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8 Ungel6ste Probleme

Bei der Abbildung £2 geht ein Kreis £ in einen Kreis £* iiber und dieser wiederum
wird durch die normale Affinitit @, im allgemeinen auf eine Ellipse & abgebildet
(k ist ein Kreis, wenn das Affinitdtsverhiltnis von @, den Wert 41 hat). Fassen
wir die Kreise als spezielle Ellipsen auf, so ist jetzt der folgende Satz bewiesen:

Satz: Das perspektiv-affine Bild eines Kreises ist stets eine Ellipse.

Mit diesem Ergebnis ist jetzt die Grenzstelle zwischen der metrischen und der
affinen Geometrie der Ellipse iiberschritten. Hier kann die Behandlung der affinen
Eigenschaften der Kurve einsetzen, wie sie sich etwa in der darstellenden Geometiie
in Verbindung mit der Parallelprojektion aufdringt.

Abschliessend sei noch bemerkt, dass die Idee der Aufspaltung einer beliebigen
perspektiven Affinitit in eine Drehstreckung und in eine normale Affinitit auch
dem von MULLER und KRUPPA in [9] angegebenen Aquivalenzbeweis zugrunde liegt.
Die beiden Teilabbildungen treten aber dort nicht offen hervor, so dass die Diskussion
ganz im Rahmen statischer Betrachtungen abliuft. M. JEGER, Luzern
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Ungeloste Probleme

Nr. 34. Es sei S die gewohnliche Kugelflidche, und p € S bezeichne einen variablen
Punkt. Weiter sollen p,€S (¢ =1, 2, 3, 4) die Eckpunkte eines der Kugelfliche ein-
beschriebenen Rechtecks bedeuten, wobei sich $; und p4 bzw. auch $, und p, diagonal
gegeniiberliegen sollen.

Ist @(p) eine reellwertige stetige Funktion auf S, so gibt es eine Spiegelung ¢ an
einer durch den Mittelpunkt von S hindurchgehenden Ebene derart, dass die Bedin-

gungen B0 1) =P 1s); P (o) = Dlo pa) @)

erfiillt werden ; hierbei bezeichnet ¢ $ den Bildpunkt zu .



Kleine Mitteilungen 9

Diese Aussage ldsst sich nach der vom Unterzeichneten kiirzlich niher erliuterten
Methode leicht nachweisen?).

Werden anstelle der Spiegelungen ¢ aber Drehungen ¢ um den Mittelpunkt von
S zugelassen, so bestehen Méglichkeiten, wesentlich mehr als (a) auszusagen. Nach
Ergebnissen von DysoN und Livesay?) kann fiir ein Rechteck, das einem Grosskreis
von S einbeschrieben ist, die Existenz einer Drehung ¢ ausgesagt werden, so dass sogar

D(0 p1) = Do Do) = Do ps) = Do p4) (b)

ausfillt. — Offen bleibt unseres Wissens die Frage, ob die Bedingung (b) auch bei
einem bcliebigen Rechteck erfiillbar ist oder ob sich stetige Funktionen @ kon-
struieren lassen, fiir welche die vier Funktionswerte bei einem passend vorgegebenen
Rechteck fiir keine Drehlage zusammenfallen.

Beim Ubergang von (a) zu (b) muss eine neu hinzutretende Bedingung neu erfiillt
werden. Bedenkt man, dass auch die Parameterzahl der zum Einsatz gebrachten Ab-
bildungsgruppe zunimmt, so erscheint die oben erwogene Erfiillbarkeit nicht unwahr-
scheinlich. Unser Problem lautet also: Ldsst sich das Dyson-Livesaysche Theorem auf
beliebige der Kugelfliche einbeschriebene Rechtecke ausdehnen ? H. HADWIGER
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Eine Verallgemeinerung einer Formel von Descartes

1. In dieser Arbeit wird folgender Satz bewiesen: Sind in einem Raume von % Dimen-
sionen (z + 1) Kugeln mit den Radien 7, #,, ..., 7, , gegeben und wird vorausgesetzt, dass
sich diese paarweise von aussen beriithren, so gilt fiir die Radien ¢’ und p” der beiden
Kugeln, welche simtliche gegebenen Kugeln beriihren, die Bedingungsgleichung

1 1 i 1 1,2 " 1 1 n " 1 n 1 ) (1)

("1 * £} 4 Yn41 - 9) (7% u 7} Va1 e?/’
Fiir n = 2 erhilt man eine Formel, die DESCARTES in einem Briefe an Prinzessin Elisabeth
mitteilt [Oeuvres de Descartes par Adam et Tannery, Bd. IV (Paris 1901), S. 49]. Auch
JakoB STEINER kennt diesen Spezialfall (Gesammelte Werke, 1, S. 63); er wird die Formel
wohl unabhingig von DEescarTEs gefunden haben. An einem andern Orte (Gesammelte
Wevke, 1, S. 180) stellt STEINER die Aufgabe: «Zwischen den Radien von 5 Kugeln, von
denen je 2 einander beriihren, eine Relation zu finden», ohne jedoch eine Losung anzu-
geben. Fiir # = 3 liefert (1) die Antwort auf diese Frage, denn unsere Formel ist sym-
metrisch in bezug auf die (» + 2) Radien 7, #,, ..., 7,.,, o und kann als Bedingung auf-
gefasst werden, die erfiillt sein muss, damit (» + 2) Kugeln des #-dimensionalen Raumes
sich gegenseitig beriithren. Formel (1) kann noch auf eine dritte Weise gedeutet werden:
Es ist die Bedingung, die (# + 2) Punkte, nimlich die Mittelpunkte der Kugeln, erfiillen
miissen, damit sie in einem Raume von » Dimensionen liegen. Als Anwendung von (1)
beweisen wir den Schliessungssatz von STEINER iiber Ketten von Beriithrungskugeln fiir
den einfachsten Fall, wo die drei gegebenen Kugeln sich selbst paarweise beriihren. Fiir
diesen Spezialfall erhalten wir eine Reihe von Beziehungen zwischen den Radien der
Kugeln der Kette.

1) H. HADWIGER, Elementare Begriindung ausgewdhlter stetigkeitsgeometrischer Sdtze fiir Kreis- und
Kugelfliche, E1. Math. 14, 49-60 (1959), insbesondere Satz 2.1.
3) Literaturangaben vgl. oben zitierte Abhandlung.
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