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Mit (35), (36) (erste Relation) und (37) sind die Voraussetzungen (a), (b) und (c) von
Satz I fiir die £ Mengen A4, , erfiillt. Es gibt nach der Behauptung (z) dieses Satzes

also # + 1 paarweise verschiedene Indizespaare (v, yo), ... , (¥,, u,) derart, dass
(Argug I Ay O 0 (A, U AZL) + 2 (38)

ausfallt. Mit (36) (zweite und dritte Relation) schliesst man leicht, dass bereits die
Indizes v, paarweise verschieden sein miissen, so dass auf

B,NNB, 2 [1<y<:-<p,<7] (39)

geschlossen werden kann, was aber mit (32) einen Widerspruch darstellt. Unsere
Gegenannahme ist falsch und Satz IV damit bewiesen. H. HADWIGER, Bern
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Geometrische Betrachtungen um eine Apfelschale

An einem langen Winterabend mag es vorkommen, dass man sich in fréhlicher
Tafelrunde des «Apfelschalenorakels» erinnert: Geschickte Hinde bemiihen sich,
einen Apfel durch einen schraubenartig herumgefiihrten Schnitt in einem Zuge zu
schilen, worauf das lange Schalenband aufgeworfen wird; aus der Figur, die es
nach dem Zuriickfallen bildet, wissen dann Kundige den Anfangsbuchstaben des oder
der Zukiinftigen herauszulesen. Schaltet man jedoch den Zufall aus, indem man den
Schalenstreifen flach auf der Tischplatte ausbreitet, so gelangt man stets zu einem
«S»in Gestalt einer schénen Doppelspirale. Was kann nun der Geometer hierzu sagen ?

1. Dass man den Apfel durch eine Kugel idealisieren wird, liegt wohl auf der Hand.
Wird ferner die Schneidkante des Messers gerade angenommen, so entsteht als Schnitt-
fliche auf jeden Fall eine Strahifliche (Regelfliche); wird iiberdies die Klingenfliche
als eben (oder in der Umgebung der Schneidkante wenigstens abwickelbar) voraus-
gesetzt, dann wird die genannte Strahlfliche im Zuge ihrer Entstehung lings jeder
Erzeugenden von einer Ebene beriihrt, so dass es sich um eine Torse handeln muss.
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Die Ausbreitung des Schalenstreifens in die Ebene ist daher ohne weiteres moglich,
wenn man die Dicke vernachléssigt.

Nun ist noch die Frage der Schnittfithrung zu kliren. Die einfachsten Verhiltnisse
ergeben sich vielleicht, wenn man sich fiir eine sphdrische Kreisevolvente entscheidet ;
hierbei stellt sich gleichzeitig konstante Streifenbreite (und Banddicke) ein.

2. Wir gehen aus von einer ebenen Kretsscherbe mit dem Radius R, die wir lings
eines Durchmessers beriihrend an einen festen Drehkegel A mit dem Offnungswinkel
2 « anlegen, so dass die Kreismitte mit der Kegelspitze O zur Deckung kommt. Wird
anschliessend die Kreisscheibe auf den Kegelmantel abgewilzt, so beschreibt irgendein
mitgenommener Randpunkt eine auf der Kugel 77(0, R) verlaufende Bahnkurve .
Denken wir uns auf der Kugeloberfliche lings des Scheibenrandes einen undehn-
baren Faden gespannt, so liesse es sich einrichten, dass sich derselbe wihrend des
Wilzvorganges auf dem Kegel A aufwickelt, und zwar lings eines der beiden Klein-
kreise m, 7, in welchen A die Kugel schneidet. Die Bahnkurve %2 kann mithin als
sphirische Evolvente des Kreises m cder des Kreises # aufgefasst werden. Sie setzt mit
Spitzen abwechselnd auf # und # auf.

Nach dem Hauptsatz der sphirischen oder der Biindelkinematik verhilt sich
unser Walzvorgang in jedem Augenblick in erster Ndherung wie eine reine Drehung
um die jeweilige Wilzerzeugende. Das bedeutet, dass die Bahntangente des mitge-
nommenen Punktes jederzeit normal zur Scheibenebene ist. Denken wir uns die
Kegelachse z lotrecht, dann besitzen simtliche Bahntangenten denselben Neigungs-
winkel o gegen die Waagrechte, so dass die Kreisevolvente & eine Kurve konstanter
Steigung oder Bischungslinie auf der Kugel IT darstellt?).

Figur 1
Kugel I7 mit Béschungslinie # und eingeschriebenem Torsenstreifen Z.

1) P. SERRET, Théorie nouvelle géométrique et mécanique des lignes & double courbure (Paris 1860), S. 39 -
A.ENNEPER,Math. Ann. 19 (1882), und W. BLAscHKE, Mh. Math. Phys. 19 (1908), haben bemerkt, dass sich
diese «sphirischen Schraubenlinien» im Grundriss als Epizykloiden abbilden. Vgl. Auch W. WUNDERLICH,
Uber die Boschungslinien auf Flichen 2. Ordnung; Sitz.-Ber. Akad. Wiss. Wien 155,309-331,insb. 317 (1947).
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3. Nach einem vollen Umlauf um den Kegel 4 deckt sich die Endlage der rollenden
Kreisscheibe wieder mit der Ausgangsstellung. Ein mitgenommener Randpunkt P,
gelangt hierbei allerdings in eine Neulage P, # P,, deren sphirische Entfernung von
P, durch den abgewilzten Randbogen gemessen wird, also mit dem Umfang
27 R sin o des Kreises m tibereinstimmt. Wir kénnen demnach von Anfang an neben
P, auch gleich den Punkt P, und weitere dquidistante Randpunkte P,, P;, ... beim
Wilzvorgang mitnehmen; alle diese Punkte werden gleichzeitig dieselbe Kreisevol-
vente & beschreiben (Figur 1). Auf diese Weise kann bei einem einzigen Umlauf um 4
der ganze Evolventenbogen zwischen m und # erhalten werden, zu dem ein Einzel-
punkt # = 1/(2 sin ) Umldufe benétigen wiirde (» = 7,5 in Figur 1).

Die Strecke P, P, iiberstreicht wihrend des Wilzvorganges einen beiderseits von
der Bahnkurve % begrenzten Streifen konstanter Breite 2 d = 2 R sin (7/2n), der eine
brauchbare Idealform fiir die Schnittfliche unseres Apfelschalenstreifens abgibt, da
er auch abwickelbar ist. Letzteres folgt aus der Tatsache, dass die Bahntangenten
aller Punkte der Geraden P, P, stets parallel, nimlich normal zur Scheibenebene
sind, so dass es fiir die Streifenfliche lings jeder Erzeugenden eine gemeinsame
Tangentialebene gibt, was bekanntlich eine notwendige und hinreichende Bedingung
fiir Abwickelbarkeit ist.

4. Die von der Geraden e = P, P, erzeugte Strahlfliche 2’ ist nach dem Gesagten
eine Torse und besteht mithin aus den Tangenten einer gewissen Raumkurve f, ihrer
Gratline, die im vorliegenden Fall leicht anzugeben ist. Die Erzeugende e beriihrt
ndmlich in jeder Lage den Drehkegel A und wiirde, entsprechend eingefarbt, auf
demselben nach Ablauf des Wilzvorgangs eine AbdrucKkspur hinterlassen, die in jedem
Augenblick von e beriihrt wird, also die gesuchte Gratlinie f darstellt. Denkt man sich
den Kegel 4 aufgeschlitzt und in die Scheibenebene ausgebreitet, so kommt die Kurvef
mit der Geraden e zur Deckung: f ist daher eine geoddtische Linie des Drehkegels A.

5. Fassen wir jetzt den Mittelpunkt Q, der Strecke P, P, ins Auge: Er durchlduft
wihrend der Rollung eine zu % dhnliche sphirische Kreisevolvente /, welche die M7t-
tellinie unseres Streifens darstellt. Dieselbe verlduft auf einer mit /7 konzentrischen
Kugel ©(0, ») mit dem Radius 7 = R cos (7 sin &) = R cos (/2 n).

Die Torse 2 ist der Kugel @ lings der Mittellinie / angeschrieben. 2" und ! ent-
sprechen einander demnach in der Polaritit von @: Der Tangente ¢ in einem belie-
bigen Punkt Q von / ist dabei die durch Q gehende, zu ¢ normale Erzeugende ¢ von %'
zugeordnet, und der zugehorigen Schmiegebene ¢ von ! entspricht als Pol jener
Gratpunkt S von 2, in welchem e die Gratlinie f auf A4 beriihrt. Die Strecke ¢ = QS
stellt den im folgenden bendtigten «geoditischen Kriimmungsradius» von / dar.

6. Bei der Verebnung der Streifentorse X' geht die Mittellinie / unter Erhaltung der
Bogenlidnge s und der geoditischen Kriimmung 1/p in eine ebene Kurve /¥ iiber, die
jetzt ermittelt werden soll. Sobald wir die Abhingigkeit zwischen s und ¢ kennen,
wird uns die Kurve /¥ durch ihre «natiirliche Gleichung» F(s, ¢) = 0 im Sinne von
CEsARro festgelegt sein.

Zwischen der Bogenlinge s und der Hohenkote z, die wir beide von der Aquator-
ebene aus zihlen wollen, besteht bei / wie bei jeder Béschungslinie mit dem Steig-

winkel o der Zusammenhang o &S0 (1)
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Zur Bestimmung des Kriimmungshalbmessers o im Anschluss an Abschnitt 5 be-
trachten wir jenen Seitenriss, in welchem die den Punkt Q tragende Kreisscheibe
projizierend erscheint (Figur 2). In dieser Ansicht bildet sich die Bahntangente ¢ von

Figur 2

Q unverkiirzt ab, da sie zur Scheibenebene normal ist (Abschnitt 2). Die zugehérige
Schmiegebene ¢ der Bahn / von Q erscheint dann gleichfalls projizierend, da sie bei
einer Boschungslinie dieselbe Neigung « wie die Tangente hat, also ¢ zur Fallinic
besitzt. Unter diesen Umstdnden lisst sich der Gratpunkt S als Pol von ¢ beziiglich
der Kugel O leicht einzeichnen, und der geoditische Kriimmungsradius g = QS kann
in wahrer Grosse auf dem Umriss des aus S an @ legbaren Beriihrungskegels in der
Tangentenstrecke TS abgegriffen werden. Aus den in der Figur auftretenden recht-
winkligen Dreiecken entnimmt man zunichst 0Q” = z/cos & und weiterhin

0S :fcosaz‘/ézﬁf;‘z. (2)

y2
- _-O?r
Elimination von z mittels (1) liefert schliesslich die gewiinschte natiirliche Gleichung
der verebneten Mittellinie /°:

s2(®+7)=c%rt mit c=ctga. (3)

7. Wer die analytische Behandlung vorzieht, wird den Ausgang von einer Para-
meterdarstellung der sphirischen Rollkurve / nehmen, wobei als Parameter etwa der
Wilzwinkel @ auf einem Parallelkreis des Fixkegels A dienen kann. Unter Verwendung
der Abkiirzungen sin « = 4 und cos « = b lautet eine solche Darstellung

x= 7 (cos a@cos @ + asin agsin ), l
y = 7 (cos a @ sin ¢ — asin a @ cos ¢) , 4)
z=7rbsinag. I

Durch Ableitung des Ortsvektors x (¥, ¥, z) nach @ erhilt man den Tangentenvektor ,
und durch Integration von | x | = 7 b cos a ¢ die Bogenléinge

. b .
s=rcsinap mit c=_=ctga. (5)

Nunmehr fiihrt man ein begleitendes Dreibein ein, bestehend aus den drei paarweise
orthogonalen Einheitsvektoren ¢, = /| 2 | (Tangente), ¢; = ¥/r (Flichennormale) und
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e, = ¢3 X ¢; (Quertangente). Die Ableitungsgleichung de,/ds = — x e, liefert dann die
geoditische Kriimmung 1t
_ - _tgayg
n = —Q—' = - ¥ (6)

und Elimination von ¢ aus (5) und (6) fiihrt endlich auf die natiirliche Gleichung (3)
von /.

Der Vollstindigkeit halber sei auch noch die Parameterdarstellung der Streifen-
gratlinie f angefiihrt, die man iiber x* = x + g e, erhilt:
7a COS @ . rb (7)

x¥= T yFP= — — L, z¥= e
sina ¢ sin a @

8. Um nun aus der natiirlichen
Gleichung (3) eine Darstellung der
verebneten Mittellinie /¥ in kartesi-
schen Koordinaten X, Y zu erhalten,
filhren wir den Neigungswinkel 7 der
Tangente gegen die X-Achse ein. Aus
der Kriimmungsdefinition p = ds/dt
finden wir

/ds :/' sds
ch 72 _ g2

e __chrz __82

(8)

Zufolge der getroffenen Wahl der
Integrationskonstantenliegt die Kur-
ve l'derart im Achsenkreuz XY, dass
die in den Endpunkten s = 4 ¢ » auf-
2d tretenden Spitzentangenten parallel
zur X-Achse verlaufen (Figur 3),
wiahrend in dem durch s = 0 gekenn-
zeichneten Ausgangspunkt Q?, (Wen-
depunkt) der Richtungswinkel T,

\, = — ¢ = — ctg & vorhanden ist?).

X B Zwischen Bogenlinge und Richtungs-

- winkel besteht sonach die Relation3)
14

h s2 472 72 = c2¢2, 9)

_ Aus den Richtungsbeziehungen

Figur 3 gX/ds = costunddY/ds = sinz folgt

f\;irg? ;Et;rg{zgs:x:: schliesslich mittels partieller Inte-

Y geniiber Figur 1). gration:

%) Den Figuren 1 und 3 liegt die Annahme o = arcsin (1/15) = 3,823° zugrunde. Hier ist

= /224 = 14,9666 = 4,764 7z und 7, = — 857,52°.

%) Die Abhingigkeit zwischen Bogenlinge s und Richtungswinkel 7 wurde von K. C. F. KrAUsE, Nova
theoria linearum curvarum (Miinchen 1835), und A. PETERS, Neue Curvenlehre (Dresden 1835), zwei Vor-
laufern Cesaros, als die «urspriingliche Gleichung» einer ebenen Kurve angesehen und sollte fiir deren
Diskussion und Klassifikation die Grundlage abgeben. Im folgenden Abschnitt wird sie zum Auftragen der
Kurve v verwertet.
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T
TCOST S TS
X=_— VT;dr—r‘/ﬂ—ﬁcosr—{— /Vc2—rzsmtdt,
C — 72
10
" (10)
TSll’l‘t TS
Y = — V“‘ dr—«rl/oz—-—1251111~—7/Vc2~12cosrdr.
c

Diese Integrale sind elementar nicht auswertbar.

Schaffen wir aus den Gleichungen (3) und (9) die Grosse ¢ fort, so erhalten wir eine
fiir alle Werte des Steigungswinkels « giiltige Beziehung, die mit Beriicksichtigung des
Vorzeichens in (8) die nachstehende Form hat:

so=—17r%1. (11)

Diese Beziehung ist im iibrigen fiir unsere Kurven charakteristisch.
Die durch Elimination von s entstehende Relation

r2 12

= m— (12)

liefert p alsin — ¢ < v < 0 monoton abnehmende Funktion von 7, so dass die Kurve
in diesem Intervall bei grossem ¢ den Verlauf einer einsinnig gekritmmten (endlichen)
Spirale zeigt.

9. Der in Figur 3 wiedergegebene Teil des verebneten Torsenstreifens wurde fol-
gendermassen gezeichnet: Das Intervall — ¢ <7 < 0 wurde in eine Anzahl von
Schritten At zerlegt (am Anfang kleinere, gegen Ende grossere) ; zu jedem Schritt Ar
wurde iiber (9) der entsprechende Bogenabschnitt As bestimmt und der mittlere
Kriimmungsradius 9 = As/Ar berechnet. Nunmehr konnte mit guter Ndherung die
verebnete Mittellinie /* aus Kreisbigen vom Halbmesser g und Zentriwinkel At zu-
sammengesetzt werden.

Die Streifenrinder k¥ wurden als Parallelkurven zur Mittellinie /* im Abstande
+ d = 4+ 7 tg (7/2 n) hinzugefiigt und gleichfalls durch Kreisbégen approximiert.

Schwierigkeiten treten gegen Intervallende (v = 0) auf, wo I’ eine Spitze U? auf-
weist (und im iibrigen spiegelbildlich zur Spitzentangente periodisch fortgesetzt zu
denken ist). Der innere Streifenrand wird daher als Parallelkurve von {’ noch vor dem
Intervallende eine Spitze bilden, die zu Uberschneidungen fiihrt.

10. Der Versuch, die Streifentorse X' ausgehend von ihrer in Abschnitt 4 erwédhnten
Gratlinie f zu verebnen, kénnte sich auf deren Darstellung (7) stiitzen. Einfacher
ergibt sich jedoch die Verebnung f, die ja die Evolute von I (und *) darstellt, aus der
Tatsache, dass fiir diese nach Viertelschwenkung des Koordinatensystems X, Y der-
selbe Richtungswinkel 7 verwendet werden kann und g die (vom Scheitel U* aus ge-
zihlte) Bogenlinge s* bedeutet. Man hat daher in (12) bereits die definierende Be-
ziehung

s*2 =

(13)
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Wird der Koordinatenursprung nach U? verlegt, so folgen aus dX*/ds* = cos r und
dY*[ds* = sin T die Gleichungen

T T

X* oyl costdr V* — 702/‘ : sin T dt ' (14)
0

(et — 72)312 ’ c? — 7332

Auch diese Integrale sind nicht elementar auswertbar.
Fiir die natiirliche Gleichung von f* findet man durch Elimination von 7 aus s* und
o* = ds*/dt die Form
c2 vl p*2= (y2 4 s%2)3, (15)

W. WuNDERLICH, Wien

Bemerkung und Losung zum Problem Nr. 29

Unendlich viele Primzahlen der Form 8 n + 1
mait geradem und ungeradem Exponenten fiir 2

Diese Notiz soll zum «ungelosten Problem Nr. 29» in Band 14, Heft 3, der «Ele-
mente» auf S. 60 (gestellt von W. S1ERPINSKI) Stellung nehmen und auch dessen voll-
stdndige Losung bringen sowie sie etwas verallgemeinern. Es handelt sich um die
Frage, ob es unendlich viele Primzahlen = 8 n 4 1 gibt, welche einen geraden bzw.
ungeraden kleinsten positiven Exponenten ¢ mit 2° = 1(p) haben. — Zunichst wurden
versehentlich die Primzahlen 17, 41, 97, welche Beispiele fiir geraden Exponenten
(e = 8, 10, 48) sein sollten, als solche fiir ungeraden Exponenten angefiihrt; dafiir
dienen etwa 73 und 89 (e =9, 11).

Sodann kann man die gestellte Frage in beiden Fillen positiv beantworten, und
zwar auf Grund des verallgemeinerten «Dirichletschen Reihensatzes» im Koérper der
Gaussischen Zahlen K(7) in Verbindung mit dem Westernschen Kriterium fiir den
8. Potenzcharakter der Zahl 2 [A. E. WESTERN, Some Criteria for the Residues of Evgth
and Other Powers, Proc. London math. Soc. (2) 9, 244-272 (1911); vom Verfasser
weiter ausgefiihrt, Deutsche Math. 4, 44-52 (1939)]. Danach gibt es unendlich viele
Primideale aus den Restklassen + 3 + 8¢, 4+ 5 4+ 8 ¢ mod 16, also unendlich viele
natiirliche Primzahlen der Restklasse 16 #» + 9 mit der Darstellung 22 + 64 #? (» un-
gerade), und nach diesen ist 2 ein 8. Potenzrest, 2 kommt somit ein ungerader
Exponent zu.

Auf demselben Wege kann man auch unendlich viele Primzahlen mit beziiglich 2
geradem Exponenten nachweisen, ohne auf die sehr speziellen Teiler der Fermat-
Zahlen 22" + 1 zu greifen. Es sind dies solche, nach denen 2 nicht biquadratischer
oder wenigstens nicht 8. Potenzrest ist. Diese erhidlt man aus den Primideal-Rest-
klassen 4+ 1+ 44, + 3+ 47 mod 8 bzw. + 3, 4+ 5mod 16, das gibt natiirliche
Primzahlen mit der Darstellung 2 4+ 16 #? (¥ ungerade) bzw. solche der Form 16#+9
mit der Darstellung x2 4+ 256 y2? (Beispiele 281, 617). Nach letzteren gehort iibrigens
die Zahl —2 als 8. Potenzrest zu einem ungeraden Exponenten. Es gibt also auch
unendlich viele Primzahlen der Form 8 » + 1 mit ungeradem Exponenten fiir —2,
wie er allen Primzahlen der Art 8 # + 3 zukommt. Hier wird der Exponent fiir 2
genau durch 2, nicht durch 4 teilbar.
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