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connection with the preceding theory.” Es ist wohl anzunehmen, dass er
7t = 97,409091034 ... berechnet und gesehen hat, dass sich dies sehr nahe durch
97,409090909... = 2143/22 darstellen ldsst. Weiter ergibt sich 2143 = 22 - 92 4 192
und damit der von RAMANUJAN angegebene und fiir seine Konstruktion benutzte
Niherungswert (92 4 19%/22)Y4 fiir . In anderer Form findet sich diese Niherung
bei REICHENBACHER [6].

Eine von CORDILHA [7] angegebene Konstruktion benétigt in einer Gitterebene
ebenfalls nur einen Kreisbogen, wenn man den Radius 7 des gegebenen Kreises gleich
4 Gittereinheiten wihlt. Ist OM auf der x-Achse gleich 21/,7 und 4 der Punkt mit
den Koordinaten —3/,7, Y/, 7, so liefert OM + M A den Kreisumfang mit einem
relativen Fehler von weniger als 1/5000000.

Auch eine von VIETA [8] benutzte Nidherung ldsst sich in dieser Weise erhalten,
wenn man den Radius 7 gleich 5 Gittereinheiten wihlt. Es wird jetzt OM = 33/, r
gesetzt, und die Koordinaten von A4 sind 8/,7,8/,7. OM -+ M A ist dann der Kreis-
umfang mit einem relativen Fehler von weniger als 1/65000. Mit OM =%/, 7 und
A = (3|57, 35 7) ergibt sich hier auch der halbe Kreisumfang aus den Gitterpunkten
mit einem Kreisbogen.

Da aber bei diesen Konstruktionen der Punkt A nicht auf der y-Achse liegt, ist
die vorher angegebene doch bequemer und einfacher zu merken. P. FINSLER
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Einblick in den Aufbau und die Funktionsweise
modetrner Rechenautomaten’)

Unter Rechenautomaten (RA) verstehen wir Rechengerite, welche nicht nur ein-
zelne Operationen, wie Addition zweier Zahlen und &hnliches, sondern ldngere
Operationsketten selbsttitig abwickeln, nachdem die gegebenen Zahlen und das
Rechenprogramm in das Gerit eingefiihrt worden sind und der Startknopf betatigt
wird. Die Resultate werden entweder in Form von Zahltabellen oder von graphischen
Darstellungen geliefert.

1) Der Artikel ist eine auf Wunsch der Redaktion entstandene Bearbeitung eines in die Materie ein-
fithrenden Vortrages des Verfassers in der Naturwissenschaftlichen Gesellschaft Winterthur.
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Jeder RA besitzt deshalb Eingabevorrichtungen fiir die gegebenen Zahlen und fiir
das Programm, einen Rechenteil, Ausgabevorrichtungen fiir die Resultate sowie
Elemente, welche den Antrieb und die Steuerung besorgen.

Wenn wir im folgenden in grossen Ziigen die Funktionsweise eines RA beschreiben
wollen, so miissen wir zwei Typen getrennt behandeln: Digitalautomaten (DA) und
Analogautomaten (AA). Ubrigens besteht trotz der kurzen Zeit, die seit der Kon-
struktion der ersten solchen Automaten verflossen ist, schon eine derart grosse
Mannigfaltigkeit von Ausfithrungen, dass wir uns hier auf das Wesentliche beschrin-
ken miissen.

Digitalautomaten

In diesen werden die zu verarbeitenden Zahlen mit Hilfe von Ziffern und der Stel-
lenwertschreibweise dargestellt wie etwa in einer Biirorechenmaschine. Da natiirlich
pro Zahl nur eine beschrinkte Anzahl Ziffern mitgefithrt werden kann, sind die ver-
arbeitbaren Zahlen diskret verteilt. Wegen der im Laufe der Rechnung vorkom-
menden Rundungsfehler miissen immerhin bei Grossanlagen bis zu 20 Ziffern pro
Zahl mitgenommen werden.

Das Rechenwerk (RW) eines DA ist imstande, die ersten vier Grundoperationen
automatisch auszufithren. Offensichtlich benotigt der DA zusitzlich zu den oben
aufgezdhlten Bauelementen noch eine Vorrichtung, welche erlaubt, Zwischenresul-
tate, gegebene Zahlwerte, die erst spater benétigt werden, sowie auch das vorbereitete
Rechenprogramm aufzubewahren, einen sogenannten Speicher (oft auch «Gedicht-
nis» des DA genannt). Soll etwa die Zahl z == a b + ¢ d berechnet werden, so wandern
a, b, ¢, d vorerst in den Speicher. Dann werden a4 und b ins RW geholt und miteinander
multipliziert ; das Produkt wird gespeichert. Es folgt die Multiplikation von ¢ mit d.
Dieses Produkt bleibt im RW, und im nichsten Schritt wird aus dem Speicher a4 b
entnommen und zu ¢ 4 addiert. Die jetzt im RW stehende Zahl z wird gespeichert
und auf Wunsch herausgegeben. In dieser Weise werden lingere Operationsketten
schrittweise ausgefiihrt. Die einzelnen Schritte (Rechnen, Verschieben der Zahlen im
Innern des DA) bendtigen natiirlich gewisse Zeiten. Allerdings kénnen diese sehr
kurz sein: Ein elektronischer DA (andere werden kaum mehr gebaut) bewiltigt zum
Beispiel einige tausend Additionen zehnstelliger Zahlen pro Sekunde und mehr.

Nach dieser kurzen Ubersicht mégen noch einige Einzelheiten zur Sprache kom-
men: Die Eingabe der Zahlen geschieht meistens mit Hilfe von Lochkarten oder
Magnetbindern. Diese miissen natiirlich vorgingig mit Hilfsapparaten «beschriftet»
werden. (Eine direkte Eingabe in den DA - etwa mit Hilfe einer Tastatur — wire
moglich, ist aber vollig unrationell, da damit die Arbeitsgeschwindigkeit des DA
nicht voll ausgeniitzt wiirde.) Die Eingabegeschwindigkeit liegt fiir Lochkarten
ungefihr bei zweitausend Ziffern pro Sekunde; fiir Magnetbénder ist sie etwa zehnmal
grosser.

Die Ausgabe von Zahlen erfolgt entweder direkt in Klarschrift oder vorerst auch
auf Lochkarten bzw. Magnetbindern, die dann von Hilfsapparaten automatisch in
Zahltabellen (in beliebiger Anordnung der Zahlen) umgesetzt werden. Das Tempo der
Ausgabe ist bei Magnetbindern ungefihr das gleiche, bei Lochkarten etwas geringer
als bei der Eingabe. Das Schreibtempo fiir Klarschrift betriagt tiber tausend Zeichen
pro Sekunde, wobei ganze Zeilen auf einen Schlag geschrieben werden.
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Uber die Rechengeschwindigkeit wurde oben schon eine Angabe gemacht. Es
stehen DA in Entwicklung, welche beispielsweise 800000 Multiplikationen zehnstel-
liger Zahlen pro Sekunde ausfiihren. Diese unvorstellbaren Geschwindigkeiten wurden
nicht etwa nur aus Prestigegriinden der Firmen geziichtet, sondern werden von den
Anwendungsgebieten verlangt, zum Beispiel bei der Auswertung von statistischem
Material der Meteorologie mit dem Zweck, zeitgerecht Wetterprognosen zu «er-
rechnen».

Die Speicherung der Zahlen erfolgt meistens in Apparaturen, welche grundsitzlich
so arbeiten wie ein Tonbandgerit (6rtlich variierende Magnetisierung einer Schicht
auf einem Band, einer Trommel oder einer Scheibe) oder in sogenannten Magnetkern-
speichern, die aus einer grossen Zahl (bis {iber eine Million) magnetisierbarer Ringlein
von rund 3 mm Durchmesser bestehen, welche in einer Art Drahtnetz in den Kreu-
zungspunkten eingehingt sind. Auf die Wirkungsweise dieser Speicher und auf
andere Speicherungsmoglichkeiten kann hier nicht eingegangen werden. Dagegen sei
noch etwas Grundsitzliches und allen Speichern Gemeinsames erwihnt: Es konnen
pro «Speicherstelle» (auf einer magnetisierbaren Schicht ein Flidchenstiick von einem
Bruchteil eines Quadratmillimeters) nur je zwei « Werte» der betreffenden Information
gespeichert werden, etwa 4 oder — bzw. 0 oder 1. (Aus technischen Griinden kénnen
nur die beiden Sittigungszustinde beniitzt werden.) Deshalb arbeiten einige Typen
von DA intern im Dualsystem; bei den andern wird im Zehnersystem gearbeitet,
wobei jede Ziffer durch einen aus nur zwei Zeichen aufgebauten Code dargestellt
wird (vgl. Morsealphabet). Diese Codifizierung wird natiirlich auch schon bei der
Eingabe der Zahlen in den DA beniitzt. Sie bietet zusatzlich noch einfache Moglich-
keiten der Selbstkontrolle des DA bei Verschiebungen der Zahlen innerhalb des Ge.
rites, zum Beispiel aus dem Speicher ins RW. Weitaus die meisten Fehler — solche
konnen gelegentlich als Folge von Defekten auftreten — werden festgestellt; der DA
hilt an und meldet, wo der Fehler steckt. Nur dann versagt die Kontrolle, wenn
innerhalb eines Zeitintervalles von einigen Mikrosekunden zwei Fehler auftreten, die
sich kompensieren; dieser Fall tritt aber nach Schitzungen von Fachleuten im Mittel
nur einmal pro einige Dutzend Jahre Laufzeit des DA auf, und dieses verschwindend
kleine Risiko wird iibernommen. Infolge der Selbstkontrolle besitzen die DA eine
sehr grosse Zuverlissigkeit, die — neben der hohen Arbeitsgeschwindigkeit — ein
wesentlicher Grund fiir ihren Einsatz ist.

Bildlich ausgedriickt, enthalten die Speicher eine grosse Zahl von «Zellen» (bis zu
einigen Millionen), in denen je ein Operand Platz findet. Die Zellen und auch alle
andern Stellen im Gerit, an denen sich ein Operand aufhalten kann, sind numeriert.
Diese Nummern, Adressen genannt, dienen der Kennzeichnung des betreffenden
Operanden gegeniiber der Maschine.

Die Programmierung, das heisst die Aufstellung des Rechenplanes, erfolgt im
Prinzip so, wie wenn man sich ein Rechenschema fiir die Durchfithrung «von Hand»
vorbereiten wiirde, nur miissen die einzelnen Schritte explizit formuliert werden. Wir
wollen dies am Beispiel der Berechnung von z = a b 4 ¢ & demonstrieren. (Es muss
allerdings vorausgeschickt werden, dass verschiedene Systeme bestehen; wir greifen
eines heraus, welches das Wesentliche zeigt.) Den Ablauf des Prozesses im Gerit
haben wir schon weiter oben iibersichtlicherweise beschrieben. Das eigentliche Pro-
gramm lautet so:
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Speichere den Inhalt der Eingabevorrichtung (also a, b, ¢, 4; etwa auf einer Loch-
karte) in den Zellen 2001, 2002, 2003, 2004! (Diese Adressen sind frei wiahlbar!)

Nimm den Inhalt der Zelle 2001 (das heisst a) ins RW!

Multipliziere mit dem Inhalt der Zelle 2002 (das heisst b)!

Speichere das Resultat in der Zelle 4501! (Adresse unter den noch nicht verwendeten
frei wéhlbar!)

Stelle das RW auf Null und nimm dann den Inhalt von Zelle 2003 (das heisst )
ins RW!

Multipliziere mit dem Inhalt der Zelle 2004 (das heisst 4)!

Addiere den Inhalt der Zelle 4501 (das heisst a b)!

Speichere das Resultat in der Zelle 4501! (Bei der Ablesung des Inhaltes einer
Speicherzelle bleibt der Inhalt erhalten. Wird etwas Neues in die betreffende
Zelle gegeben, so wird der alte Inhalt einfach «iiberschrieben» und damit natiir-
lich vernichtet!

Gib den Inhalt der Zelle 4501 heraus!

Natiirlich kann das Programm nicht in dieser Form ins Steuerwerk des DA ein-
gegeben werden ; die einzelnen Befehle miissen zuerst in « Maschinensprache» iibersetzt
werden. (Es bestehen heute schon einige Moglichkeiten, diese Ubersetzung durch den
DA selbst vornehmen zu lassen!) In der Maschinensprache wird jeder Befehl durch
eine Gruppe von Ziffern codifiziert, von denen die einen den eigentlichen Operations-
befehl angeben, wihrend die andern die zugehorigen Adressen darstellen. Beispiels-
weise kann etwa 152004 bedeuten: 75 Multipliziere! 2004 mit dem Inhalt der Zelle
2004. Natiirlich ist die Anzahl der Befehle, welche der DA unmittelbar ausfithren
kann, beschrdankt. Sind Operationen auszufiihren, welche nicht zum Repertoire des
DA gehoren, so miissen sie auf eine Folge von einfacheren zuriickgefiihrt werden. Das
Radizieren wird beispielsweise gewshnlich durch eine iterative Mittelbildung ersetzt.

Da die Befehlscodes aus Ziffern zusammengesetzt sind, ist es moglich, sie bzw. das
ganze Programm wie eigentliche Zahlen einzugeben und im Speicher festzuhalten.
Man plaziert sie in aufeinanderfolgenden Zellen, beginnend mit der Zelle Nr. 1. Nach-
dem dann auch noch die gegebenen Zahlen in die Eingabevorrichtung eingefiihrt
worden sind und man den Startknopf gedriickt hat, «liest» das Steuerwerk den
Inhalt der Zelle 1, das heisst, es setzt deren «physikalischen Inhalt» in elektrische
Impulse um, welche die Ausfithrung des ersten Befehls des Programms bewirken.
Nach Abschluss der betreffenden Operation wird aus der folgenden Zelle 2 der zweite
Befehl geholt usw.

Soll ein Iterationsprozess durchgefithrt werden (und diese sind ein bevorzugtes
Anwendungsgebiet der DA, aus Griinden, die sich sofort zeigen werden), so tritt die
Frage auf, wie der DA veranlasst werden koénne, den Prozess im richtigen Moment
abzubrechen, nimlich dann, wenn gentigende Genauigkeit erreicht ist. Hier tritt eine
Fahigkeit des DA in Aktion, welche von ausschlaggebender Bedeutung ist. (Sie ist
iibrigens der Grund dafiir, dass der nur sehr beschrinkt zutreffende Name «Elek-
tronenhirn» gepriagt wurde.) Der DA kann gewisse « Ja-Nein-Entscheide» selbsttitig
fallen und daraus die Konsequenzen ziehen. Er kann etwa priifen, ob die gerade im
RW stehende Zahl positiv sei oder nicht, und auf Grund dieser Priifung aus zwei
verschiedenen Programmfortsetzungen die passende auswihlen. Natiirlich kann er
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das nur auf Grund der entsprechenden Programmierung, wozu der sogenannte
«bedingte Sprungbefehl» dient. Dieser bewirkt, dass im einen Fall das Steuerwerk
den nichsten Befehl ganz normal aus der nichsten Zelle holt, im andern Fall aber auf
eine andere Zelle springt, deren Adresse im Sprungbefehl angegeben wird. Auf diese
Weise lasst sich das Programm «verzweigen». Insbesondere kann auf einen schon
einmal durchlaufenen Programmteil «zuriickgesprungen» werden; es wird daraufhin
eine « Programmschlaufe» so oft durchlaufen, bis die bei jedem Umgang stattfindende
Priifung und Entscheidung ein anderes Resultat liefert als bis anhin, worauf ein neuer
Programmteil in Angriff genommen wird. Damit beherrscht man die Iterationspro-
zesse bzw. alle Aufgaben, bei welchen die gleiche Formel mehrmals mit verschiedenen
Zahlen ausgewertet werden muss (Wertetabellen von Funktionen, numerische Inte-
gration von Differentialgleichungen und dhnliches).

Der Umstand, dass die Befehle mit Ziffern codifiziert sind, erméglicht auch, bei
Bedarf im Laufe der Rechnung Befehle mit Hilfe des RW zu modifizieren, zum
Beispiel Adressen zu dndern. Davon wird unter anderem Gebrauch gemacht bei ge-
wissen Moglichkeiten, den DA den grossten Teil des Rechenprogramms selbst her-
stellen zu lassen, was die Programmierer von langweiliger Routinearbeit entlastet
und Fehler im Programm verhiitet. Das letztere ist um so wichtiger, als das Auf-
spiiren von Fehlern in einem Programm meistens eine sehr zeitraubende Arbeit ist.

Analogautomaten

Hier werden die zu verarbeitenden Werte als Masszahlen von kontinuierlich ver-
anderlichen physikalischen Grossen dargestellt (Verschiebungsstrecken, Drehwinkel,
elektrische Spannungen und dhnliches; vgl. den Rechenschieber). Die verarbeit-
baren Zahlen bilden also eine stetige (im allgemeinen aber beschrinkte) Zahlenmenge.

Der Rechenteil des AA besteht aus einer Vielzahl von einzelnen «Rechengliederny,
deren jedes gewohnlich nur eine einzige Art von Rechenoperationen ausfiihrt, zum
Beispiel Differentialgetrieben zur Addition von Drehwinkeln, Spannungsteilern fiir
Multiplikation usw. Beim AA besteht daher die Vorbereitungsarbeit nicht in der
Fixierung der zeitlichen Aufeinanderfolge der Einzeloperationen, sondern hier ist
festzulegen, in welcher Weise die einzelnen Rechenglieder zusammenzuschalten sind,
damit gewisse in dieser Schaltung auftretende physikalische Gréssen den gleichen
Zusammenhang aufweisen wie die gegebenen und gesuchten Zahlen. (Es wird also
gewissermassen ein Modell der Rechnung angefertigt.) Diese Schaltung wird vorerst
in einem sogenannten Koppelungsplan festgehalten. Um etwa die Zahl z=a b 4 cd
zu berechnen, bendtigt man zwei Multiplikationsglieder und ein Addierglied. Der
Koppelungsplan ist (mit leicht verstindlichen Symbolen fiir die Rechenglieder) in
Figur 1 dargestellt.

Man stellt sich am besten vor, alle Rechengrossen seien durch Drehwinkel realisiert.
Wenn man nun, nachdem die Schaltung im Gerét selbst vorgenommen ist, die
Zahlen a, b, ¢, d einstellt (zum Beispiel durch Drehen von Knopfen), so arbeiten alle
angeschalteten Rechenglieder simultan mit, und am Ausgang erscheint zeitverzugs-
los, aber mit einem gewissen Fehler infolge mechanischen Spiels und &hnlichem
behaftet, das Resultat z, etwa auf einer Skala ablesbar. Da auf diese Weise Zwischen-



128 W. Prokor: Einblick in den Aufbau und die Funktionsweise moderner Rechenautomaten

resultate, wie a b, unmittelbar als Eingangsgrosse in ein nichstes Rechenglied gehen,
bendtigt der AA keinen separaten Speicher.

Es ist einleuchtend, dass der AA besonders geeignet ist, Probleme zu behandeln,
in welchen Funktionen von nur einer Variablen auftreten. Soll beispielsweise der
Verlauf der Funktion 2(b) =a b + cd fiir 0 < b <1 ermittelt werden, so wird man
anfinglich a, ¢, 4 und b = 0 einstellen und anschliessend b von Null auf Eins zunehmen
lassen. Am Ausgang erscheint dann laufend der Wert z(b), und man kann direkt die
graphische Darstellung der Funktion aufzeichnen lassen, sei es auf dem Schirm eines
Kathodenstrahloszillographen oder durch einen Schreibstift auf Papier. An dieser
Stelle setzt dann auch die bisher nicht in Erscheinung getretene Automatisierung ein:
Die Variation von b und die Aufzeichnung der Kurve werden selbsttitig ausgefiihrt.

X X
a———— —
, Vi) Sild

7 2
b.___
C-___.

7y—
o |

Figur 1 Figur 2

Die besondere Eignung des AA fiir die Behandlung funktionsmissiger Aufgaben
wird noch durch den Umstand unterstiitzt, dass es bekanntlich mechanische, elek-
trische und andere Apparate gibt, welche eine Integration ausfithren. AA, welche
Integratoren enthalten (Integrieranlagen), kénnen sehr gut fiir die Lésung von Dif-
ferentialgleichungen eingesetzt werden, was an einem Beispiel demonstriert sei:
y' — xy — %= 0 mit der Anfangsbedingung x = 0; y = y,. Die Losung geschieht nicht
etwa nach einer Ndherungsmethode wie beim DA, sondern wiederum so, dass eine
Schaltung der Rechenglieder gesucht wird, in welcher zwischen den x und y darstel-
lenden Grossen die geforderte Beziehung besteht. Nur ist hier diese Schaltung nicht
sofort zu erkennen. Man kann sie auf Grund der folgenden (heuristischen) Uberlegung
finden: Die Differentialgleichung wird nach y’ aufgelost: ¥’ = x y + 2. Nun nehmen
wir an, ¥’ sei bekannt, und berechnen daraus y sowie x y + 2. Der Koppelungsplan
dafiir ist in Figur 2 dargestellt (gestrichelte Linie nicht beachten!).

Jetzt sorgen wir dafiir, dass die Ausgangsgrosse des Integrators fiir x = 0 den
Wert y, hat (Einstellung am Apparat), und koppeln dann noch gemiss der gestrichelten
Linie. Dadurch wird die Bedingung y' = x y + 2 erfiillt, und wenn jetzt x variiert
wird, so erscheint am Ausgang des Integrators laufend der Funktionswert der ge-
suchten Losung. Natiirlich kann auch hier durch Steuerung eines Schreibstiftes
sofort die Bildkurve gezeichnet werden. (Aus der gleichen Schaltung kann iibrigens
auch y’'(x) entnemmen werden!)



Ungeldste Probleme 129

Die hier verwendete Idee der «Riickkoppelung» des Ausganges eines Rechen-
gliedes auf den Eingang eines «fritheren» ist in der Analogierechentechnik sehr
fruchtbar. (Die Idee als solche ist in der Technik lingst bekannt.)

Es mag etwas iiberraschen, dass wir mit einem Integrator gearbeitet haben und
nicht mit einem Differentiator. Der Grund liegt nur darin, dass mit dem ersteren
hohere Genauigkeit erreicht wird als mit dem letzteren.

Der Leser mag den Eindruck gewonnen haben, das Programmieren fiir einen AA
erfordere bedeutend weniger spezielle Kenntnisse als das fiir einen DA ; dies ist weit-
gehend richtig. Immerhin muss noch auf folgendes hingewiesen werden: Bei beiden
Typen sind im allgemeinen die verarbeitbarén Zahlen betragsmissig nach oben
beschrinkt. Beim DA liegt gewohnlich diese Schranke so hoch, dass sie praktisch
belanglosist. Beim AA ist das meistens nicht der Fall, und es sind deshalb im Rahmen
der Programmierung oft Variablentransformationen nétig, damit der zulidssige
Bereich einerseits nicht iiberschritten und anderseits (aus Genauigkeitsgriinden und
wegen gewisser konstruktiv bedingter Umstidnde) moglichst ausgeschopft wird. Es
wiirde jedoch zu weit fithren, wenn wir hier auf dieses Problem eingehen wollten.

W. Prokopr, Winterthur

Ungeloste Probleme

Nr. 33. For irrational « let M (x) be the upper limit of those numbers u such that
the inequality

2 1
1“ q ] S ug
has infinitely many solutions in rational integers $ and ¢. Give a short proof, depend-
ing on ideas rather than calculations, of the fact that if M(«x) <3 then « is a quadratic
irrationality.

This is of course a consequence of MARKOV’s classical work on the minima of
indefinite binary quadratic forms, in which the « with M(a) < 3 are completely
determined. There it was shown, after many other properties of the continued fraction
expansion of such an « had been exhibited, that the expansion is periodic, and hence
that « is quadratic. A direct conceptual proof of this would be most interesting in
itself, and would permit great simplification in MARKOV’s theory. For literature and
a modern proof of the full Markov theorem, see J. W. S. CAsseLs, Diophantine
Approximation, Cambridge Tracts in Mathematics, No.45 (1957). W. J. LEVEQUE

Nachtrag zu Nr. 26. Die dort ausgesprochene Vermutung, wonach sich ein zu-
sammenhingender Streckenkomplex der chromatischen Zahl % stets auf ein Simplex
mit 2 Punkten zusammenziehen lisst, impliziert im Falle £ =5, wie bereits ange-
deutet worden ist, die Giiltigkeit des Vierfarbensatzes. Herr K. WAGNER (Ké&In)?)
machte uns in freundlicher Weise darauf aufmerksam, dass auch umgekehrt aus der
Richtigkeit der Vierfarbenhypothese auf die Richtigkeit unserer Vermutung ge-
schlossen werden kann, so dass Vierfarbensatz und Zusammenziehbarkeit im Falle

1y Brief vom 9. Februar 1959.
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