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Sur un probleme concernant les nombres
k • 2" + 1

Dans son travail [1] M. R. M. Robinson a donne une table de plusieurs nombres
premiers de la forme k • 2n + 1. II resulte de cette table que pour tout nombre naturel
k < 100, sauf, peut-etre, pour les nombres k 47 et k 94, il existe au moins un
nombre naturel n tel que le nombre k • 2n + 1 est premier (pour k 47 on a trouve'
seulement que tous les nombres 47 • 2n + 1 pour n < 512 sont composös). Cela

suggere le probleme, s'il existe pour tout nombre naturel k au moins un nombre
naturel n pour lequel le nombre k • 2n + 1 serait premier.

Je prouverai ici que la reponse ä ce probleme est negative. Je demontrerai notam-
tent ce

Th£or£me: // existe une infinite de nombres naturels k tels que tous les nombres k • 2" + 1,

oü n 1, 2,..., sont composes.

Demonstration1). Comme on sait, les nombres Fm 2%m + 1 sont premiers pour
m — 0, 1, 2, 3 et 4 et le nombre F5 est le produit de deux nombres premiers 641 et
p > F4. D'apres le theoreme chinois bien connu sur les restes, il existe une infinite
de nombres naturels k satisfaisant aux deux congruences

* 1 (mod (232 - 1) • 641) et k - 1 (mod p). (1)

Je demontrerai que, si k est un entier > p satisfaisant aux congruences (1), les

nombres k • 2n + 1, oü n 1, 2, sont composes.
Soit d'abord n 2m(2 t + 1), oh m est un des nombres 0, 1, 2, 3, 4 et oü t est un

entier non negatif. D'apres (1) on aura k • 2n + 1 22W(2/ + l) + 1 (mod 232 - 1) et,

comme Fm | 232 - 1 et Fm | 22W(2' +1} + 1, on conclut que le nombre k • 2" + 1 est divisible

par Fm et plus grand que p > Fm, donc compose\
Soit maintenant n 25 (21 + 1), oü t 0, 1, 2, D'apres (1) on aura k • 2" + 1

225<2'+x) + 1 (mod 641) et, comme 641 | 220 + 1 | 22Ö(2< + 1) + 1, on conclut que le
nombre k>2n + 1 est divisible par 641 et plus grand que 641, donc compose\

II nous reste evidemment ä examiner le cas, oü le nombre n est divisible par 26,

donc n 261, oü t 1, 2, 3, D'apres (1), on aura k• 2* + 1 — 22&t + 1 (mod £), et

comme £ | 2 g5 + 1 | 22<* - 1 | 226' — 1, on trouve que le nombre k-2n + 1 est divisible

par p et > p, donc compose\

*) Une simplification de ma demonstration est due ä M. A. Schinzel.
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Notre theoreme se trouve ainsi demontre.
Le probleme reste ouvert quel est le plus petit nombre naturel k tel que les nombres

k-2n + 1, oü n 1, 2,... sont tous composes.
II est k remarquer que M. P. Erdös a demontre qu'il existe une infinite* de nombres

naturels impairs k tels que chacun des nombres 2n + k, oü »=1,2,..., est
compose (divisible par un des nombres 3, 5, 7, 13,17, 241). Voir P. Erdös [2], page 7;
voir aussi mon hvre [3], page 379, oü se trouve la demonstration de A. Schinzel
d'existence d'une infinite de nombres impairs k tels que chacun des nombres 2n + k,
oü n 1, 2, est compose et a un diviseur premier < 100.

Or, M. A. Schinzel a demontre que si k est un tel nombre, alors tous les nombres
k-2n + 1, oü n 1, 2,... sont composes. Voici sa demonstration

Supposons que k est un nombre naturel tel que chacun des nombres 2n + k, oü
n 1, 2, a un diviseur premier p \ P, oü P est un nombre naturel impair donne.
D'apres l'hypothese, le nombre 2n[(p(P}~1] + k a un diviseur premier p \ P. Or, on a
2n(p{P) 1 (mod P), d'oü 2nif>{P) 1 (mod p), et, comme 2n[<p{P)~1] + k 0 (mod p),
on trouve k-2n + 1 0 (mod p), c. q. f. d. W. Sierpinski (Varsovie)
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Ungelöste Probleme

Nr. 36. Das n-te Distanzpotenzintegral eines eigentlichen konvexen Körpers A des

gewöhnlichen Raumes ist durch Ansatz

TM) «/<rn dP dQ [n ^ - 2, ganz]

gegeben, wobei P und Q zwei in A unabhängig variierende Punkte, r die Distanz
zwischen P und Q und dP und dQ die Volumdifferentiale bezeichnen. Zahlreiche
geometrische und physikalische Körperfunktionale hängen mit solchen
Distanzpotenzintegralen zusammen. Wenn V das Volumen bedeutet, so gelten beispielsweise
die folgenden Beziehungen: _T_2= 4nrV (f mittlere Ausstrahlungsweglänge);
T_x S (Newtonsches Selbstpotential); T0 V2; T2 2 I V (I polares
Trägheitsmoment bezüglich des Schwerpunktes). Eine interessante Frage ergibt sich,
wenn man nach dem Extremalkörper sucht, der bei vorgeschriebener Norm N ein

maximales Distanzpotenzintegral aufweist. Die Norm ist durch _V 2 n b definiert,
wo b die mittlere Breite des Körpers A bezeichnet; ein anderer Zusammenhang wird
mit N M (Integral der mittleren Krümmung) gegeben. Ist K eine mit A
normgleiche Kugel, so steht in erster Linie die Ungleichung

Tn(A)üTn(K) [N(A)=N(K)] (*)

zur Diskussion, welche die Extremaleigenschaft der Kugel ausdrückt. Nach den
heute vorliegenden Ergebnissen zeigt sich, dass Ungleichung (*) sicher richtig ist für
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