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Sur un probleme concernant les nombres
k.20 11

Dans son travail [1] M. R. M. RoBINSON a donné une table de plusieurs nombres
premiers de la forme £ - 2" + 1. Il résulte de cette table que pour tout nombre naturel
k < 100, sauf, peut-étre, pour les nombres 2 = 47 et £ = 94, il existe au moins un
nombre naturel »# tel que le nombre %2 2" 4+ 1 est premier (pour 2 = 47 on a trouvé
seulement que tous les nombres 47-2" 4+ 1 pour # < 512 sont composés). Cela
suggére le probléme, s’il existe pour tout nombre naturel £ au moins un nombre
naturel # pour lequel le nombre % - 2" 4 1 serait premier.

Je prouverai ici que la réponse & ce probléme est négative. Je démontrerai notam-
tent ce

Théoréme: I/ existe une infinité denombres naturels kitels que tous les nombres k2" + 1,
ouwn=12, ..., sont composes.

Démonstration!). Comme on sait, les nombres F,, = 22" + 1 sont premiers pour
m=20,1,2,3 et 4 et le nombre F; est le produit de deux nombres premiers 641 et
p > F,. D’aprés le théoréme chinois bien connu sur les restes, il existe une infinité
de nombres naturels & satisfaisant aux deux congruences

k=1 (mod (232 — 1) - 641) et k= —1 (mod p). (1)
Je démontrerai que, si & est un entier > p satisfaisant aux congruences (1), les
nombres £-2" + 1,oun = 1, 2, ..., sont composes.

Soit d’abord # = 2m(2 ¢ + 1), ou m est un des nombres 0, 1, 2, 3, 4 et ot £ est un
entier non négatif. D’aprés (1) on aura k-2 + 1 = 22"+ 4+ 1 (mod 2% — 1) et,
comme F,, | 282 — 1 et F, | 22"®¢+Y 1 1, on conclut que le nombre k-2" + 1 est divi-
sible par F,, et plus grand que p > F,, donc composé.

Soit maintenant # = 25 (2¢+ 1), ou¢=0,1,2,...D’aprés(1) on aura k-2" + 1 =
= 22°@+ 1 | 1 (mod 641) et, comme 641 | 22° + 1] 22°¢*+D 4 1, on conclut que le
nombre k-2 4+ 1 est divisible par 641 et plus grand que 641, donc composé.

Il nous reste évidemment 4 examiner le cas, ou le nombre # est divisible par 28,

doncnm = 28¢,0ut=1,2,3,...D’aprés (1), onaura k-2" + 1 = — 22% 11 (mod 9), et
comme p | 22° + 1|22° — 1|22 — 1, on trouve que le nombre k-2" + 1 est divisible
par p et > p, donc composé.

1) Une simplification de ma démonstration est due 2 M. A, SCHINZEL.
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Notre théoréme se trouve ainsi démontré.

Le probléme reste ouvert quel est le plus petit nombre naturel % tel que les nombres
k-2 +1,oun=1,2,... sont tous composés.

Il est & remarquer que M. P. ERDOs a démontré qu'il existe une infinité de nom-
bres naturels impairs % tels que chacun des nombres 2" + %k, ot n=1,2, ..., est
composé (divisible par un des nombres 3, 5, 7, 13, 17, 241). Voir P. ErRDOs [2], page 7;
voir aussi mon livre [3], page 379, ou se trouve la démonstration de A. SCHINZEL
d’existence d’une infinité de nombres impairs % tels que chacun des nombres 27+ %,
oun=1,2, ..., est composé et a un diviseur premier < 100.

Or, M. A. SCHINZEL a démontré que si % est un tel nombre, alors tous les nombres
kR-2"+1,oun=1,2,..., sont composés. Voici sa démonstration:

Supposons que % est un nombre naturel tel que chacun des nombres 2”7 + &, ot
n=1,2,...,aun diviseur premier p | P, ou P est un nombre naturel impair donné.
D’aprés I'hypothése, le nombre 2**(P)=1 4+ % a un diviseur premier p | P. Or, on a
2#¢(®) =1 (mod P), d'ou 2"*P = 1 (mod p), et, comme 2*#N-1 1 £ =0 (mod p),
on trouve £-2" + 1 =0 (mod ), c. q. f. d. W. SIERPINSKI (Varsovie)
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Ungeloste Probleme

Nr. 36. Das n-te Distanzpotenzintegral eines eigentlichen konvexen Korpers 4 des
gewohnlichen Raumes ist durch Ansatz

T = T,(4) = //r" dPdQ [n = —2, ganz]

gegeben, wobei P und Q zwei in 4 unabhingig variierende Punkte, » die Distanz
zwischen P und @ und dP und dQ die Volumdifferentiale bezeichnen. Zahlreiche
geometrische und physikalische Korperfunktionale hingen mit solchen Distanz-
potenzintegralen zusammen. Wenn V das Volumen bedeutet, so gelten beispielsweise
die folgenden Beziehungen: T_,=4nm 7V (r = mittlere Ausstrahlungsweglinge);
T_,=S (Newtonsches Selbstpotential); T, =V2%;, T,=21V (I = polares Trig-
heitsmoment beziiglich des Schwerpunktes). Eme interessante Frage ergibt sich,
wenn man nach dem Extremalkérper sucht, der bei vorgeschriebener Norm N ein

maximales Distanzpotenzintegral aufweist. Die Norm ist durch N =27 b definiert,

wo b die mittlere Breite des Korpers 4 bezeichnet; ein anderer Zusammenhang wird
mit N = M (Integral der mittleren Kriimmung) gegeben. Ist K eine mit 4 norm-
gleiche Kugel, so steht in erster Linie die Ungleichung

T,(4) = T,(K) [N(4) = N(K)] *)

zur Diskussion, welche die Extremaleigenschaft der Kugel ausdriickt. Nach den
heute vorliegenden Ergebnissen zeigt sich, dass Ungleichung (*) sicher richtig ist fiir
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