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Mit (35), (36) (erste Relation) und (37) smd die Voraussetzungen (a), (b) und (c) von
Satz I für die k Mengen Av/l erfüllt. Es gibt nach der Behauptung (z) dieses Satzes
also n+l paarweise verschiedene Indizespaare (v0, pi0), (vn, pin) derart, dass

(K,0 U A:0H) n-n {AVnh U A*nJ * 0 (38)

ausfällt. Mit (36) (zweite und dritte Relation) schhesst man leicht, dass bereits die
Indizes vt paarweise verschieden sein müssen, so dass auf

BVon-nBVn*0 [l<v0<--<vn<r] (39)

geschlossen werden kann, was aber mit (32) einen Widerspruch darstellt. Unsere
Gegenannahme ist falsch und Satz IV damit bewiesen. H. Hadwiger, Bern
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Geometrische Betrachtungen um eine Apfelschale

An einem langen Winterabend mag es vorkommen, dass man sich in fröhlicher
Tafelrunde des «Apfelschalenorakels» erinnert: Geschickte Hände bemühen sich,
einen Apfel durch einen schraubenartig herumgeführten Schnitt in einem Zuge zu
schälen, worauf das lange Schalenband aufgeworfen wird; aus der Figur, die es

nach dem Zurückfallen bildet, wissen dann Kundige den Anfangsbuchstaben des oder
der Zukünftigen herauszulesen. Schaltet man jedoch den Zufall aus, indem man den
Schalenstreifen flach auf der Tischplatte ausbreitet, so gelangt man stets zu einem
«S» in Gestalt einer schönen Doppelspirale. Was kann nun der Geometer hierzu sagen

1. Dass man den Apfel durch eine Kugel idealisieren wird, liegt wohl auf der Hand.
Wird ferner die Schneidkante des Messers gerade angenommen, so entsteht als Schnittfläche

auf jeden Fall eine Strahlfläche (Regelfläche); wird überdies die Klingenfläche
als eben (oder in der Umgebung der Schneidkante wenigstens abwickelbar)
vorausgesetzt, dann wird die genannte Strahlfläche im Zuge ihrer Entstehung längs jeder
Erzeugenden von einer Ebene berührt, so dass es sich um eine Torse handeln muss.
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Die Ausbreitung des Schalenstreifens m die Ebene ist daher ohne weiteres möglich,
wenn man die Dicke vernachlässigt

Nun ist noch die Frage der Schnittfuhrung zu klaren Die einfachsten Verhaltnisse
ergeben sich vielleicht, wenn man sich fur eine sphärische Kreisevolvente entscheidet,
hierbei stellt sich gleichzeitig konstante Streifenbreite (und Banddicke) ein

2 Wir gehen aus von einer ebenen Kreisscheibe mit dem Radius JR, die wir längs
eines Durchmessers berührend an einen festen Drehkegel A mit dem Öffnungswinkel
2 ol anlegen, so dass die Kreismitte mit der Kegelspitze 0 zur Deckung kommt Wird
anschliessend die Kreisscheibe auf den Kegelmantel abgewalzt, so beschreibt irgendein
mitgenommener Randpunkt eine auf der Kugel TJ(0, R) verlaufende Bahnkurve k
Denken wir uns auf der Kugeloberflache längs des Scheibenrandes einen undehnbaren

Faden gespannt, so hesse es sich einrichten, dass sich derselbe wahrend des

WalzVorganges auf dem Kegel A aufwickelt, und zwar längs eines der beiden Kleinkreise

m, m, m welchen A die Kugel schneidet Die Bahnkurve k kann mithin als

sphärische Evolvente des Kreises m cder des Kreises m aufgefasst werden Sie setzt mit
Spitzen abwechselnd auf m und m auf

Nach dem Hauptsatz der sphärischen oder der Bundelkmematik verhalt sich

unser Walzvorgang in jedem Augenblick m erster Näherung wie eine reme Drehung
um die jeweilige Walzerzeugende Das bedeutet, dass die Bahntangente des

mitgenommenen Punktes jedeizeit normal zur Scheibenebene ist Denken wir uns die

Kegelachse z lotrecht, dann besitzen samtliche Bahntangenten denselben Neigungswinkel

a gegen die Waagrechte, so dass die Kreisevolvente k eine Kurve konstanter

Steigung oder Boschungshnie auf der Kugel 77 darstellt1)

^Irr
>\-

>r /
4

2
_ m

Mgur 1

Kugel II mit Boschungshnie k und eingeschriebenem Torsenstreifen 2T

*) P Serret, Thdorie nouvelle gdomdtrique et mtcanique des hgnes a double courbure (Paris 1860), S 39 -
A ENNEPER,Math Ann 19 (1882), und W Blaschke, Mh Math Phys 19 (1908), haben bemerkt, dass sich
diese «sphärischen Schraubenlinien» im Grundriss als Epizykloiden abbilden Vgl Auch W Wunderlich,
Über die Boschungshmenauf Flächen 2 Ordnung Sitz Ber Akad Wiss Wien 255,309-331, msb 317(1947)
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3 Nach einem vollen Umlauf um den Kegel A deckt sich die Endlage der rollenden
Kreisscheibe wieder mit der Ausgangsstellung Em mitgenommener Randpunkt P0
gelangt hierbei allerdings m eine Neulage Px / P0, deren sphärische Entfernung von
P0 durch den abgewalzten Randbogen gemessen wird, also mit dem Umfang
2 n R sm a des Kreises m übereinstimmt Wir können demnach von Anfang an neben
P0 auch gleich den Punkt Px und weitere aquidistante Randpunkte P2, P3, beim
Walzvorgang mitnehmen, alle diese Punkte werden gleichzeitig dieselbe Kreisevolvente

k beschreiben (Figur 1) Auf diese Weise kann bei einem einzigen Umlauf um A
der ganze Evolventenbogen zwischen m und m erhalten werden, zu dem em Emzel-
punkt n 1/(2 sm oc) Umlaufe benotigen wurde (n 7,5 m Figur 1)

Die Strecke P0 Px überstreicht wahrend des Walzvorganges einen beiderseits von
der Bahnkurve k begrenzten Streifen konstanter Breite 2 d 2 R sm (jr/2^),der eine
brauchbare Idealform fur die Schnittflache unseres Apfelschalenstreifens abgibt, da
er auch abwickelbar ist Letzteres folgt aus der Tatsache dass die Bahntangenten
aller Punkte der Geraden P0 Px stets parallel, namhch normal zur Scheibenebene
sind, so dass es fur die Streifenflache längs jeder Erzeugenden eine gemeinsame
Tangentialebene gibt, was bekannthch eine notwendige und hinreichende Bedingung
fur Abwickelbarkeit ist

4 Die von der Geraden e P0 Px erzeugte Strahlflache Z ist nach dem Gesagten
eine Torse und besteht mithin aus den Tangenten einer gewissen Raumkurve /, ihrer
Grathnie, die im vorliegenden Fall leicht anzugeben ist Die Erzeugende e berührt
namhch in jeder Lage den Drehkegel A und wurde, entsprechend emgefarbt, auf
demselben nach Ablauf des WalzVorgangs eine Abdruckspur hinterlassen, die m jedem
Augenbhck von e berührt wird, also die gesuchte Grathnie / darstellt Denkt man sich
den Kegel A aufgeschlitzt und in die Scheibenebene ausgebreitet, so kommt die Kurve/
mit der Geraden e zur Deckung / ist daher eine geodätische Linie des Drehkegels A

5 Fassen wir jetzt den Mittelpunkt QQ der Strecke P0 Px ins Auge Er durchlauft
wahrend der Rollung eine zu k ähnliche sphärische Kreisevolvente /, welche die
Mittellinie unseres Streifens darstellt Dieselbe verlauft auf einer mit 77 konzentrischen
Kugel 0(0, r) mit dem Radius r R cos (tz sm <x) R cos (n\2 n)

Die Torse Z ist der Kugel 0 längs der Mittellinie l angeschrieben Z und /
entsprechen einander demnach in der Polarität von 0 Der Tangente t in einem
beliebigen Punkt Q von l ist dabei die durch Q gehende, zu t normale Erzeugende e von Z
zugeordnet, und der zugehörigen Schmiegebene a von / entspricht als Pol jener
Gratpunkt S von Z, in welchem e die Grathnie / auf A berührt Die Strecke q QS
stellt den im folgenden benotigten «geodätischen Krümmungsradius» von / dar

6 Bei der Verebnung der Streifentorse Z geht die Mittellinie l unter Erhaltung der
Bogenlänge s und der geodätischen Krümmung 1/q m eine ebene Kurve P uber, die

jetzt ermittelt werden soll Sobald wir die Abhängigkeit zwischen s und q kennen,
wird uns die Kurve lv durch ihre «natürliche Gleichung» F(s, q) 0 im Sinne von
Cesäro festgelegt sein

Zwischen der Bogenlänge s und der Hohenkote z, die wir beide von der Äquatorebene

aus zahlen wollen, besteht bei l wie bei jeder Boschungshnie mit dem Steig-
wmkel a der Zusammenhang x

z s sin a. (1)
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Zur Bestimmung des Krümmungshalbmessers q im Anschluss an Abschnitt 5
betrachten wir jenen Seitenriss, in welchem die den Punkt Q tragende Kreisscheibe
projizierend erscheint (Figur 2). In dieser Ansicht bildet sich die Bahntangente t von

K
^

f-ff

Figur 2

Q unverkürzt ab, da sie zur Scheibenebene normal ist (Abschnitt 2). Die zugehörige
Schmiegebene a der Bahn / von Q erscheint dann gleichfalls projizierend, da sie bei
einer Böschungslinie dieselbe Neigung a wie die Tangente hat, also t zur Fallinie
besitzt. Unter diesen Umständen lässt sich der Gratpunkt S als Pol von a bezüglich
der Kugel 0 leicht einzeichnen, und der geodätische Krümmungsradius q QS kann
in wahrer Grösse auf dem Umriss des aus 5 an 0 legbaren Berührungskegels in der
Tangentenstrecke TS abgegriffen werden. Aus den in der Figur auftretenden
rechtwinkligen Dreiecken entnimmt man zunächst OQ" z/cos a und weiterhin

os=-c57'='.cosa l/s?z + 'ra- (2)

Elimination von z mittels (1) liefert schliesslich die gewünschte natürliche Gleichung
der verebneten Mittellinie lv:

s2 (q2 + r2) c2 r4 mit c ctg a (3)

7. Wer die analytische Behandlung vorzieht, wird den Ausgang von einer
Parameterdarstellung der sphärischen Rollkurve / nehmen, wobei als Parameter etwa der
Wälzwinkel cp auf einem Parallelkreis des Fixkegels A dienen kann. Unter Verwendung
der Abkürzungen sin a a und cos a b lautet eine solche Darstellung

x r (cos a cp cos cp + a sin a <p sin cp) |

y r (cos a cp sin cp — a sin a cp cos cp) (4)

z= rb sin acp

Durch Ableitung des Ortsvektors x (x, y, z) nach cp erhält man den Tangentenvektor i,
und durch Integration von \i\ r b cos a cp die Bogenlänge

s rc sin acp mit c — ctg oc. (5)

Nunmehr führt man ein begleitendes Dreibein ein, bestehend aus den drei paarweise

orthogonalen Einheitsvektoren ex i/| i | (Tangente), c3 %\t (Flächennormale) und
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e2 c3 X ex (Quertangente). Die Ableitungsgleichung dt2jds — x ex liefert dann die
geodätische Krümmung 1

x— —
Q

und Elimination von cp aus (5) und (6) führt endlich auf die natürliche Gleichung (3)
von lv.

Der Vollständigkeit halber sei auch noch die Parameterdarstellung der Streifengratlinie

/ angeführt, die man über ae* at -f q e2 erhält:

ra sm w „,L_ /y* ;

sin a <p
J

ra cos <p

sin a (p

rb

sm a 9?
(7)

r

<fr
ä"

/*

&

K

Figur 3

VerebneterTorsenstrei-
fen (halber Maßstab

gegenüber Figur 1).

8. Um nun aus der natürlichen
Gleichung (3) eine Darstellung der
verebneten Mittellinie lv in kartesischen

Koordinaten X, Y zu erhalten,
führen wir den Neigungswinkel r der
Tangente gegen die X-Achse ein. Aus
der Krümmungsdefinition q dsjdx
finden wir

5 ds

Je *J \/c*
(8)

Zufolge der getroffenen Wahl der
Integrationskonstanten liegt die Kurve

lv derart im Achsenkreuz XY, dass
die in den Endpunkten s=±cr
auftretenden Spitzentangenten parallel
zur X-Achse verlaufen (Figur 3),
während in dem durch s 0
gekennzeichneten Ausgangspunkt Qv0

(Wendepunkt) der Richtungswinkel r0
_ c — ctg a vorhanden ist2).

Zwischen Bogenlänge und Richtungswinkel

besteht sonach die Relation3)

(9)s2 + r2 x2 — c2 r2

Aus den Richtungsbeziehungen
dXjds cosr und dYjds sinr folgt
schliesslich mittels partieller
Integration :

a) Den Figuren 1 und 3 liegt die Annahme a aresin (1/15) 3,823° zugrunde. Hier ist
c - |/224 14,9666 4,764 n und T0 - 857,52°.

8) Die Abhängigkeit zwischen Bogenlänge s und Richtungswinkel r wurde von K. C. F. Krause, Nova
theoria linearum curvarum (München 1835), und A. Peters, Neue Curvenlehre (Dresden 1835), zwei
Vorläufern Cesaros, als die «ursprüngliche Gleichung» einer ebenen Kurve angesehen und sollte für deren
Diskussion und Klassifikation die Grundlage abgeben. Im folgenden Abschnitt wird sie zum Auftragen der
Kurve /» verwertet.
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- r f dr= r ]/c2 - r2 cos t + r f]/c2 - t2 sin r drJ ]/c2 - T2 r J r
—c

T

T dr=r ]/c2 — r2 sin r — r / V c2 — r2 cos r dr

X --Y

Y=- -r
— c

(10)

Diese Integrale sind elementar nicht auswertbar.
Schaffen wir aus den Gleichungen (3) und (9) die Grösse c fort, so erhalten wir eine

für alle Werte des Steigungswinkels a gültige Beziehung, die mit Berücksichtigung des
Vorzeichens in (8) die nachstehende Form hat:

s q — r2 r (11)

Diese Beziehung ist im übrigen für unsere Kurven charakteristisch.
Die durch Elimination von s entstehende Relation

2 T2r* t

liefert q als in — c 5g r ^ 0 monoton abnehmende Funktion von r, so dass die Kurve lv

in diesem Intervall bei grossem c den Verlauf einer einsinnig gekrümmten (endlichen)
Spirale zeigt.

9. Der in Figur 3 wiedergegebene Teil des verebneten Torsenstreifens wurde
folgendermassen gezeichnet: Das Intervall — c ^ r ^ 0 wurde in eine Anzahl von
Schritten Ar zerlegt (am Anfang kleinere, gegen Ende grössere); zu jedem Schritt Ar
wurde über (9) der entsprechende Bogenabschnitt As bestimmt und der mittlere
Krümmungsradius q As/Ar berechnet. Nunmehr konnte mit guter Näherung die
verebnete Mittellinie lv aus Kreisbögen vom Halbmesser q und Zentriwinkel Ar
zusammengesetzt werden.

Die Streifenränder kv wurden als Parallelkurven zur Mittellinie lv im Abstände
-[- d ± r tg (jt/2 n) hinzugefügt und gleichfalls durch Kreisbögen approximiert.

Schwierigkeiten treten gegen Intervallende (r 0) auf, wo lv eine Spitze Uv

aufweist (und im übrigen spiegelbildlich zur Spitzentangente periodisch fortgesetzt zu
denken ist). Der innere Streifenrand wird daher als Parallelkurve von 1° noch vor dem
Intervallende eine Spitze bilden, die zu Überschneidungen führt.

10. Der Versuch, die Streifentorse Z ausgehend von ihrer in Abschnitt 4 erwähnten
Gratlinie f zu verebnen, könnte sich auf deren Darstellung (7) stützen. Einfacher

ergibt sich jedoch die Verebnung fv, die ja die Evolute von lv (und fr*) darstellt, aus der
Tatsache, dass für diese nach Viertelschwenkung des Koordinatensystems X, Y
derselbe Richtungswinkel r verwendet werden kann und q die (vom Scheitel Uv aus

gezählte) Bogenlänge s* bedeutet. Man hat daher in (12) bereits die definierende

Beziehung

**2 t£4- (13)
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Wird der Koordinatenursprung nach Uv verlegt, so folgen aus dX*/ds* cos r und
dY*lds* sin r die Gleichungen

X* yc2 f--00*^^ Y* rc2 f shiTdr (U)* TC J (Ct _ T2)3/2 * X TC J (C2 _T2)3/2 ' \lV
0 0

Auch diese Integrale sind nicht elementar auswertbar.
Für die natürliche Gleichung von fv findet man durch Elimination von r aus s* und

q* =z ds*/dr die Form
C2r4^*2_= (r2_|_ 5*2)3, (15)

W. Wunderlich, Wien

Bemerkung und Lösung zum Problem Nr. 29

Unendlich viele Primzahlen der Form 8w-f 1

w# geradem und ungeradem Exponenten für 2

Diese Notiz soll zum «ungelösten Problem Nr. 29» in Band 14, Heft 3, der
«Elemente » auf S. 60 (gestellt von W. Sierpinski) Stellung nehmen und auch dessen

vollständige Lösung bringen sowie sie etwas verallgemeinern. Es handelt sich um die
Frage, ob es unendlich viele Primzahlen p %n + 1 gibt, welche einen geraden bzw.
ungeraden kleinsten positiven Exponenten e mit 2e l(p) haben. - Zunächst wurden
versehentlich die Primzahlen 17, 41, 97, welche Beispiele für geraden Exponenten
(e 8, 10,48) sein sollten, als solche für ungeraden Exponenten angeführt; dafür
dienen etwa 73 und 89 (e 9, 11).

Sodann kann man die gestellte Frage in beiden Fällen positiv beantworten, und
zwar auf Grund des verallgemeinerten «Dirichletschen Reihensatzes» im Körper der
Gaussischen Zahlen K(i) in Verbindung mit dem Westernschen Kriterium für den
8. Potenzcharakter der Zahl 2 [A. E. Western, Some Criteria for the Residues of Eigth
and Other Powers, Proc. London math. Soc. (2) 9, 244-272 (1911); vom Verfasser
weiter ausgeführt, Deutsche Math. 4, 44-52 (1939)]. Danach gibt es unendlich viele
Primideale aus den Restklassen ± 3 + 8 i, ±5 + 8% mod 16, also unendlich viele
natürliche Primzahlen der Restklasse 16 n + 9 mit der Darstellung x2 + 64 u2 (u
ungerade), und nach diesen ist 2 ein 8. Potenzrest, 2 kommt somit ein ungerader
Exponent zu.

Auf demselben Wege kann man auch unendlich viele Primzahlen mit bezüglich 2

geradem Exponenten nachweisen, ohne auf die sehr speziellen Teiler der Fermat-
Zahlen 22n +1 zu greifen. Es sind dies solche, nach denen 2 nicht biquadratischer
oder wenigstens nicht 8. Potenzrest ist. Diese erhält man aus den Primideal-Restklassen

± 1 -f 4 i, ± 3 + 4 i mod 8 bzw. ± 3, ± 5 mod 16, das gibt natürliche
Primzahlen mit der Darstellung x2 + 16 u2 (u ungerade) bzw. solche der Form 16 n + 9
mit der Darstellung x2 + 256 y% (Beispiele 281, 617). Nach letzteren gehört übrigens
die Zahl —2 als 8. Potenzrest zu einem ungeraden Exponenten. Es gibt also auch
unendlich viele Primzahlen der Form 8 n + 1 mit ungeradem Exponenten für — 2,
wie er allen Primzahlen der Art 8 n + 3 zukommt. Hier wird der Exponent für 2

genau durch 2, nicht durch 4 teilbar.
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