
A =0y =a3=Q; =05 =05=0; =g = Ay =b; ay9=ay; = a3, = ¢,

womit f2(x, y, 2) iibergeht in die Gestalt
Py, 2) = a (@ + 9+ 2% + b(2% + 02+ 905 + 90 2 +
+ 281428y +c(¥2y?+ 2?22 4 222,
Der Spezialfall der Dreiecksungleichung
fxy, x+y) =0 (Fo)
liefert aus (2) zwei linear-unabhédngige Gleichungen zur Bestimmung von a, b, ¢:

2a+2b+c=0,

2a+3b+c=0,
mit den Ldsungen

c=—2aund b=0.
(2) vereinfacht sich dadurch zu
fx y,2) = al(x + 4+ 24) — 2 (62 y% 4 22 2% 4 2 2%) . (3)
a muss aus einer Normierungsbedingung, etwa aus
3
(N) (1, 1,1)=—+¢

bestimmt werden.
Setzt man den sich ergebenden Werta = — 1/16in (3) ein, so erhdlt man nach leichter
Umformung die bekannte Heronsche Formel:

o = | IR ] [P ] [,

2 2

H. WENDELIN, Graz

Dreieck und Viereck als Extremalpolygone
Bezeichnet A4 (a;) das arithmetische Mittel der Seiten a; (1 =1, 2, ..., n) eines Polygons,
das einen Kreis vom Radius ¢ ganz enthilt, so gilt die wohlbekannte Ungleichung?)

A(a;) ;29tg% oder Mind(a;) = Zth%-

Fiir das Dreieck ist Min 4 (a,) am grossten und betrigt 2 g /3. Ist H(a;) das harmonische
Mittel der Seiten a;, so driicken wir eine weitere Extremaleigenschaft des Dreiecks unter

den Polygonen aus in folgendem

1) L.FEejesT6TH, Lagerungen in der Ebene, auf der Kugel und im Raum (Springer-Verlag,Berlin1953), S. 6.
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Satz: Enthdlt ein Polygon mit den Seiten a; einen Kreis mit dem Radius o, so gilt

Mind(a) _,
MinH(a;) =

mit Gleichheit nur fiir n = 3.
Zum Beweis betrachten wir nacheinander die Fille » = 3 und » = 4, wobei wir zwin-
gend auf eine Extremaleigenschaft des Vierecks stossen werden.

n =3: Min A(a;) = 2¢)/3. Wir zeigen, dass MinH (a;) denselben Wert hat:

3 3
1 -1 3 Hai 9 H“i
Hla) =3 — - ”ml R 1
( t) <12 az) Zai ai .Zai a’_ + Z'Zai a]_ ’

1<) 1<] 1<j

3

wobei man aus 4 = G (geometrisches Mittel) leicht

gewinnt, das heisst,

ist F die Fldche, » der Umkreisradius und s der halbe Umfang des Dreiecks, so heisst dies
wegen

dann

mindestens 2 ¢ /3.
H(a;) = 2 ¢ J/3 erlaubt uns iibrigens, aus den kiirzlich mitgeteilten Ungleichungen?)

B
ll\l/%
a‘,_.

A

e

W

Diese neue Abschiatzung von

ist von unten schwicher, von oben jedoch stidrker geworden. Den einfachen Nachweis iiber-
lassen wir dem Leser.

?) F. LEUENBERGER, Etnige Dreiecksungleichungen, E1l. Math. 13, 125 (1958).
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n = 4: Es gilt Min H(a,) > 0, eine Ungleichung, welche fiir jedes # = 4 scharf ist.
H(a;) kann etwa so beliebig nahe an 0 herangebracht werden, dass man eine Polygonseite
geniigend klein wahlt. Es gilt deshalb

20 tg% ~ Min 4(a;) > Min H(a;),

womit der Beweis des Satzes geleistet ist.
Aus Min 4(a;) — Min H(a;) = 0 fiir #» =3 und Min4(a,) — MinH(a;) < 2 p tg(n/n) fiir
n = 4 folgt zudem noch, dass das Viereck die grosste Differenz der beiden Minima auf-
weist; das heisst, Min 4 (a,) — Min H(a,;) < 2 p gilt stets, ist aber nur scharf fiir n = 4.
F. LEUENBERGER, Zuoz

Einige Ungleichungen

Ein beliebiges Dreieck 4BC mit den Winkeln «, 8, und y habe den Umkreis (M, R)
und die Fliche F'; F, sei die Fliche des Fusspunktdreiecks von einem beliebigen Punkte P.
Nach GERGONNE gilt die bekannte Formel
F,=  |R*— | sinasingsiny,

worin M P = d. Wahlen wir fiir P einen inneren Punkt des Umkreises, dann gilt also

1 1 d? .
IR Ty . oL a " . .
B, = 3 (R? — d?) sina sin § siny 3 (1 RZ) 2 R%sino sin g siny

oder
1 a?

und somit, wegen d < R, die Ungleichung

F<~F (1)

Y == T .

Gleichheit besteht fiir den Umkreismittelpunkt M.

Es ist interessant, Ungleichung (1) anzuwenden auf den Punkt von LEMOINE K, der
fiir jedes Dreieck innerhalb des Umkreises liegt. Seien #, ¥ und z die Abstinde der Seiten
a, b und ¢ des Dreiecks ABC vom Punkte K, dann gelten bekanntlich die Relationen

_ZF —-~2Fb und z—-z—f-c
“Ta VT ya " s
welche leicht aus x¥:y:2=a:b:c gefolgert werden kénnen.

Wir gewinnen also

mit  Ja?=a?+ b2+ 2,

1 . 2 F? .. 12 F3
Anwendung von (1) liefert uns
12 F3 1
e B - FF
(Zat =T

woraus wir die bekannte Ungleichung von WEITZENBOCK (1919) fiir ein beliebiges Dreieck
Ya*z4F)3

erhalten. Diese Ungleichung ist zwar leichter zu beweisen, aber der Zusammenhang mit
dem Punkte von LEMOINE ist ein wenig iiberraschend.
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Wir kénnen auch andere Punkte betrachten. Die Flache des Hohenfusspunktdreiecks
in einem spitzwinkligen Dreiecke (wo also der Héhenpunkt innerhalb des Umkreises liegt)
ist F, = 2 F cosa cosf§ cosy, folglich ergibt sich aus (1)

1
cosa cosf cosy < g

eine sehr bekannte Ungleichung, die auch fiir ein stumpfwinkliges Dreieck gilt.
Seien x, ¥y und z bzw. die Abstinde der Seiten a, & und ¢ von dem Schwerpunkte,
dann ist

x—lh—gF —2—5 und _ &x
—3MT3a Y750 -t
und also
1 . 2 siny 1 .
= — = . 2 — = 2
F, 2)];:ysm'y 9F2ab gF):'sma
und somit

2sin?a < »iv

fiir jedes Dreieck, woraus leicht folgt 3 a? < 9 R2.
Auch der Mittelpunkt des Inkreises ist fiir jedes Dreieck ein innerer Punkt des Um-
kreises, also darf nun auch Formel (1) angewendet werden.
Leicht zu beweisen ist:
1 725 v

1
— T a2 : —_ . _
F,,_272s1noc 5 R ZRF

und folglich

rFS

1
o< >
B =7 F, also |R=2v.

Der Zusammenhang zwischen dem Punkt von LEMoOINE K und die Ungleichung

Jat=4F V:’: kann auch noch auf eine andere Weise schon gezeigt werden. Wir fanden
ja in (2) die Formel

12 F3
= (pa
aber es gilt auch
1 MK?

und also
12 F# 1 MK*
= (R

woraus, wegen R = a b ¢/4 F, gefolgert werden kann:

MEK®=R? - —,~3-m-g.
2_9_
( bC) |
Also ist '
3 a? bl c? -
R:> ———5 >a?b?c? 248 F? 5 oder Xa*=4FJ)3.
Pl (Xa?)
bc

Man erkennt also die Ahnlichkeit mit der Folgerung von Ungleichungen wie R= 27
aus MI?2=R2— 2Ry und Ya*< 9 R? aus MH?®=9 R? -} al.
R. Kooistra, Culemborg (Holland)
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Extremaleigenschaften der Summe der wichtigsten Ecktransversalen
des n-dimensionalen Simplex

Ein n-dimensionales Simplex mit den Ecken 4, (: =1, 2, ..., n 4+ 1) habe den Schwer-
punkt S, den Umkugelradius R und den Inkugelradius ». Die Liange der Schwerelinie von
A, durch S sei m;, wihrend 4; vom gegeniiberliegenden Grenzraum den Abstand %; habe.
Bekanntlich gilt » < R/n!). Bezeichnen H(x,), G(¥,), A(x;), Q(x,) das harmonische, geo-
metrische, arithmetische und quadratische Mittel der Langen x,, so gilt sogar folgender

Satz:

n+1
(n+1)r=H@)=G1)=4() =Q0) = T R,
wober fiv die Eckivansversalen t; entweder h; oder m, gesetzt werden darf.

Fiir n = 2 wurden kiirzlich Beweise mitgeteilt? 3), welche sich nicht ohne weiteres auf
beliebiges # iibertragen lassen. Dagegen sind die Ungleichungen zwischen den einzelnen
Mitteln wohlbekannt. Wegen h; < m, geniigt es deshalb zu zeigen, dass

Lom41)r=H(k) uwnd 2 Qm)s LR

Beweis zu 1: Das A, gegeniiberliegende (» — 1)-dimensionale Grenzsimplex habe den

Inhalt B;. Dann ergibt sich aus

n+1

Bihy=nl=7v)'B,
1

mit [ als Inhalt unseres Polytops die Relation

n+l

E h'l_l — y-—l,
1

was mit der Behauptung wegen H(k;) = [4 (k;1)]~1 iibereinstimmt.
Beweis zu 2: A; sei durch den Ortsvektor q, mit dem Ursprung im Mittelpunkt der
n-dimensionalen Umkugel gegeben. Dann ist

der Schwerpunktsvektor des Grenzsimplex mit dem Inhalt B, .,, das heisst

2 n 2
1 & 1
mii,= <an+1 - gZ%) = aE (” an+1—2“z‘> .
1

1

Da fiir die andern m? Entsprechendes gilt, fiihrt die Summation auf

n+1
n+1 n+l ( : )
n 1 n—i—l n+1
Trt= T (et =2 o) = 2 Flem = 2 Y
n 1 1<] t<1 1
das heisst
n+ 1
L0
Afmp) = S5 3 o1, )

1

1) L. Fejes TOTH, Lagerungen in der Ebene, auf der Kugel und im Raum (Springer-Verlag, Berlin 1953),
S. 188.

?) F. LEUENBERGER, Einige Dreiecksungleichungen, El. Math, 13, 121-126 (1958). '

3) J. BERKES, Bemerkungen sur Arbeit von F. Leuenberger iber «Einige Dreiecksungleichungen», El. Math,
14, 62-64 (1959).
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wenn wir die (*}') Kanten des Simplex mit a, bezeichnen.
Nun ist aber

und schliesslich
1 n+l \2 1 n+1
= Ty (4;' az-> = W <§ a+22/a, w)

das Quadrat des Ortsvektors von S. Mithin gilt

n+1
n+1 1 ( 2 )
R? — g2 = (nZaz_zé‘;a a,) = n:;—ijz—é;a%' (2)

Multiplikation von (2) mit [(n + 1)/%]? liefert (1); vermoge dessen folgt

_n+1 - 2<n—;—1
Q(m;) = VR —n““R

Gleichheit tritt nur ein, wenn der Schwerpunkt mit dem Umkugelmittelpunkt O zusam-
menfillt.
Betrachten wir die Sachlage im R,! Fﬁr die Hohen des Tetraeders T finden wir

Z'k >167

mit Gleichheit nur im gleichflichigen Tetraeder sowie

Zh

mit Gleichheit nur im reguliren Tetraeder.
Fiir die Schwerelinien von T dagegen gilt

4
2miz1
1

mit Gleichheit nur, wenn T reguldr ist, und

4
Sms LR
2 3

mit Gleichheit nur, wenn S und O zusammenfallen, das ist aber im gleichflichigen Tetra-
eder der Fall. F. LEUENBERGER, Zuoz

ll/\

Eine mégliche Verallgemeinerung der Fibonaccischen Zahlen

Auf die Fibonaccischen Zahlen fiihrt die Aufgabe, die Zahlen von 1 bis # auf zwei
Zeilen so zu verteilen, dass nicht mehr als zwei aufeinanderfolgende Zahlen auf eine Zeile
zu stehen kommen. Die Fibonaccische Zahl f(») gibt dann die Anzahl der mdglichen
Verteilungen an. Es gilt die Rekursionsformel

fn) = f(n — 1) + f(n — 2) (1)
mit f(1) = 1 und f(2) = 2. (Hierbei sollen Vertauschungen der Zahlen einer Zeile bzw. der
Zeilen untereinander zu keinen neuen Verteilungen fiithren!)

Die obige Fragestellung ist ein Sonderfall eines allgemeineren Problems: Werden bei den
Verteilungen m aufeinanderfolgende Zahlen auf einer Zeile zugelassen und gibt jetzt
F,,(n) die Anzahl der moglichen Verteilungen an, so gilt diesmal

Fpp(n) = Fpp(n — 1) + Fpp(n — 2) + ... + Fp(n —m) = 3" Fo(n — p) (2)
1
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mit #» > m und entsprechend definierten Zahlen F, (1), ..., F,,(m). Die obengenannten
Fibonaccischen Zahlen sind ersichtlich Spezialfall hiervon fiir m = 2.

Zum Beweis der angegebenen Rekursionsformel (2) werden die Verteilungen der Zahlen
von 1 bis (# — m) in m Gruppen eingeteilt. Die »-te Gruppe wird von allen Verteilungen
gebildet, bei denen genau die letzten v Zahlen (n —m — v+ 1), (B —m —v + 2), ...,
(n — m) in einer Zeile stehen. Sie haben die Form

v —=—m—v+ 1), ..., (n—m),
. e, (m—m— ). (3)

(Da ein Vertauschen der Zahlen einer Zeile unwesentlich ist, diirfen die Zahlen der Grésse
nach angeordnet werden.) Die Anzahl der Verteilungen dieser Form sei a,, es gilt

F,(n—m)= Zm‘ a,.
1

Durch sukzessives Hinzufiigen der Zahlen (» — m + 1) bis » und beim Durchlaufen von »
von 1 bis m entstehen alle Verteilungen der in (2) vorkommenden F,,, und im folgenden
sollen sie im einzelnen hingeschrieben werden, um dann die Beziehung (2) nachzuweisen.

Fiigt man in der obigen »-ten Gruppe die Zahl (# — m + 1) hinzu, so kann das in beiden
Zeilen geschehen, so dass sich die Anzahl der Verteilungen verdoppelt, also 2 a, wird. Bei
a, Verteilungen stehen jetzt (v + 1) aufeinanderfolgende Zahlen auf einer Zeile. Beim
Hinzufiigen von (» — m 4 2) erhilt man 4 a, Verteilungen, und es sind jetzt (v + 2) auf-
einanderfolgende Zahlen, die wieder bei a, Verteilungen zusammen auf einer Zeile stehen. -
So geht es fort bis zur Zahl [# — m + (m — v)] = (» — v), denn jetzt — nach dem Hinzu-
fiigen dieser Zahl - stehen die m aufeinanderfolgenden Zahlen (» — m — » + 1) bis (n — v)
bei a, Verteilungen auf einer Zeile, bei all den Verteilungen ndmlich, bei denen die hinzu-
zufiigende Zahl jedesmal auf die obere Zeile kam. Aus den urspriinglichen a, Verteilungen
sind so bisher 2™-" g, Verteilungen geworden. Beim Hinzufiigen der nichstfolgenden
Zahl (n — v 4 1) bei allen Verteilungen in beiden Zeilen stehen nach dem eben Gesagten
bei a, Verteilungen jetzt (m 4 1) aufeinanderfolgende Zahlen auf einer Zeile, sie miissen
also wieder gestrichen werden. Die neue Anzahl der Verteilungen wird demnach
(2m-*+1 - 1) @,. Von nun an verdoppelt sich wieder die Anzahl bei jedem Hinzufiigen der
folgenden Zahl.

Um bis zur Zahl (» — 1) zu kommen, sind noch (v — 2) Schritte notwendig, so dass die
Anzahl der Verteilungen der Zahlen von 1 bis (» — 1), die aus der urspriinglichen »-ten
Gruppe entstanden sind, auf 2¥-2 (2m-*+1 — 1) g, gestiegen ist. Fiir die Verteilungen der
Zahlen von 1 bis # ergibt sich hieraus durch Verdoppeln die Anzahl

2v-1(2m—r+1 _ 1) g, , (4)
und die Behauptung ist jetzt, dass diese Anzahl gleich ist der Summe aller bisher aufge-
tretenen Ausdriicke. Diese waren
a,,2a,, 4a,, ..., 2" aq,, (2"") — 1) a,, 2 (2" "1~ 1) a,,..., 2"2 (2M"1 1) q,.
(Man iiberzeugt sich leicht, dass es m Ausdriicke sind.) Die Summe wird

[(2r=# = 1) 4 (2271 — 1) (24 — 1)] @, = 2271 (2" — 1) gy,

und das ist genau der obige Ausdruck (4). Es gilt also schon fiir die einzelnen Gruppen
eine Beziehung entsprechend (2). Die Summierung iiber die Gruppen fithrt dann zur
Rekursionsformel (2) selbst.

Es ist jetzt leicht, die oben als noch zu definieren eingefiihrten Zahlen F, (1) , ..., F,,(m)
hinzuschreiben. Ganz sicher muss F,,(1) = 1 sein und aus dieser einen Verteilung gehen
durch Hinzufiigen der Zahlen 2 bis m die Verteilungen hervor, deren Anzahlen anzugeben
sind. Da mit der letzten Zahl m iiberhaupt erst m aufeinanderfolgende Zahlen auftreten,
leitet sich jedes der gesuchten F,, durch Verdoppeln aus dem vorhergehenden ab. Es sind
also die Potenzen von 2, und es gilt

Fpu(p) =271 (u =m). (5)
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In (3) kénnen fiir 2 m > » (> m) negative Zahlen auftreten. Die entsprechenden Aus-
driicke sind keine Verteilungen im obigen Sinne. Ebensowenig fiihrt hier das Hinzufiigen
der weiteren Zahlen zu solchen. In diesem Falle sind alle Verteilungen in den iibrigen
Gruppen von (3) enthalten. Da bereits fiir die einzelnen Gruppen eine Beziehung entspre-
chend (2) gilt, kénnen die Ausdriicke mit negativen Zahlen als bedeutungslos fortgelassen
werden. R. ScHNEIDERREIT, Berlin

Sur un probléme de M. Erdos

P. ErRDOs a posé le probléme suivant: existe-t-il un nombre premier p > 5 tel que les

résidus mod p des nombres 2!, 3!,..., (p — 1)! sont tous distincts ? Le but de cette note
est de démontrer que dans ce dernier cas p—1
1° aucun des nombres 2!, 3!, ..., (p — 1)! n’est congruent mod p au nombre — (WT) .

2° p = 5 (mod 8).
Démonstration: Comme on le sait, pour tout nombre naturel 2 < p — 1 on a

El(p—1—k)! = (— 1)F (mod p)

—_—

1)
11 en résulte d’abord que p== 3 (mod 4). En effet, dans le cas contraire on aurait P ; ! =1

p—1
2

(mod 2) et en posant k2 = nous trouverions

{(P; Dl =1 (mod p), d'on (£5=) 1= 1 (modp)ou (E5+)1 = — 1 (modp). (2

Vu les théorémes de LE1BNIZ et WILsON tous les deux congruences (2) sont incompatibles
avec la condition du probléme. On a donc p = 1 (mod 4) et

— 2
{(1” _ 1)!} = _1 (modp). (3)
Comme, d’aprés la condition du probléme, les résidus mod p des nombres 2!, 3!, ..., (p—1)!
sont tous distincts et comme leur nombre est p — 2, ils forment une permutation de la
suite 1, 2, ..., p — 1 diminuée d’un seul résidu ». On a donc

i

—g?—'—’;—ll!- (mod p)

p—1

Hu

t=2
p—2

rﬂi! =1 (mod?p),

4 Rl(p—k-1)!=1 (mod?p).
]
En vertu de (1) et (3)
_ p—1
1, (— v+ = — (25—t (modp), *)
151!1?—;—1— ( % )

r= 4 (_P_:Z—_%_)' (mod p) .

Mais, d’aprés la définition de », » n’est congruent a aucun nombre ! (2 Sk =< p — 1);
on a donc

yE—-(-——-—-—-P;l)! (mod p) , (5)
d’ol résulte la premiére partie de la thése. De (4) et (5) on déduit

L (- D*1=1 (modp),
1§k<——2-‘——
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L (B4 D) z_(P_“.E)_éQiif)_ - 0 (mod 2).
1=#< 20

‘Comme p =% 3 (mod 4), on a p + 3 = 0 (mod 8), c’est-a-dire p -~ 5 (mod 8).

Il est a remarquer que la condition du probléme n’est pas remplie, lorsque (;) ET |

ou ( VPZ?) ) = — 1. En effet, dans le premier cas la congruence x (+ + 1) = 1 (mod p) est

résoluble et dans le second cas (en vertu du théoréme de VoroN0Oi-SKOLEM) la congruence
¥ (x + 1) (* + 2) = 1 (mod p) est résoluble. On a alors

x4+ 1) = (x —1)! (mod p) ou bien (¥ + 2)! = (¥ — 1)! (mod p).

Les seuls nombres premiers p < 1000 pour lesquelles on a p 5 (mod 8), (; ) - — let

(“;3 ) — 1 sont les suivants: 13, 173, 197, 277, 317, 397, 653, 853, 877, 997. Mais

comme on peut vérifier aisément a I'aide du «Canon arithmeticus» on a 9! = 4! (mod 13),
15! = 10! (mod 173) 9! = 3! (mod 197), 43! = 17! (mod 277), 21! = 10! (mod 317),
45! = 36! (mod 397), 19! = 1 = 651! (mod 653), 38! = 30! (mod 853) 100! = 84! (mod 877)
et 72! = 54! (mod 997).

I1 en résulte que la condition du probléme n’est remplie par aucun nombre premier
p > 5 et < 1000. B. Rokowska, Wroclaw et A. ScHINzZEL, Varsovie

i

Aufgaben

Aufgabe 352. Es sei O, das Orthozentrum des dem Kreis # mit dem Radius # einbe-
schriebenen Dreiecks 4, 4,4,, O, das Orthozentrum des Dreiecks B, B, B;, das auch dem
Kreise & einbeschrieben ist. Man beweise

0,0, < 4v+u,
wou=Mind, B;,1,j=1,2,3. E. Jucovig, PreSow (CSR)

Aufgabe 353. Es sei T, der Schwerpunkt des dem Kreise # mit dem Radius » einbe-
schriebenen Dreiecks A, A, A;, T, der Schwerpunkt des ebenfalls %2 einbeschriebenen

Dreiecks B, B, B;. Man beweise
4v +u

T, < 21 1%,
wou = ®Min 4, Bj, 4,7 =1, 2, 3. E. Jucovi¢, PresSov (CSR)
Lésung und Verallgemeinerung: Es sei T, der Schwerpunkt des der »-dimensionalen
Kugel (M, ) einbeschriebenen Simplex 4, (i = 1,...,n + 1), T, der Schwerpunkt des

ebenfalls & einbeschriebenen Simplex B; (j = 1, ..., n + 1). Dann gilt
— 2ny + u
Ty — o> (1)

wo 4 = Mind;B;(35,7=1,..., %+ 1).

Beweis: Sei A, ein beliebig gewéhlter fester Eckpunkt des Simplex A4;. Der Schwer-
punkt S; des dem Eckpunkte A4, gegeniiberliegenden (# — 1)-dimensionalen Grenzraumes
ist ein innerer Punkt von k. Der Simplexschwerpunkt T, teilt die Strecke 4, S; im Ver-
hiltnis % : 1 . Die n-dimensionale Pferchkugel des Simplexschwerpunktes T, ist also eine
n-dimensionale Kugel %,(M,, »,), welche mit % in einer Homothetie steht, deren Mittel-
punkt A4, ist, und deren Charakteristik »: (» + 1) betrdgt. Hieraus folgt, dass M, die

Strecke A,, M im Verhiltnis % : 1 teilt, und », = n #/(n + 1) ist.
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