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Sur quelques polyedres equivalents obtenus

par un procede en chaines

I. Nommons chaine orthogonale de plans une suite de plans nx, nn passant
par un point P et tels que n{ et 7ti+1 soient orthogonaux (i 1, n — 1). Si de

plus nn est perpendiculaire ä nx, la chaine sera dite fermee.

Designons par a{ la trace de tt^ dans un plan n quelconque et par ae l'angle n, nt.
Soit enfin ßt i+1 Tangle des traces aif ai+1. Comme ^ et 7ti+l sont orthogonaux, on a

cotga,. cotgat+1 cos^ ,+1. (1)

Par consequent, pour une chaine orthogonale ä n eiements, il existera les relations
suivantes, selon que n est pair ou impair (nous supposerons qu'aucun des angles a,
ou ßit i+1 n'est droit):
a) n pair:

COtgOCi cotgoc« —s—-—ä s — (2)
cos^,3COS^4,5'--cos^-2,n-l

b) n impair:
cotgoc1 ^ cosftt> cosfi,^. - ¦ cos^_ 2> n_t
cotgaw cos0Mcos04t6---cos0M_1>w

* * '

Consequences

I. A) Considerons une chaine fermie paire (n pair). Comme

cotgaftcotga1 cosj8nX,
on a donc

cos£M cos£M • • • cos0fl_lf n cos/?«,! cos0M • •. cos0„_2) H_t. (4)



J.-P. Sydler: Sur quelques polyedres Äquivalents obtenus par un proe£d6 en chaines 101

I. B) Pour une chaine fermee impaire, on a

cotg2a ___
COSft, »+1" COSßt - 3, * - 2 C°Sft -1,

cosft+1>t + 2...cosft_2)t_1

I. C) Considerons deux chaines (nlt ttJ et (tt^, n'n) telles que les traces
at et a[ de tu» et n't dans rc soient paralleles (i 1, n) (figure 1). Nous dirons que
les deux chaines sont paralleles.

a5

a5 a2
a2 ah

an
a}

Figure 1

Si n est pair et si la chaine (nlf nn) est fermee, alors la chaine (%', n'n) est

egalement fermee.
En effet, en vertu de (2), on a cotgax cotga„ cotga/ cotga^ et comme

ßn,i ßn,i et <lue c°tga! cotga„ cosj8Äfl, on a bien cotga/ cotga^ cosß^.
Cette propriete peut s'enoncer egalement ainsi:
Si Ton a deux chaines paralleles impaires (n1} n^ et (n{, ,n^) (n impair),

le plan nn+1 perpendiculaire ä nx et nn et le plan tt^+1 perpendiculaire ä n[ %x,n'n

ont leurs traces paralleles.
En nommant nn+1 fermeture de la chaine (nlt..., nn), on peut dire plus brievement:
Deux chaines paralleles impaires ont des fermetures paralleles.
I. D) Si Ton se donne des valeurs ß12, ßn-x n, donc aussi ßn et si Ton ne

distingue pas deux chaines symetriques par rapport ä la normale ä n par P, on a les

proprietes suivantes:
Si n est impair, il existe une et une seule chaine fermee ayant les angles ßh % ± x

comme angles de base.
Si n est pair, il n'en existe aucune ou il en existe une simple infinite, suivant que

les ß ne verifient pas ou verifient la relation (4).
I. E) Considerons la chaine orthogonale (n1, ,nn, 7in+1, ,7i2n) teile que at

et an + l soient paralleles (i 1, n).
Si n est impair, cette chaine est fermee.
En effet, comme^ t+i =/?»+•, „ + _ + _.» on a

t Cosßu2"'cosßn-2, n-1 cosßn, n+l '" cosA_n-3, 2n-2 CQSA.n~l, 2n
co go^co goc2„ cosj8lf,...cosj5H_1,ncos^1%n+a...cosftn-lflll_1

cosifti,2 ••• cosffw_2t w-1 cosjgntl »¦» cosffw_8t „_2 COSft,,!, n

cosAf8— cosßn-l,ncosßl,2'~ c°sßn-2,n-l

cosßn,i C0S/W cotgat cotga2w.

Nous dirons qu'une teile chaine est autoparalläe (figure 2).
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I. F) Etant donnee une chaine orthogonale (tz1, 7tn), soit tz0 le plan perpendiculaire

aux chainons nt et n3 (figure 3). Nous dirons que la chaine (nx, 7tn) peut
se decomposer en (tz1, nt_1, nXi n0, 7i3, tzj + 1, 7tn) et en (n0, nt, n%^ x,

n,-i, Kj) ou qu'elle est la somme de ces deux chaines.

%
fy 9292

dt

Figure 2
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b igure 4

Deux chaines paralleles fermees paires se laissent decomposer en chaines paralleles
fermees ä 6 chainons.

En effet, le plan n0 perpendiculaire ä nx et nh ayant sa trace parallele au plan nQ

perpendiculaire ä n[ et n'h, la premiere chaine (tz1, ...,7rn) se decompose en (n1,...]
nh, 7t0) et (tz1 tcq, nh, tt6, txn) et la seconde en (n[, n'h, ttJ) et (n[, n^, n^, n§,

,7i'n); en repetant la construction pour les chaines paralleles ä (n — 2) chainons'
on obtient le resultat cherche.

LG) Une chaine autoparallele se laisse decomposer en une chaine autoparallele ä 6
chainons et en couples de chaines paralleles ä 6 chainons.

En effet, soit tt0 le plan perpendiculaire k 7ix et nn^2 et soit tZq le plan perpendiculaire

k n2 et Jin + 1 (figure 4). 7t0 et tz0' ont leurs traces paralleles; la chaine (7tlt n2,
71q, 7tn+1, nn+2, ^o) es* autoparallele. La chaine (n1, ,7i2n) se decompose donc en

(^i, n2, 71q, 7tn+lf 7in + 2, n0) et en les deux chaines paralleles (tzq, tz2, nz, ...,nn,
Mn+i) e* (^o» 7ln + 2> ^n+3> ••• > n2n> nii > °_m se laissent decomposer en chaines

paralleles k 6 chainons.
I. H) Etant donnee une chaine (n1, n2,nz, n^ d'angles ß12, ß23, ßu, considerons

la chaine (nx,7t2,7iz,7i/L, tz5) teile que

cos/S4i
cosft12 cosj8,4

cos ^23

Alors

COtgJl! COtgJTg

Nous dirons que la chaine ä 5 chainons (%, n2, ti% tza %) pour laquelle les diedres

nx et n& sont egaux est une chaine semi-fermee. On voit que:
a) Toute chaine parallele ä une chaine semi-fermee est semi-fermee.

b) Deux chaines paralleles fermees ä 6 chainons se laissent decomposer en deux couples
de chaines semi-fermees paralleles.

En effet, considerons les plans n7 et jr7' perpendiculaires ä tz1 et n[, et tels que
cos/?n cos/?^ eos/312 cosj8m. Comme cos/?12 cos/?34 cos/?56 cosß23 cos/S45 cosß61, on
a cosßn cos^ cos/?5e cos^ cos/345 cos/?61 donc cos/?71 cos/?56 cosß16 cosß54; par
consequent les deux chaines donnees se decomposent dans les deux couples de
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chaines semi-fermees paralleles (tz7, tz1}tz2,tzs, tt4) et (tz7\ n[, tz!l, tz^, jz4'), (tz7, tz1,tz6,
7Z5, 7T4) et (tZ^, Tz[, TZq, n'h, TZ4).

Disons que deux chaines semi-fermees sont antiparalleles lorsque

ßvZ ßlZ » ßu ßL > ^23 ßtö > &5 ßL '

c) Une chaine autoparallele ä 6 chainons se laisse decomposer en deux chaines semi-
fermees antiparalleles.

En effet, en menant le plan jt4 perpendiculaire ä n[ et tel que cosß41 cos/?23

cosjS13 cosß21, on peut decomposer (jz1, tz2, tz3, tz[, n!lt n'^) en (tz±, tz[, n2, tz%, tzx)

et (tc4, tz;/, tzs, tz2, tzx), chaines semi-fermees antiparalleles.
Par consequent:
I. J) Deux chaines orthogonales fermees paires quelconques se laissent decomposer en

chaines semi-fermees deux ä deux paralleles.
Une chaine autoparallele se laisse decomposer en couples de chaines semi-fermees deux

ä deux paralleles ou antiparalleles.

IL Soit yt le plan mene par P perpendiculairement ä tz et tz% (rappelons encore que
nous avons suppose que tz\ n'est pas perpendiculaire ä tz).

Nommons Pt,t + 1 le polyedre determine par les plans tz, tz%, tz{ + 1, qjif qjt + 1

(figure 5) et designons par Rt t+1le polyedre semblable: Rt {+1 tgßi)t+1 £_,_ + _•
Etant donne une chaine orthogonale fermee paire (tz1, nn, tzh+1 tzx), nous

pouvons lui faire correspondre un polyedre bien determine:

P(n1,...,nn)=Z;(-iy+*Rl,t + 1.
.-1

Les polyedres Rt„ltt et Riil+1 ont chacun un diedre tx%\ on verifie que les lon-
gueurs de ces diedres sont egales. On peut donc dire que le polyedre (i^_1( %

— Ri t+i)
a un diedre tz% dont la longueur algebrique est nulle. Le polyedre P (tzx, tzh)

(n pair) a donc des diedres tz% dont la longueur est nulle, des diedres droits (le long
des intersections de Tti et de nt+1 et le long des intersections de nt et de cpJ, enfin (le
long des intersections de cpt et cpt+1) des diedres verticaux de valeurs Tz—ßlti+1 et de

longueurs K tgßtl + 1 (K etant la distance de P k tz).
Si Ton considere des lors une deuxieme chaine paire fermee (tz[, ,tz^) parallele

ä (tzx, Tzn), on peut definir un second polyedre P(tz^, Tz'n). Le polyedre
P1 P(tz1, tz„) — P(tz(, ...,tz„) n'aura donc que des diedres droits ou des

diedres dont la longueur algebrique est nulle.
Si Ton considere une chaine autoparallele (tz±, ,Tz2n) (n impair), on peut definir

de meme un polyedre

1

dont tous les diedres sont droits ou ont des longueurs algebriques nulles.

III. Deux polyedres sont equivalents lorsqu'on peut les decomposer en polyedres
deux k deux congruents. Dehn a etabli des conditions necessaires pour cette equi-
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valence. Ces conditions sont remplies en particulier par des polyedres dont tous les

diedres sont rationnels en tz. Les polyedres Px et P2 remphssent donc toutes les

conditions necessaires pour etre equivalents ä un cube. Nous nous proposons de
demontrer que, pour Px et P2, ces conditions sont effectivement süffisantes.

A cet effet, remarquons tout d'abord qu'on peut faire correspondre une somme
ou une difference de deux polyedres P k une somme ou une difference de chaines.
Par consequent, d'apres les resultats du chapitre I, nous pouvons affirmer que:

Si les polyedres correspondant ä deux chaines semi-fermees paralleles ou anti-
paralieies sont equivalents, alors les polyedres correspondant k deux chaines fermees

paires paralleles sont equivalents et le polyedre correspondant k une chaine auto-
paralieie est equivalent ä un cube. II suffira, pour demontrer le cas general, de
demontrer que:

Les polyedres correspondant ä deux chaines semi-fermees paralleles ou anti-
paralieies sont equivalents.

tH

t igure 5

d/+f

M

Figure 6

t?2

Figure 7

IV. Pour effectuer cette demonstration, etablissons d'abord un lemme
fundamental.

Designons par (oL,ß; £) un tetraedre ABCD tel que: AB _L BCD; DC A.CBA;

a= diedre AB; ß diedre CD; f diedre AD; Zß cotga; CD cotgß
(figure 6). On verifiera facilement les relations suivantes:

cosf sina sin/? et AD tgf.

Considerons les 4 tetraedres trirectangles

(«, y; vi); iß> y> m); («, f- - v*> &); (ß> -f- - vi> C«) •

cos£i sina cos^2 sina sin/S siny sin/? cos^ cosf2. Ci C* C«

Lemme fondamental:

(«> r> vi) - iß» y> vz) ~ («, y - v*> f) - (ß> y - vi> •

Soient

ACDEF (a, f - %; C) - (a, y; Vi)
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et

A'CD'E'F' =[ß,^-Vl, C) ~(ß9yt rj2)

les deux polyedres obtenus k partir de ces tetraedres (FC1.EF, F'C ±E'F')
(figure 7) Les points C, D, E et F etant sur un cercle, le polyedre ACDEF est
mscnt dans une sphere de centre M et de rayon rx De meme, le polyedre A'CD'E'F'
est mscnt dans une sphere de centre M' et de rayon r2 Un simple calcul montre que
1°) les deux polyedres ont meme volume

tgg
2 cos£ cosf smy cos ^ cos?/2

Mi

M

M2

&*5
B u"-

4 ö-=-r

J*

Mt

M

i\\ \
i \ \

i \
\

\ \
\ \
\ \ \
\

i \

M2

Figure 8 Figure 9

Soient encore Mv M2, Mz, Af4, M5 les projections de M sur les plans ACD,
ADE, AEF, AFC et CDEF (figure 8) On voit que MMX DEJ2 tg%/2, M2 est

au milieu de AE, MMZ CF\2 cotgy/2, M4 est au milieu de AC, Mn est au
milieu de CE Nous pouvons effectuer la decomposition suivante

ACDEF ~MM5DE + MM5EF + MM5FC + MM5CD

+ MMAAF + MM^FC + MMSFE + MM3_4F

- MM3/4ii - MM2AD - MM2DE + MMXCD

+ MM!_4C - MMX,4D

Or MM^D+MM^D+MMsjD^^O (figure 9, les tetraedres MMJA et
MM2KE sont congruents, la somme est equivalente au pnsme MMXJAKD)

De meme

MM^DE + MMXCD + MM5CD ~ 0,

MM4CF + MM4_4F + MM3_4F ~ 0,

MM5CF + MMhEF + MM3EF ~ 0
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Par consequent

ACDEF ~MMXAC - MM3AE
Or,

et comme

on a

De meme

donc

MM^Cr^MM^^A +MMtM4C

MM1=-¥tgr}2, i4M4=-Ttg?y1, AM ~ tgg,

MMXM4A ~ y (y ~ V1' Y ~ ^ Q) '

MMYAC ^{j-^i' Y~ V*' Q) '

MMzAE~(y, -J-Ce),

ACDEF ~ (j- - rjlt -J - rj2, e) - (y, -J - £, e)

On trouve de meme

A'CD'E'F' ~ (| - rj2, f - Vl, Q) - (y, y - C, g)

et par consequent ACDEF ~ A'CD'E'F'
Nous pouvons donc ecnre

% ' 2 ??2••)•

Comme consequence, nous avons le theoreme suivant

(a, y, vx) - (ß, y, v2) - (a, d, v9) + (ß, d, vA)

In n \ l n n \~(2-v2,Y-~v3fo)~{J-v1,Y- v„ aj.

En effet, comme

et

cos^1 cos»»! sm^ff sina sm/? smy sina cosv2

cosg2 cos vz sm/? sma sm/? sm <5 sma cosi>4,
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on a en appliquant plusieurs fois le lemme fundamental:

{(oc, y; vj - (ß, y; v2)} - {(«, b; vz) - (ß, ö; vt)}

+ (d, ß; v*) - (d, <x; v3) - (d, ß; v*) + (<5, <x; v3)

~(«, J-.1;^)-^, J-ei; «•)-(., f-e»;a») +(.,-J - g»; o«)

- (-2 - "i> f - v4; a1) + (f -.„-£- va; o*)

+ (I - "'- f - "*: °*) - 2 - "*' -2 ~ "3; °*) •

Par consequent
a1 =- a2 a; az o*.

Donc

(«»yi "1) - (ß, y\ v2) - (a, d; v3) 4- (j8, <5; vA)

ce qu'il fallait demontrer. De meme, on etablit que

(A*i. «; y) - {[H> a; (5) - (/i8, ß; y) 4- (/u4, /?; d) ~ (/*i, /*4; g) - (fi2i ju,3; q)

n; o*),

M

^v *3

^2f

H

Figure 10

Considerons le polyedre P(a, ß, y, d) correspondant k une chaine semi-fermee
d'angles ßtt i+1 ~a, /?, y, d, donc teile que cosa cosy cosß cosd. Soit MABCD
le polyedre R(nl,Ti2) determine par les deux premiers plans. Le plan par AM parallele

k DC coupe BC en E. Le plan par AE perpendiculaire k MD coupe MC et MD
en F et G, AEFG etant un rectangle. Le plan par AG parallele k BC coupe DC en H.
FGEACH est un prisme (figure 10). Designons par ex le diedre ME du tetraedre
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MABE, par I1 le diedre AG du tetraedre AGDH. On a donc, en posant a' tz\Z — a,

R1>2 ~ MABE + MGAEF + AGDH ~ (a', n2; et) + (flf ttj; rc2) + MGAEF

~ (a', rc2; cx) + (Ii, nx; tz2) - (glt y - tcx; ^j.
Effectuons la meme decomposition pour les polyedres R2Z, RM, i?41 mais en consi-
derant les plans dans l'ordre 1,2 pour R12, 3,2 pour R2Z, 3,4 pour Ru et 1,4 pour RA1.

On aura alors

P(a, ß, y, 3) ~ (a', n2; ex) 4- (I1, tzx; tz2) - ff1, y - ti^; ^J

- (/?', tz2; s2) - (f2, nz; 7r2) 4- (f2, y - tzz; £2j

+ (/» nC e8) + (f3> %; %) - (f3> -y - rc8; e3j

- ((5', rc4; e4) - (|4, ^; tt4) + /f4, y - j^; e\

D'apres le theoreme 1, la 2e colonne est equivalente k

(f1, _3; e) - (P, .*;.).
D'autre part,

(a', n2; ex) - (f1, y - %; ^j ~ - [coi co]; y - a'j - (a>2\ co1; y - tc2^

+ ^co/, to*; y - £j + (^2» ß>8» ^i)-
Donc

P(a, 0, y, (5) - (I1, f3; q) 4- (f2, f4; g)

~ - (coi, <°t> y ~~ a') ~ (^2' ^4> Y ~~ nV + (ö>1' C0^',Y~ M + ^2' co3; ^
4- (coj, co32; y - ß'j 4- (co22, cof; y - 7r2j - fco2, co2; y - f2j - (co2, coz; tzz)

~ (<*>?> co!; y - /) ~ (M*> <> f ~ n) + K ^; f ~ *") + (ö>2' ^ *•>

-1- (co*, co3; y - d'J 4- (W> co\;^-~ nA ~ (co*, co4; y - f4j - (co24, co34; ^).

Choisissons

col=co%; coi coi; a>* a>f •

Comme

sinf1 sin|8 sinf2 sinf4 « sincoj1 sinco4 sincox sinco4 sincoj2 sinco2 sinco4 sinco4,

alors
toi co,4.
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A cause de la 2e colonne, on a de plus

co.] coo ; co^ co4.

Donc:

P(a, ß, y, ö) - (I1, £»; q) + (f2, f4; g)

~ - {coi Ml> U2 ~ a') ~ i™*' w*> Y ~ n*\ + x^1' ^ "2 ~ fl) + ^^ ^^
-f (co2, co32; ~ ~ ß') + \™l> °>l> y - ^2) - («>i2, w4, y - !2) - (co2\ co32; %)

- (co2, co33; y - y') - (eo23, coi Y - ^4) + (o>i» w4 > T ~ ^3) + K3' ß>8»^3)

4- (co,1, co4; y - *') + (to23, co4; f- - w4) - (a^1, co4; f- - f4) - (co23, co4; ttx)

La 3e colonne etant equivalente k (f2, f4; o) — (f1, f3; o), on a

P(a,£,y,<5)

— (coi <. y - *') + K ^s2; f - 0') - K *# £ - /) + K< f - *')

4- (ct>2\ cog1; rcj - (coi, °>l*> ^3) + (coi, Ml'> ^3) - (o>28, cog4; TZX)

~ (co1, a'; er1) - (coi ß'; er2) 4- (co23, y'; er3) - (co^ ö'; er4)

- ({Oj; y - TTi; CT1) 4" (co2, y - 7T3; CT2) - (co2, y - 7T3; CT3J 4" (cO-f, y - 7lx; CT4)

A cause de la derniere ligne, on voit que er1 er4, er2 er3, donc

F(a, ß9 y, 8) ~ (co,1, a'; er1) - (co,1, /?'; er2) 4- (co3, y'; er2) - (co3, ö'; er1)

P(aL,ß,y,d)~(K',y';X)-(ß',d';l),

Le resultat etant independant de la grandeur du diedre tzv on en deduit le theoreme

fondamental suivant:
ThGorfeme. Les polyMres correspondant ä deux chaines semi-fermees paralleles sont

equivalents.
Et comme de plus

(d',ß'\X)~ffl,d';X)9

les polyedres correspondant ä deux chaines semi-fermies antiparalUles sont equivalents.
Par consequent, comme nous l'avons vu:
Les polyhdres correspondant ä deux chaines fermees, paires, paralleles quelconques

sont Äquivalents.
Le poly&dre correspondant ä une chaine autoparälUle est equivalent ä un cube.

J.-P. Sydler
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