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Sur quelques polyeédres équivalents obtenus
par un procédé en chaines

I. Nommons chaine orthogonale de plans une suite de plans x,, ..., &, passant
par un point P et tels que n; et n; , soient orthogonaux (¢ =1, ..., n —1). Side
plus 7, est perpendiculaire a 7r;, la chaine sera dite fermée.

Désignons par a; la trace de n;, dans un plan & quelconque et par «; 'angle x, n;.
Soit enfin g, ;,, I'angle des traces 4, a,,,. Comme 7, et 77; ., sont orthogonaux, on a

cotga; cotgay;,q = Cosp; ;4. (1)

Par conséquent, pour une chaine orthogonale 4 # éléments, il existera les relations

suivantes, selon que » est pair ou impair (nous supposerons qu’aucun des angles «;
ou f8; ;,, n'est droit):

a) n pair:
COSfy,5 COSPy - COSBy, g, 53 COSPy_y, 4
cotga, cotga, = T T T =) (2)
Ba,a COSPy5 - COSBy_5, 41

b) 7 impair:

cotga, COSf, o COSPg ¢+ COSP, o ,_1 3)

cotga,  COSf,4COSP g - COSB, 4y,

Conséquences

I. A) Considérons une chaine fermée paire (# pair). Comme

cotga, cotga, = cosf, 4,
on a donc

C°5ﬂ1,z cosﬁ,,_, cee C(’Sﬂnal, n=C0SB, 1 C0o8Byq---COSB, 5 , 1. (4)
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I. B) Pour une chaine fermée impaire, on a

COSB; 1" COSP; g ;_oCOSP; 4 ;
COSBitq,ira " COSB; o i

cotg?a; =

I. C) Considérons deux chaines (n,, ..., n,) et (n;, ..., ;,) telles que les traces
a; et a/ de 7; et 7w/ dans z soient paralléles (1 =1, ..., n) (figure 1). Nous dirons que
les deux chaines sont paralléles.

Figure 1

St n est pair et si la chaine (my, ..., 7,) est fermée, alors la chaine (ny, ..., 7)) est
également fermée.

En effet, en vertu de (2), on a cotga, cotga, = cotga, cotga, et comme
Bn1=PB.1 et que cotga, cotga,=cosf, ,, on a bien cotga, cotga, = cosf, ;.

Cette propriété peut s’énoncer également ainsi:

Sil'on a deux chaines paralléles impaires (s, ..., ®,) et (7, ..., 7,) (# impair),
le plan 7, , perpendiculaire a z, et x, et le plan &, , perpendiculaire a n; et 7,
ont leurs traces paralléles.

En nommant z, , ; fermeture de la chaine (7, ..., 7,), on peut dire plus briévement :

Deux chaines paralléles impaives ont des fermetures paralléles.

I. D) Si l'on se donne des valeurs f; 5, ..., f,-1.,, donc aussi g, et si I'on ne
distingue pas deux chaines symétriques par rapport a la normale & sz par P, on a les
propriétés suivantes:

Si » est impair, il existe une et une seule chaine fermée ayant les angles §; ;. ,
comme angles de base.

Si n est pair, il n’en existe aucune ou il en existe une simple infinité, suivant que
les B ne vérifient pas ou vérifient la relation (4).

I. E) Considérons la chaine orthogonale (x,, ..., 7,, @, q, ..., 7Ty,) telle que g,
et a,,; soient paralleles (: =1, ..., n).

St n est impair, cette chaine est fermée.

En effet, comme 8; ; ., =f8,4i n4ir1, 0N 2

COSfy -+ COSP, 5 pn_1COSPy 411 COSBay 35 25 _2COSBsy_1, an
Cosfly g+ COSB, 1 4 COSBy, 1 nia " COSPay o an_1

cotga, cotga,, =

COSfy o +- COSP, 3 51 COSP, 1+ COSPy 5 ,_ 2COSP, 1 ,
COSfBy g+ COSP, 1, 4, COSPy a2 COSB, 5

= cosf, ; = cosf,, , = cotgu, cotga,,.

Nous dirons qu'une telle chaine est autoparalléle (figure 2).
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I. F) Etant donnée une chaine orthogonale (7, ..., %,), soit 7, le plan perpendi-
culaire aux chainons 7, et 7; (figure 3). Nous dirons que la chaine (7, ..., 7,) peut
se décomposer en (7, ..., 7;_q, Wi, Ty, T, Wiy, ---, T,) €t en (7w, 5, Wiy, oo n,

7; 1, ;) ou qu’elle est la somme de ces deux chaines.

&y 2%

Figure 2 Figure 3 Figure 4

Deux chaines paralléles fermées paires se laissent décomposer en chaines paralléles
fermées a 6 chainons.

En effet, le plan 7, perpendiculaire & 7, et ;5 ayant sa trace paralléle au plan #n°
perpendiculaire a 7, et 7, la premiére chaine (=, ...,7,) se décompose en (7w, ...,
785, 7o) €t (7ty, 7o, 7Ty, g, ..., 7t,) et laseconde en (), ..., n,, =) et (n), n,, 7, 74,

.., 7,); en répétant la construction pour les chaines paralleles & (» — 2) chainons’
on obtient le résultat cherché.

1. G) Une chaine autoparalléle se laisse décomposer en une chaine autoparalléle a 6
chainons et en couples de chaines paralléles a 6 chainons.

En effet, soit 7z, le plan perpendiculaire a 7, et 7, _, et soit 7, le plan perpendicu-
laire & 7, et 7, (figure 4). 7, et 7, ont leurs traces paralléles; la chaine (n,, 7,
oy Tni1s Tnigs o) €St autoparallele. La chaine (n,, ..., 7,,) se décompose donc en
(781, Tg, Ty, Fpy1r Tpra, W) €t en les deux chaines paralléles (7g, 72,5, 73, ..., 7,,
1) €t (7, Tpig) Tpigy ooy Moy, ), qui se laissent décomposer en chaines
paralléles a 6 chainons.

I. H) Etant donnée une chaine (7,, n,, 5, 7,) d’angles By, Bos, Pss, considérons
la chaine (7,, 7y, 75, 7y, 75) telle que

CcOs COS
cosg — OB 0SB

Alors

cotgm, = cotgm;.

Nous dirons que la chaine 4 5 chainons (n;, 7y, 725, 7, ;) pour laquelle les diédres
7, et 7y sont égaux est une chaine semi-fermée. On voit que:

a) Toute chaine paralléle & une chaine semi-fermée est semi-fermée.

b) Deux chaines paralléles fermées a 6 chainons se laissent décomposer en deux couples
de chaines semi-fermées paralléles. .

En effet, considérons les plans 7z, et z; perpendiculaires a 7, et 7/, et tels que
COS By, COS Bag = COS 15 cOSfByy. Comme cosf, cosPBay COSPgg = COSPag COS 45 cOSPg;, ON

a COSf7; COS gy COS g = COSPBag COS Py COSPgy donc cosfly, cosfPyg = cosfyg COSfy,; par
conséquent les deux chaines données se décomposent dans les deux couples de
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chaines semi-fermées paralléles (7,, 7v;, 75, 73, 71y) et (7, 7}, 7, , 7], 7,), (707, 7y, 724,
’ ’ ’ ’ !/
75, 7,) et (w,, 7w/, 7y, ®), w,).
Disons que deux chaines semi-fermées sont antiparalléles lorsque

ﬁlz = 51’2» 1334 = ﬂ3’4’ :323 = 134’5’ :345 = Ig.):s

c) Une chaine autoparalléle a 6 chainons se laisse décomposer en deux chaines semi-
fermées antiparalléles.

En effet, en menant le plan 7, perpendiculaire & n; et tel que cosf,, cosfs,
= 08 fy3 cosfPy, on peut décomposer (7, 7y, 75, %), 7,, ;) en (7, 7w/, 7w,, 7, ;)
et (n,, 7/, my, m,, 7,), chaines semi-fermées antiparalléles.

Par conséquent:

L. J) Deux chaines orthogonales fermées paires quelconques se laissent décomposer en
chaines semi-fermées deux a deux paralléles.

Une chaine autoparalléle se laisse décomposer en couples de chaines semi-fermées deux
a deux paralléles ou antiparalléles.

II. Soit ¢, le plan mené par P perpendiculairement a x et 7; (rappelons encore que
nous avons supposé que 7; n’est pas perpendiculaire a 7).

Nommons F;,,; le polyedre déterminé par les plans =z, 7t;, 71, @i, @it1
(figure 5) et désignons par R; ; ., le polyédre semblable: R; ;,; =tgf; ;11 Pi s41-

Etant donné une chaine orthogonale fermée paire (7, ..., x,, @, = m;), nous
pouvons lui faire correspondre un polyédre bien déterminé:

n

P, ..., m,) :2(“1)i+1Ri,i+1-

i=1

Les polyédres R, _; ; et R; ;,, ont chacun un diédre m,; on vérifie que les lon-
gueurs de ces diedres sont égales. On peut donc dire que le polyedre (R;_; ; — R; ;)
a un diédre z; dont la longueur algébrique est nulle. Le polyédre P (m,, ..., «,)
(n pair) a donc des dieédres 7r; dont la longueur est nulle, des diédres droits (le long
des intersections de 7; et de 7, et le long des intersections de 7; et de ¢;), enfin (le
long des intersections de ¢, et ¢, ) des diédres verticaux de valeurs = —f§; ; ,, et de
longueurs K tgf; ;. , (K étant la distance de P a 7).

Si I'on considére dés lors une deuxiéme chaine paire fermée (n/, ..., 7,) paralléle
a (my, ..., m,), on peut définir un second polyeédre P(rn/, ..., @,). Le polyeédre
P,=Pn,, ..., n,) — P(n/, ..., m,) n'aura donc que des diédres droits ou des
diédres dont la longueur algébrique est nulle.

Sil'on considére une chaine autoparalléle (z,, ..., 7,,) (#» impair), on peut définir
de méme un polyédre

P, 32(‘“1)i+1 Ri,i+1
1

dont tous les diédres sont droits ou ont des longueurs algébriques nulles.

ITI. Deux polyédres sont équivalents lorsqu’on peut les décomposer en polyedres
deux a deux congruents. DEHN a établi des conditions nécessaires pour cette équi-
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valence. Ces conditions sont remplies en particulier par des polyédres dont tous les
diédres sont rationnels en s. Les polyédres P, et P, remplissent donc toutes les
conditions nécessaires pour étre équivalents a un cube. Nous nous proposons de dé-
montrer que, pour P, et P,, ces conditions sont effectivement suffisantes.

A cet effet, remarquons tout d’abord qu’on peut faire correspondre une somme
ou une différence de deux polyédres P i une somme ou une différence de chaines.
Par conséquent, d’apreés les résultats du chapitre I, nous pouvons affirmer que:

Si les polyédres correspondant a deux chaines semi-fermées paralléles ou anti-
paralléles sont équivalents, alors les polyedres correspondant a deux chaines fermées
paires paralléles sont équivalents et le polyédre correspondant a une chaine auto-
paralléle est équivalent a un cube. Il suffira, pour démontrer le cas général, de dé-
montrer que:

Les polyédres correspondant a4 deux chaines semi-fermées paralléles ou anti-
paralléles sont équivalents.

Figure 5 Figure 6 Figure 7

IV. Pour effectuer cette démonstration, établissons d’abord un lemme fonda-

mental.
Désignons par («,f; {) un tétraédre ABCD tel que: AB 1| BCD; DC | CBA;

« = diddre AB; B = diedre CD; ¢ = diédre AD; AB = cotga; CD = cotgf (fi-
gure 6). On vérifiera facilement les relations suivantes:

cos{ =sina sinf et AD = tgl.
Considérons les 4 tétraddres trirectangles
. . . . n . . n
@rimdi Byimdi (wF-mid) (85 —mid).
cos{; = sina cos#, = sina sinf siny = sinf coszy, = cosl,. ¢ =1C3=1C.

Lemme fondamental:

@yim) = Byimd ~ (a5 —mi ¢) — (8.5 — mi ).

Soient

ACDEF = (0, 7 —s; ) — (o, 7i m)
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et
A'C'D'E'F’ = (ﬁ, = C) — (B 7 m2)

les deux polyédres obtenus & partir de ces tétraédres (FC L EF; F'C’' L E'F’)
(figure 7). Les points C, D, E et F étant sur un cercle, le polyédre ACDEF est
inscrit dans une sphére de centre M et de rayon ;. De méme, le polyédre A'C'D’'E’F’
est inscrit dans une sphére de centre M’ et de rayon 7,. Un simple calcul montre que:
1°) les deux polyédres ont méme volume

t .
2°) 7=ty = _gz_g, cosp = cos{ siny = cos#, cosn,.
Wi
4
i
I
|
|
|
|
|
}
8~ 0
E
Figure 8 Figure 9

Soient encore: My, M,, My, M,, M; les projections de M sur les plans ACD,
ADE, AEF, AFC et CDEF (figure 8). On voit que MM, = DE|2 = tgn,/2; M, est
au milieu de AFE; W:,:(,TF/Z = cotgy/2; M, est au milieu de AC; M; est au
milieu de CE. Nous pouvons effectuer la décomposition suivante:

ACDEF ~ MM,DE + MM,EF + MM FC + MM,CD
+ MM,AF + MM,FC + MM,FE + MM, AF
— MM,AE — MM,AD — MM,DE + MM,CD
+ MM,AC — MM, AD.

Or: MM,AD + MM,AD + MM ,DE ~ 0 (figure 9; les tétraédres MM,JA et
MM, KE sont congruents; la somme est équivalente au prisme MM, JAKD).
De méme

MM DE + MM,CD + MM,D ~0,
MM,CF + MM,AF + MM,AF ~0,
MM,CF + MM,EF + MM,EF ~0.
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Par conséquent
ACDEF ~MM,AC — MM AE.

Or,
MM, AC~MM,M,A+MM,M,C
et comme
I 1 T 1 S 1
MM1=~—2~tgn2, AM4:7tg771’ AM=—2~th,
on a
MM, M,A~ > (Z m :
1My N‘z"(‘g"?p 7 M2 Q>»
MMAC ~ (G —m, 5 —mie)-
De méme
MM, AE ~ (y, 5 =& g),
donc

ACDEF~(—Z—~171» 5~ M e) - (% z =& g).
On trouve de méme
ACDEF ~ (5 = e 5 —m; o) - (n 53—t 3

et par conséquent ACDEF ~ A'C'D'E'F'.
Nous pouvons donc écrire:

@ yim) — (o 5 —mil) ~B.yind — (B 5 —mi¢)

4 7 1 .
~(%7~C;9)~(—2——-771,7—172,9)-

Comme conséquence, nous avons le théoréme suivant:

(@, 75 71) — (B, y; va) — (@, 6; w3) + (B, 6; vy)

7 T . 7 7 .
~ *2‘“—‘1’2,—2—‘"‘1)3,0' — 'é‘—“vl, *2——"1’4,0' .

En effet, comme

cos p! = cos v, sinf = sina sinf siny = sina cos,
et .
cos p? = cos vy sinf = sina sinf sin § = sina cos,,
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on a en appliquant plusieurs fois le lemme fondamental:
{75 %) — (B v v} — {(o, 65 v5) — (B, 0; )}
3]s 5l 5 ) (5 )
+ (8, B; vY) — (0, a; »®) — (0, B;v) + (0, «; ¥3)
~(o5 i) (05 e o)~ (03 i) (T o)

T T T T
- (‘2“‘ - 1/1, ? — 1’4; Gl) + (‘2* - V2, *2" _'V3; 0-2)

T 7 n n
+ (WZA — 73 5 T Vg 03) — (‘2‘ Ve 5 T Vs 0'4) .

Par conséquent
ol=o02=0; 0°= oL

Donc

(o0, 5 v1) — (B, ¥; va) — (&, 8; v3) + (B, 0; vy)

7 n . 7 n .
~\Z =V 5 ¥ 0) — |5 — v, 5 — o),
ce qu’il fallait démontrer. De méme, on établit que

(1, % p) — (2, 05 0) — (g, B 7) + (s B5 0) ~ (11, pa; 0) — (g, ts; 0).

Figure 10

Considérons le polyédre P(«, B, y,d) correspondant & une chaine semi-fermée
d’angles f; ;.1 =a, 3,7, 0, donc telle que cosa cosy = cosf cosd. Soit MABCD
le polyédre R(7,,n,) déterminé par les deux premiers plans. Le plan par 4 M paral-
léle 2 DC coupe BC en E. Le plan par AE perpendiculaire & M D coupe MC et MD
en I et G, AEFG étant un rectangle. Le plan par AG paralléle & BC coupe DC en H.
FGEACH est un prisme (figure 10). Désignons par ¢, le ditédre ME du tétraédre
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MABE, par £ le diedre AG du tétra¢dre AGDH. On a donc, en posant a' = 7/2 — «,
R,y ~MABE + MGAEF + AGDH ~ (&, 7t5; &) + (&1, 705 70y) + MGAEF

~ (&', 7t9; &) + (&1, 7815 TT0) — (51’ ‘723 — Ty, 81) .

Effectuons la méme décomposition pour les polyédres Ry, Ry, R,;, mais en consi-
dérant les plans dans l'ordre 1,2 pour R,,, 3,2 pour Ry, 3,4 pour Ry, et 1,4 pour R,;.
On aura alors

P, B,y,0) ~ (&, 7y; &) + (&Y, 7015 ) — (&L, -—nl;el)

R N

— (B, 7a; £) — (8%, 3, 7a) + (52, )

+ (', 7y &) + (8% 7155 7y) — (53» ‘;z — T, 33)

— (¥ e) — @ mim) + (8 5 —mia).
D’apreés le théoréme 1, la 2° colonne est équivalente a

(&4, 83, 0) — (8%, &% o).

D’autre part,

! : o . 1 1. T ’ 1 1,
(“:”2»31) - (51,7—7!1,81) ~ -<wl,w3,7 — o) — (wz,w‘“_ — 7T,

Donc
P(a) ﬂ’ )’, a) - (51: 53; Q) + (52; 54; Q)
7T T 4
~ — (wll, w33 5 — a’) — (wzl, Wy 5 ——ng) + (wll, wg; 5 =~ §1> + (0], w,; 7,)
2 2. 7 2 i 2 .
+ (w2 0f 5 —8) + (0f 0f: 5 —m) — (0f, 0 5 — &) — (0} 07
3 3.7 3.7 38 3, T 3
- (wl’w:s' 7 “7’) - (wzs’ Wy 5 “%) + (wl,w4, T 53) + (0g, wg; 75)
¥ (o ol 5= 8) + (0f 0f 5 —m) — (0f,0f 5 &) @} ofim)
Choisissons
ol =0l ol=0d of=o]
Comme

siné! siné3 = siné? sinét = sinw] sinw, sinw; sinw] = sinw? sinw? sinw; sinw;,

alors
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A cause de la 2° colonne, on a de plus
2,
., WS =w,.

-

1_
W, = W

Donc:

P(a, B, v, 8) — (&4, £3%; 0) + (£2, &%; o)

La 3° colonne étant équivalente & (£2, &%; o) — (&%, &%; 0), on a
P(a, By, 9)
~ — (wll w;; % - oc') - (wf, w?; —725 - ﬂ') = (wf, w3; % — y’) 4 (wll, w,; —125 — 6')
+ (0, 055 m) — (0, 035 ) + (03, w3; 7) — (03, wg; m)
~ (g, ;0" — (@5, B 0%) + (@5, 7" 0%) — (@35, 85 0%
— (wll; —Z— — 75, 61) + (wf, —723 — 71, 0'2) - (wf, % — T,; 03) + (wll, —;i — 0'4) )
A cause de la derniére ligne, on voit que ¢! = 04, 0% = 0%, donc

P, B, y, 0) ~ (wz, &’; 0") — (3, B'; %) + (3, 9" 0%) — (@3, 0'; ) ,

Pla, B,7,0) ~ (&, y"; 4) — (B, 0; 4).

Le résultat étant indépendant de la grandeur du diédre 7;, on en déduit le théo-
réme fondamental suivant:

Théoréme. Les polyédres correspondant a deux chaines semi-fermées paralléles sont
équivalents.

Et comme de plus

(6,85 4) ~ (8,0 4),

les polyédres correspondant @ deux chaines semi-fermées antiparalléles sont équivalents.
Par conséquent, comme nous 'avons vu:
Les polyédres correspondant a deux chaines fermées, paires, paralléles quelconques
sont équivalents.
Le polyédre correspondant @ une chaine autoparalléle est équivalent a un cube.
J.-P. SYDLER
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