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connection with the precedmg theory' Es ist wohl anzunehmen, dass er
n* =- 97,409091034 berechnet und gesehen hat, dass sich dies sehr nahe durch
97,409090909 2143/22 darstellen lasst Weiter ergibt sich 2143 22 • 92 f 192

und damit der von Ramanujan angegebene und fur seine Konstruktion benutzte
Näherungswert (92 +192/22)1/4 fur n In anderer Form findet sich diese Näherung
bei Reichenbacher [6]

Eine von Cordilha [7] angegebene Konstruktion benotigt m einer Gitterebene
ebenfalls nur einen Kreisbogen, wenn man den Radius r des gegebenen Kreises gleich
4 Gittereinheiten wählt Ist OM auf der #-Achse gleich 21/2r und A der Punkt mit
den Koordinaten — 5/4 r, 1/2 r, so liefert OM -f MA den Kreisumfang mit einem
relativen Fehler von weniger als 1/5000000

Auch eine von Vieta [8] benutzte Näherung lasst sich in dieser Weise erhalten,
wenn man den Radius r gleich 5 Gittereinheiten wählt Es wird jetzt OM 33/5 r
gesetzt, und die Koordinaten von A smd 6/5 r, 6/5 r OM \~ MA ist dann der
Kreisumfang mit einem relativen Fehler von weniger als 1/65000 Mit OM 9/5r und
A (3/5 r, 3/5 r) ergibt sich hier auch der halbe Kreisumfang aus den Gitterpunkten
mit einem Kreisbogen

Da aber bei diesen Konstruktionen der Punkt A nicht auf der y-Achse hegt, ist
die vorher angegebene doch bequemer und einfacher zu merken P Finsler
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Einblick in den Aufbau und die Funktionsweise
moderner Rechenautomaten1)

Unter Rechenautomaten (RA) verstehen wir Rechengerate, welche nicht nur
einzelne Operationen, wie Addition zweier Zahlen und ähnliches, sondern längere
Operationsketten selbsttätig abwickeln, nachdem die gegebenen Zahlen und das

Rechenprogramm in das Gerat eingeführt worden sind und der Startknopf betätigt
wird Die Resultate werden entweder in Form von Zahltabellen oder von graphischen
Darstellungen gehefert

x) Der Artikel ist eine auf Wunsch der Redaktion entstandene Bearbeitung eines in die Materie ein
fuhrenden Vortrages des Verfassers in der Naturwissenschaftlichen Gesellschaft Winterthur
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Jeder RA besitzt deshalb Eingabevorrichtungen für die gegebenen Zahlen und für
das Programm, einen Rechenteil, Ausgabevorrichtungen für die Resultate sowie
Elemente, welche den Antrieb und die Steuerung besorgen.

Wenn wir im folgenden in grossen Zügen die Funktionsweise eines RA beschreiben
wollen, so müssen wir zwei Typen getrennt behandeln: Digitalautomaten (DA) und
Analogautomaten (AA). Übrigens besteht trotz der kurzen Zeit, die seit der
Konstruktion der ersten solchen Automaten verflossen ist, schon eine derart grosse
Mannigfaltigkeit von Ausführungen, dass wir uns hier auf das Wesentliche beschränken

müssen.

Digitalautomaten

In diesen werden die zu verarbeitenden Zahlen mit Hilfe von Ziffern und der
Stellenwertschreibweise dargestellt wie etwa in einer Bürorechenmaschine. Da natürlich
pro Zahl nur eine beschränkte Anzahl Ziffern mitgeführt werden kann, sind die
verarbeitbaren Zahlen diskret verteilt. Wegen der im Laufe der Rechnung vorkommenden

Rundungsfehler, müssen immerhin bei Grossanlagen bis zu 20 Ziffern pro
Zahl mitgenommen werden.

Das Rechenwerk (RW) eines DA ist imstande, die ersten vier Grundoperationen
automatisch auszuführen. Offensichtlich benötigt der DA zusätzlich zu den oben
aufgezählten Bauelementen noch eine Vorrichtung, welche erlaubt, Zwischenresultate,

gegebene Zahlwerte, die erst später benötigt werden, sowie auch das vorbereitete
Rechenprogramm aufzubewahren, einen sogenannten Speicher (oft auch «Gedächtnis»

des DA genannt). Soll etwa die Zahl z a b + c d berechnet werden, so wandern
a, b, c, d vorerst in den Speicher. Dann werden a und b ins RW geholt und miteinander
multipliziert; das Produkt wird gespeichert. Es folgt die Multiplikation von c mit d.
Dieses Produkt bleibt im RW, und im nächsten Schritt wird aus dem Speicher a b

entnommen und zu c d addiert. Die jetzt im RW stehende Zahl z wird gespeichert
und auf Wunsch herausgegeben. In dieser Weise werden längere Operationsketten
schrittweise ausgeführt. Die einzelnen Schritte (Rechnen, Verschieben der Zahlen im
Innern des DA) benötigen natürlich gewisse Zeiten. Allerdings können diese sehr
kurz sein: Ein elektronischer DA (andere werden kaum mehr gebaut) bewältigt zum
Beispiel einige tausend Additionen zehnstelliger Zahlen pro Sekunde und mehr.

Nach dieser kurzen Übersicht mögen noch einige Einzelheiten zur Sprache kommen:

Die Eingabe der Zahlen geschieht meistens mit Hilfe von Lochkarten oder
Magnetbändern. Diese müssen natürhch vorgängig mit Hilfsapparaten «beschriftet»
werden. (Eine direkte Eingabe in den DA - etwa mit Hilfe einer Tastatur - wäre
möglich, ist aber völlig unrationell, da damit die Arbeitsgeschwindigkeit des DA
nicht voll ausgenützt würde.) Die Eingabegeschwindigkeit hegt für Lochkarten
ungefähr bei zweitausend Ziffern pro Sekunde; für Magnetbänder ist sie etwa zehnmal
grösser.

Die Ausgabe von Zahlen erfolgt entweder direkt in Klarschrift oder vorerst auch
auf Lochkarten bzw. Magnetbändern, die dann von Hilfsapparaten automatisch in
Zahltabellen (in beliebiger Anordnung der Zahlen) umgesetzt werden. Das Tempo der
Ausgabe ist bei Magnetbändern ungefähr das gleiche, bei Lochkarten etwas geringer
als bei der Eingabe. Das Schreibtempo für Klarschrift beträgt über tausend Zeichen

pro Sekunde, wobei ganze Zeilen auf einen Schlag geschrieben werden.
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Über die Rechengeschwindigkeit wurde oben schon eine Angabe gemacht. Es
stehen DA in Entwicklung, welche beispielsweise 800000 Multiplikationen zehnstel-
liger Zahlen pro Sekunde ausführen. Diese unvorstellbaren Geschwindigkeiten wurden
nicht etwa nur aus Prestigegründen der Firmen gezüchtet, sondern werden von den

Anwendungsgebieten verlangt, zum Beispiel bei der Auswertung von statistischem
Material der Meteorologie mit dem Zweck, zeitgerecht Wetterprognosen zu
«errechnen».

Die Speicherung der Zahlen erfolgt meistens in Apparaturen, welche grundsätzhch
so arbeiten wie ein Tonbandgerät (örtlich variierende Magnetisierung einer Schicht
auf einem Band, einer Trommel oder einer Scheibe) oder in sogenannten Magnetkernspeichern,

die aus einer grossen Zahl (bis über eine Million) magnetisierbarer Ringlein
von rund 3 mm Durchmesser bestehen, welche in einer Art Drahtnetz in den
Kreuzungspunkten eingehängt sind. Auf die Wirkungsweise dieser Speicher und auf
andere Speicherungsmöglichkeiten kann hier nicht eingegangen werden. Dagegen sei

noch etwas Grundsätzliches und allen Speichern Gemeinsames erwähnt: Es können

pro « Speicherstelle » (auf einer magnetisierbaren Schicht ein Flächenstück von einem
Bruchteil eines Quadratmillimeters) nur je zwei «Werte» der betreffenden Information
gespeichert werden, etwa + oder — bzw. 0 oder 1. (Aus technischen Gründen können
nur die beiden Sättigungszustände benützt werden.) Deshalb arbeiten einige Typen
von DA intern im Dualsystem; bei den andern wird im Zehnersystem gearbeitet,
wobei jede Ziffer durch einen aus nur zwei Zeichen aufgebauten Code dargestellt
wird (vgl. Morsealphabet). Diese Codifizierung wird natürlich auch schon bei der

Eingabe der Zahlen in den DA benützt. Sie bietet zusätzlich noch einfache Möglichkeiten

der Selbstkontrolle des DA bei Verschiebungen der Zahlen innerhalb des Ge-t

rätes, zum Beispiel aus dem Speicher ins RW. Weitaus die meisten Fehler - solche
können gelegentlich als Folge von Defekten auftreten - werden festgestellt; der DA
hält an und meldet, wo der Fehler steckt. Nur dann versagt die Kontrolle, wenn
innerhalb eines Zeitintervalles von einigen Mikrosekunden zwei Fehler auftreten, die
sich kompensieren; dieser Fall tritt aber nach Schätzungen von Fachleuten im Mittel
nur einmal pro einige Dutzend Jahre Laufzeit des DA auf, und dieses verschwindend
kleine Risiko wird übernommen. Infolge der Selbstkontrolle besitzen die DA eine
sehr grosse Zuverlässigkeit, die - neben der hohen Arbeitsgeschwindigkeit - ein
wesentlicher Grund für ihren Einsatz ist.

Bildlich ausgedrückt, enthalten die Speicher eine grosse Zahl von «Zellen» (bis zu
einigen Millionen), in denen je ein Operand Platz findet. Die Zellen und auch alle
andern Stellen im Gerät, an denen sich ein Operand aufhalten kann, sind numeriert.
Diese Nummern, Adressen genannt, dienen der Kennzeichnung des betreffenden
Operanden gegenüber der Maschine.

Die Programmierung, das heisst die Aufstellung des Rechenplanes, erfolgt im
Prinzip so, wie wenn man sich ein Rechenschema für die Durchführung «von Hand»
vorbereiten würde, nur müssen die einzelnen Schritte explizit formuliert werden. Wir
wollen dies am Beispiel der Berechnung von z ab + cd demonstrieren. (Es muss
allerdings vorausgeschickt werden, dass verschiedene Systeme bestehen; wir greifen
eines heraus, welches das Wesentliche zeigt.) Den Ablauf des Prozesses im Gerät
haben wir schon weiter oben übersichtlicherweise beschrieben. Das eigentliche
Programm lautet so:
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Speichere den Inhalt der EingäbeVorrichtung (also a, b, c, d; etwa auf einer
Lochkarte) in den Zellen 2001, 2002, 2003, 2004! (Diese Adressen sind frei wählbar!)

Nimm den Inhalt der Zelle 2001 (das heisst a) ins RW!
Multipliziere mit dem Inhalt der Zelle 2002 (das heisst b)!
Speichere das Resultat in der Zelle 4501! (Adresse unter den noch nicht verwendeten

frei wählbar!)
Stelle das RW auf Null und nimm dann den Inhalt von Zelle 2003 (das heisst c)

ins RW!
Multipliziere mit dem Inhalt der Zelle 2004 (das heisst d)!
Addiere den Inhalt der Zelle 4501 (das heisst a b)!
Speichere das Resultat in der Zelle 4501! (Bei der Ablesung des Inhaltes einer

Speicherzelle bleibt der Inhalt erhalten. Wird etwas Neues in die betreffende
Zelle gegeben, so wird der alte Inhalt einfach «überschrieben» und damit natürlich

vernichtet!
Gib den Inhalt der Zelle 4501 heraus!

Natürlich kann das Programm nicht in dieser Form ins Steuerwerk des DA
eingegeben werden; die einzelnen Befehle müssen zuerst in «Maschinensprache» übersetzt
werden. (Es bestehen heute schon einige Möglichkeiten, diese Übersetzung durch den

DA selbst vornehmen zu lassen!) In der Maschinensprache wird jeder Befehl durch
eine Gruppe von Ziffern codifiziert, von denen die einen den eigentlichen Operationsbefehl

angeben, während die andern die zugehörigen Adressen darstellen. Beispielsweise

kann etwa 152004 bedeuten: 15 Multipliziere! 2004 mit dem Inhalt der Zelle
2004. Natürlich ist die Anzahl der Befehle, welche der DA unmittelbar ausführen
kann, beschränkt. Sind Operationen auszuführen, welche nicht zum Repertoire des

DA gehören, so müssen sie auf eine Folge von einfacheren zurückgeführt werden. Das
Radizieren wird beispielsweise gewöhnlich durch eine iterative Mittelbildung ersetzt.

Da die Befehlscodes aus Ziffern zusammengesetzt sind, ist es möglich, sie bzw. das

ganze Programm wie eigenthche Zahlen einzugeben und im Speicher festzuhalten.
Man plaziert sie in aufeinanderfolgenden Zellen, beginnend mit der Zelle Nr. 1. Nachdem

dann auch noch die gegebenen Zahlen in die Eingabevorrichtung eingeführt
worden sind und man den Startknöpf gedrückt hat, «liest» das Steuerwerk den
Inhalt der Zelle 1, das heisst, es setzt deren «physikahschen Inhalt» in elektrische
Impulse um, welche die Ausführung des ersten Befehls des Programms bewirken.
Nach Abschluss der betreffenden Operation wird aus der folgenden Zelle 2 der zweite
Befehl geholt usw.

Soll em Iterationsprozess durchgeführt werden (und diese sind ein bevorzugtes
Anwendungsgebiet der DA, aus Gründen, die sich sofort zeigen werden), so tritt die
Frage auf, wie der DA veranlasst werden könne, den Prozess im richtigen Moment
abzubrechen, namhch dann, wenn genügende Genauigkeit erreicht ist. Hier tritt eine

Fähigkeit des DA in Aktion, welche von ausschlaggebender Bedeutung ist. (Sie ist
übrigens der Grund dafür, dass der nur sehr beschränkt zutreffende Name
«Elektronenhirn» geprägt wurde.) Der DA kann gewisse «Ja-Nein-Entscheide» selbsttätig
fällen und daraus die Konsequenzen ziehen. Er kann etwa prüfen, ob die gerade im
RW stehende Zahl positiv sei oder nicht, und auf Grund dieser Prüfung aus zwei
verschiedenen Programmfortsetzungen die passende auswählen. Natürlich kann er
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das nur auf Grund der entsprechenden Programmierung, wozu der sogenannte
«bedingte Sprungbefehl» dient. Dieser bewirkt, dass im einen Fall das Steuerwerk
den nächsten Befehl ganz normal aus der nächsten Zelle holt, im andern Fall aber auf
eine andere Zelle springt, deren Adresse im Sprungbefehl angegeben wird. Auf diese
Weise lässt sich das Programm «verzweigen». Insbesondere kann auf einen schon
einmal durchlaufenen Programmteil «zurückgesprungen» werden; es wird daraufhin
eine «Programmschlaufe» so oft durchlaufen, bis die bei jedem Umgang stattfindende
Prüfung und Entscheidung ein anderes Resultat liefert als bis anhin, worauf ein neuer
Programmteil in Angriff genommen wird. Damit beherrscht man die Iterationsprozesse

bzw. alle Aufgaben, bei welchen die gleiche Formel mehrmals mit verschiedenen
Zahlen ausgewertet werden muss (Wertetabellen von Funktionen, numerische
Integration von Differentialgleichungen und ähnliches).

Der Umstand, dass die Befehle mit Ziffern codifiziert sind, ermöglicht auch, bei
Bedarf im Laufe der Rechnung Befehle mit Hilfe des RW zu modifizieren, zum
Beispiel Adressen zu ändern. Davon wird unter anderem Gebrauch gemacht bei
gewissen Möglichkeiten, den DA den grossten Teil des Rechenprogramms selbst
herstellen zu lassen, was die Programmierer von langweiliger Routinearbeit entlastet
und Fehler im Programm verhütet. Das letztere ist um so wichtiger, als das

Aufspüren von Fehlern in einem Programm meistens eine sehr zeitraubende Arbeit ist.

Analogautomaten

Hier werden die zu verarbeitenden Werte als Masszahlen von kontinuierhch
veränderlichen physikahschen Grössen dargestellt (Verschiebungsstrecken, Drehwinkel,
elektrische Spannungen und] ähnliches; vgl. den Rechenschieber). Die verarbeitbaren

Zahlen bilden also eine stetige (im allgemeinen aber beschränkte) Zahlenmenge.
Der Rechenteil des AA besteht aus einer Vielzahl von einzelnen «Rechengliedern»,

deren jedes gewöhnlich nur eine einzige Art von Rechenoperationen ausführt, zum
Beispiel Differentialgetrieben zur Addition von Drehwinkeln, Spannungsteilern für
Multiplikation usw. Beim AA besteht daher die Vorbereitungsarbeit nicht in der

Fixierung der zeitlichen Aufeinanderfolge der Einzeloperationen, sondern hier ist
festzulegen, in welcher Weise die einzelnen Rechenglieder zusammenzuschalten sind,
damit gewisse in dieser Schaltung auftretende physikalische Grössen den gleichen
Zusammenhang aufweisen wie die gegebenen und gesuchten Zahlen. (Es wird also

geWissermassen ein Modell der Rechnung angefertigt.) Diese Schaltung wird vorerst
in einem sogenannten Koppelungsplan festgehalten. Um etwa die Zahl z — a b + c d

zu berechnen, benötigt man zwei Multiplikationsglieder und ein Addierglied. Der
Koppelungsplan ist (mit leicht verständlichen Symbolen für die Rechenglieder) in
Figur 1 dargestellt.

Man stellt sich am besten vor, alle Rechengrössen seien durch Drehwinkel realisiert.
Wenn man nun, nachdem die Schaltung im Gerät selbst vorgenommen ist, die
Zahlen a, b, c, d einstellt (zum Beispiel durch Drehen von Knöpfen), so arbeiten alle

angeschalteten Rechenglieder simultan mit, und am Ausgang erscheint zeitverzugslos,

aber mit einem gewissen Fehler infolge mechanischen Spiels und ähnlichem
behaftet, das Resultat z, etwa auf einer Skala ablesbar. Da auf diese Weise Zwischen-
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resultate, wie a b, unmittelbar als Eingangsgrösse in ein nächstes Rechenglied gehen,
benötigt der AA keinen separaten Speicher.

Es ist einleuchtend, dass der AA besonders geeignet ist, Probleme zu behandeln,
in welchen Funktionen von nur einer Variablen auftreten. Soll beispielsweise der
Verlauf der Funktion z(b) a b + c d für 0 fg b ^ 1 ermittelt werden, so wird man
anfänglich a, c, d und b 0 einstellen und anschliessend b von Null auf Eins zunehmen
lassen. Am Ausgang erscheint dann laufend der Wert z(b), und man kann direkt die
graphische Darstellung der Funktion aufzeichnen lassen, sei es auf dem Schirm eines

Kathodenstrahloszillographen oder durch einen Schreibstift auf Papier. An dieser
Stelle setzt dann auch die bisher nicht in Erscheinung getretene Automatisierung ein:
Die Variation von b und die Aufzeichnung der Kurve werden selbsttätig ausgeführt.

x-y
a-b

x>y+x2
Jdx

a-b -f-c-c/'Z

y

c-d

Figur 1 Figur 2

Die besondere Eignung des AA für die Behandlung funktionsmässiger Aufgaben
wird noch durch den Umstand unterstützt, dass es bekanntlich mechanische,
elektrische und andere Apparate gibt, welche eine Integration ausführen. AA, welche
Integratoren enthalten (Integrieranlagen), können sehr gut für die Lösung von
Differentialgleichungen eingesetzt werden, was an einem Beispiel demonstriert sei:

y' __ x y._ x2 — 0 mit der Anfangsbedingung x 0; y yQ. Die Lösung geschieht nicht
etwa nach einer Näherungsmethode wie beim DA, sondern wiederum so, dass eine

Schaltung der Rechenglieder gesucht wird, in welcher zwischen den x und y darstellenden

Grössen die geforderte Beziehung besteht. Nur ist hier diese Schaltung nicht
sofort zu erkennen. Man kann sie auf Grund der folgenden (heuristischen) Überlegung
finden: Die Differentialgleichung wird nach y' aufgelöst: y' x y + x2. Nun nehmen
wir an, y' sei bekannt, und berechnen daraus y sowie xy + x2. Der Koppelungsplan
dafür ist in Figur 2 dargestellt (gestrichelte Linie nicht beachten!).

Jetzt sorgen wir dafür, dass die Ausgangsgrösse des Integrators für x 0 den
Wert y0 hat (Einstellung am Apparat), und koppeln dann noch gemäss der gestrichelten
Linie. Dadurch wird die Bedingung y' x y + x2 erfüllt, und wenn jetzt x variiert
wird, so erscheint am Ausgang des Integrators laufend der Funktionswert der
gesuchten Lösung. Natürlich kann auch hier durch Steuerung eines Schreibstiftes
sofort die Bildkurve gezeichnet werden. (Aus der gleichen Schaltung kann übrigens
auch y'(x) entnommen werden!)
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Die hier verwendete Idee der «Ruckkoppelung» des Ausganges eines Rechengliedes

auf den Eingang eines «früheren» ist m der Analogierechentechnik sehr
fruchtbar (Die Idee als solche ist in der Technik langst bekannt)

Es mag etwas überraschen, dass wir mit einem Integrator gearbeitet haben und
nicht mit einem Differentiator Der Grund hegt nur dann, dass mit dem etsteren
höhere Genauigkeit erreicht wird als mit dem letzteren

Der Leser mag den Eindruck gewonnen haben, das Programmieren fur einen AA
erfordere bedeutend weniger spezielle Kenntnisse als das fur einen DA, dies ist
weitgehend richtig Immerhin muss noch auf folgendes hingewiesen werden Bei beiden
Typen smd im allgemeinen die verarbeitbaren Zahlen betragsmassig nach oben
beschrankt Beim DA hegt gewöhnlich diese Schranke so hoch, dass sie praktisch
belanglos ist Beim AA ist das meistens nicht der Fall, und es smd deshalb im Rahmen
der Programmierung oft Vanablentransformationen notig, damit der zulassige
Bereich einerseits nicht überschritten und anderseits (aus Genauigkeitsgrunden und
wegen gewisser konstruktiv bedingter Umstände) möglichst ausgeschöpft wird Es
wurde jedoch zu weit fuhren, wenn wir hier auf dieses Problem eingehen wollten

W Prokop, Winterthur

Ungelöste Probleme

Nr. 33. For irrational a let M(a) be the upper hmit of those numbers // such that
the inequality

<4=

has infinitely many Solutions in rational mtegers p and q Give a short proof, depend-

mg on ideas rather than calculations, of the fact that if M(ol) < 3 then aisa quadratic
irrationality

This is of course a consequence of Markov s classical work on the minima of
indefinite bmary quadratic forms, m which the a with M(ol) < 3 are completely
determined There it was shown, after many other properties of the continued fraction
expansion of such an a had been exhibited, that the expansion is periodic, and hence

that a is quadratic A direct conceptual proof of this would be most mterestmg m
ltself, and would permit great simplification in Markov's theory For hterature and
a modern proof of the füll Markov theorem, see J W S Cassels, Diophantine
Approximation, Cambridge Tracts in Mathematics, No 45 (1957) W J Le Veque

Nachtrag zu Nr. 26. Die dort ausgesprochene Vermutung, wonach sich em
zusammenhangender Streckenkomplex der chromatischen Zahl k stets auf em Simplex
mit k Punkten zusammenziehen lasst, impliziert im Falle k 5, wie bereits
angedeutet worden ist, die Gültigkeit des Vierfarbensatzes Herr K Wagner (Köln)1)
machte uns in freundlicher Weise darauf aufmerksam, dass auch umgekehrt aus der

Richtigkeit der Vierfarbenhypothese auf die Richtigkeit unserer Vermutung
geschlossen werden kann, so dass Vierfarbensatz und Zusammenziehbarkeit im Falle

*) Brief vom 9 Februar 1959
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