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74 Ungelöste Probleme

Notre theoreme se trouve ainsi demontre.
Le probleme reste ouvert quel est le plus petit nombre naturel k tel que les nombres

k-2n + 1, oü n 1, 2,... sont tous composes.
II est k remarquer que M. P. Erdös a demontre qu'il existe une infinite* de nombres

naturels impairs k tels que chacun des nombres 2n + k, oü »=1,2,..., est
compose (divisible par un des nombres 3, 5, 7, 13,17, 241). Voir P. Erdös [2], page 7;
voir aussi mon hvre [3], page 379, oü se trouve la demonstration de A. Schinzel
d'existence d'une infinite de nombres impairs k tels que chacun des nombres 2n + k,
oü n 1, 2, est compose et a un diviseur premier < 100.

Or, M. A. Schinzel a demontre que si k est un tel nombre, alors tous les nombres
k-2n + 1, oü n 1, 2,... sont composes. Voici sa demonstration

Supposons que k est un nombre naturel tel que chacun des nombres 2n + k, oü
n 1, 2, a un diviseur premier p \ P, oü P est un nombre naturel impair donne.
D'apres l'hypothese, le nombre 2n[(p(P}~1] + k a un diviseur premier p \ P. Or, on a
2n(p{P) 1 (mod P), d'oü 2nif>{P) 1 (mod p), et, comme 2n[<p{P)~1] + k 0 (mod p),
on trouve k-2n + 1 0 (mod p), c. q. f. d. W. Sierpinski (Varsovie)
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Ungelöste Probleme

Nr. 36. Das n-te Distanzpotenzintegral eines eigentlichen konvexen Körpers A des

gewöhnlichen Raumes ist durch Ansatz

TM) «/<rn dP dQ [n ^ - 2, ganz]

gegeben, wobei P und Q zwei in A unabhängig variierende Punkte, r die Distanz
zwischen P und Q und dP und dQ die Volumdifferentiale bezeichnen. Zahlreiche
geometrische und physikalische Körperfunktionale hängen mit solchen
Distanzpotenzintegralen zusammen. Wenn V das Volumen bedeutet, so gelten beispielsweise
die folgenden Beziehungen: _T_2= 4nrV (f mittlere Ausstrahlungsweglänge);
T_x S (Newtonsches Selbstpotential); T0 V2; T2 2 I V (I polares
Trägheitsmoment bezüglich des Schwerpunktes). Eine interessante Frage ergibt sich,
wenn man nach dem Extremalkörper sucht, der bei vorgeschriebener Norm N ein

maximales Distanzpotenzintegral aufweist. Die Norm ist durch _V 2 n b definiert,
wo b die mittlere Breite des Körpers A bezeichnet; ein anderer Zusammenhang wird
mit N M (Integral der mittleren Krümmung) gegeben. Ist K eine mit A
normgleiche Kugel, so steht in erster Linie die Ungleichung

Tn(A)üTn(K) [N(A)=N(K)] (*)

zur Diskussion, welche die Extremaleigenschaft der Kugel ausdrückt. Nach den
heute vorliegenden Ergebnissen zeigt sich, dass Ungleichung (*) sicher richtig ist für
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n — 2, —1, 0, 2, dagegen fraghch bleibt für n 1, 3, 4, 5 und sicher falsch ist für
n 6,7, Dass die Kugel für n ^ 6 ihre Extremaleigenschaft einbüsst, wurde von
Kummer1) nachgewiesen. Da sich in der neueren Fachliteratur auch ein Ergebnis
findet, das diesem Tatbestand widerspricht, wurde der obengenannte theoretisch
ermittelte Befund auch praktisch-numerisch mit Hilfe eines Rechenautomaten
überprüft2). Es sei Ex ein Rotationsellipsoid mit den Halbachsen r, r, x r (1 ^ x < oo),
das mit der Einheitskugel Ex =* K normgleich ist, und es sei

T.(EX)
q(x)

T,(K) [N(EX)=N(K)\

das Verhältnis der entsprechenden sechsten Distanzpotenzintegrale. Wenn q(x) > 1

ausfallen kann, ist offenbar bereits bewiesen, dass die Kugel die hier fraghche
Extremaleigenschaft für n 6 eingebüsst hat. Nun ergibt eine Berechnung, auf die wir hier
verständlicherweise nicht eingehen können:

4096 (x2 - l)6 (16 x2 + 8 X* + 6 x« + 5 x*)

35 {at ]/x^- 1 + ln(x + Yx2 -T)}12
q(x)

Hierzu führen wir einige mit dem Gerät ermittelte numerische Werte an:

X q(x)

1,00
1,40

1,80
2,20
2,60

1,0000000
1,0464592
1,1075398
1,0899263
0,9974864

1,92 1,1117633

Die unterste Zeile gibt das numerisch bestimmte Maximum von q(x); damit ist
belegt, dass das Rotationsellipsoid mit dem Achsenverhältnis x 1,92 das optimale
sechste Distanzpotenzintegral liefert, das etwas grösser ausfällt als dasjenige der
normgleichen Kugel.

Damit resultiert das Problem: Welche konvexen Körper weisen unter allen
normgleichen das grösstmögliche Distanzpotenzintegral auf, wenn n^.6 ist P Diese noch
unbekannten Extremalkörper dürften Zentralsymmetrie aufweisen! H. Hadwiger

*) H. Kummer, Über Sehnenpotenzintegrale konvexer Korper tm k-dimensionalen Raum, Manuskript
(Bern 1957).

a) Ausgeführt im Institut für angewandte Mathematik der Universität Bern, Frühjahr 1959.

Kleine Mitteilungen
A Special Higher Congruence

Let p be a prime >2. If the congruence
xP+l + axP + bx + c 0 (mod p2)

is solvable, then clearly the quadratic congruence
x2 + (a + b) x + c =: 0 (mod p)

is solvable. Thus a necessary condition for the solvability of (1) is that
d (a + b)2-4c

(1)

(2)

(3)
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