Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 14 (1959)
Heft: 4
Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

84 Aufgaben

Diese Losung versagt offensichtlich fiir @ = b. Fiir diesen speziellen Fall nimmt die
Differentialgleichung die Form an

. () = cla—),
mit
ca?t

als Losung. Im ersten Fall erhdlt man eine transzendente Funktion als Losung und im
zweiten eine gebrochene rationale Funktion. Diese zweite Losung ergibt sich aber auch
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B n
3 3 - - -
,/
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Figur 1 Figur 2

als Grenzwert der ersten Losung, wenn b gegen a strebt. Wenden wir auf die erste Losung
die Bernoullische Regel an, die noch oft seinem Schiiler pE L’HosPITAL zugeschrieben
wird, so erhalten wir

a(e*ct —ebct) —cabtebet cat

=1 i =
y(®) bg)r%z —ebet _potebet l4+act’

Anhand der Figuren 1 und 2 fiira=3,b=1,¢c=1und a =b = 3, ¢ =1 ldsst sich der
Ubergang der transzendenten Kurve in die rationale Kurve leicht iiberblicken.
P. BUCHNER

Aufgaben

Aufgabe 318. Kann man aus allen konvexen Rotationskérpern des R, durch Neben-
bedingungen solche Klassen auswihlen, dass die Kugel im Vergleich mit allen Kérpern
einer Klasse weder maximales noch minimales Volumen hat? H. Bieri, Bern

Losung des Aufgabenstellers: Solche Klassen kann man tatsdchlich angeben. Einen
konvexen Rotationskorper des R, beschreiben wir durch Hauptmasszahlen V (Volumen),
F (Oberfliche), M (Integral der mittleren Kriimmung) und die Nebenmasszahlen D
(Durchmesser, allergrésste Breite), 4 (Dicke, allerkleinste Breite), » (Aquatorradius),
! (Lange gemessen auf der Rotationsachse), L (Lidnge der erzeugenden Meridiankurve),
Q (Flacheninhalt eines Meridianschnittes). &, bzw. R, , bezeichne die Klasse aller kon-
vexen Rotationskérper mit festem vorgegebenem u bzw. mit festen #, v. Um Komplika-
tionen zu vermeiden, verabreden wir noch, dass Grossen aus den Gruppen D, 4 und v, /
nicht gemischt werden sollen. So ergibt sich der
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Satz: Die einzigen Klassen, in welchen das Volumen der Kugel nicht extremal ist, sind
die folgenden:

1. ‘Rr,Q! 2. RZ,Q; 3. Rr,l;Q; 4. Rr,L; 5. RI,L; 6. Rr,l;L-

Beweis: a) Dass das Volumen der Kugel in den Klassen &£, Sy, 8F ., K0, 84, 8p 4
extremal ist, ist bekannt (ebenso fiir &% 4, KF p, Kar 4, Sy p)-
b) Der Kegelstumpf mit R =1, r = (m — 2)/2, Q = & besitzt das Volumen

47

V=g (@-2n+4 <.

o)1

DerZylinderkegel mit dem Zylinderradius » = 1, der Gesamthéhe £ = 2 sowie der Zylinder-
hoéhe » = 7 — 2 besitzt den Meridianschnitt Q = # und das Volumen

2n 4
V:—~——— 2 —_— PP
A e

Das Kugelvolumen ist also in der Klasse &, ;.o nicht extremal. Da die betrachteten Ver-
gleichskorper auch den Klassen &, o sowie &; o angehoren, gilt die Aussage auch fiir
diese Klassen.

c,) Der symmetrische Doppelkegel mit v =1, | = 2 besitzt die Linge der Meridiankurve
L,=2}/2 < n, der einfache Kegel mit gleichgrossem » und ! die Lange der Meridiankurve
Ly=1+)5>n. Beide Koérper sowie die ganze einparametrige Schar von interpolie-
renden unsymmetrischen Doppelkegeln weisen das Volumen 2 /3 < 4 n/3 auf. Es gibt also
einen unsymmetrischen Doppelkegel mit L = n und V < 4 n/3. Somit besitzt die Kugel
in K, ;. ; nicht kleinstes Volumen. .

c,) Als Variationsproblem hat man

/ (y2+ 21+ y?) dxv = Extremum

mit der Eulerschen Differentialgleichung
2y —Ay"(14+92)-¥2=0.
Nach zweimaliger Integration ergibt sich

(x —y?%) ay
+ = L mmee oI T
T /l//lg—(fx—-y?)2

und ein Kreisbogen resultiert auch im Spezialfall « = A nicht. Die Kugel besitzt also in
der Klasse &; ; auch nicht maximales Volumen.

Die Freilassung der Korperenden sowie die Beschrinkung der maximalen Ordinate
lasst die Eulersche Differentialgleichung invariant, so dass der Ausdehnung der Aussage
auf die Klassen &, ; und &) ,., nichts im Wege steht.

Aufgabe 319. Man zeige, dass in den Dreiecken, fiir die das Seitenverhéltnis A =c/a
einen konstanten Wert (1 < A< 2) hat, die aus den entsprechenden Gegenwinkeln
gebildete Summe ¢ =7y + 2 « dann und nur dann maximal ist, wenn tgy + 2tga =0.

Setzt man v = (a — 8)/2 = (0 — 71)/2, so gilt fitr das Maximum der Winkeldifferenz o« — 8

I 1 Y3+ yai—1
VCtE Tmar = tg 7 Ymax= H“V*-———————;‘—/“_“iz—*“ .
R. Rosg, Saarbriicken

Lisung: Es sei x =sina. Nach dem Sinussatz ist wegen A =c/a siny =Asina =21x.
Die Funktion ¢ =2 a + y = 2 arcsinx + arcsind x soll ein Maximum haben. Dazu ist
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notwendig, dass

— =0, (1)
Wegen

y1—2zx?

ist dies aber gerade die Bedingung tgy + 2 tga = 0. Wir zeigen nun, dass diese Bedingung
auch hinreichend ist. Infolge der Voraussetzung iiber 2 ist offenbar « spitzer und y stump-
fer Winkel, also ist in (1) der erste Summand positiv, der zweite negativ. Differenziert
man die linke Seite von (1), so folgt

2 x yi Ax

o'(x) = Ji—m 1-4 + Vi—me 1—2a

(2)

Wegen 1 < 1 < 2gilt

A x X X
T J242 = I a4t © 142 >0 (3)

Ist nun (1) erfiillt, so haben die ersten Faktoren in den Summanden der rechten Seite
von (2) denselben Betrag. Wegen (3) hat also der zweite Summand der rechten Seite von
(2) einen grosseren Betrag als der erste. Da der zweite Summand negativ ist, ist ¢”(x) < 0,
und es liegt ein Maximum vor.

Die am Schluss der Aufgabe angegebene Beziehung ldsst sich einfach nachweisen.
Aus (1) folgt ndmlich

. 422 . 4 -2
SM By = Xppgy = ‘ET » SIN Yy = A Xmax = - .

Hiermit lassen sich sowohl tgy,,,,/2 wie auch ctgr,,,, mittels bekannten trigonometri-

schen Formeln berechnen. H.Mg1L1, Winterthur

Weitere Losungen sandten J. BERKEsS (Szeged), L. KiErrFEr (Luxemburg), F. LEUEN-
BERGER (Zuoz), R. WHITEHEAD (Camborne, England).

Aufgabe 320. 1. » und 4 sind natiirliche Zahlen, » eine ganze Zahl. Weiter ist

S(n, d, 7) =2(Z), k=7 (modd),

wo die Summe nur iiber das Intervall 0 < % < # zu erstrecken ist. Dann gilt die Formel

n d—1

S(n,d,r) = —%—2 cos{(n —27) —tdi} (cos idfc—)n ‘

£=0
2. Die Zahlenfolge v,, ist durch

n=1, v,=3, v,=v, ;+v, , (r=3)

bestimmt. Dann gilt, wenn x» aus 2x = » (mod 5) bestimmt ist,
%— 2"+ (-1)"2v,] ~=x(mod}),

S(n, 5,7) = 2+ (—1)%v, ;] r=x-+1(modS5),

w= -

[2#— (—1)*v,.,] 7=2x+2(mod35).

A. BAGER, Hjerring (Ddnemark)
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Losung: 1. Es sei { = e274_ Dann gilt

Z’lét(\cf,) . { 0 wenn s # » (mod d),
o | d wenn s =7 (modd).
Also ist
1 n " d-1 i
5= 3 2(0) 3 e = L 3 e o
s=0 t=0 =0

Nun ist |

14 Et=H2 (LU 4 E~ti2) — 2 £H2 Cos_zii
Also folgt

d—1

Zvnzcn 27) t (Cosi:it> )

t=0

Da S reell ist, miissen sich die imagindren Glieder wegheben, und es ergibt sich

d-1
2n tn t \"
5 Tt;E() cos{(n—~ 27) "Zi_} (cos—a«) =S(n, d, 7.
J.CIGLER, Wien
2. If vy =1, Uy =3, V,=U,_1+ Y, s,

then

On the other hand
4

55 (n, 5,7) =2"+ 2n2cos{('n-27) tsn } (cost—;f-)n

2 n
(n—27) }(2005~—5£>

{
+Zcos{n—27 ~——} (2cos4—5n>n.

= 2% + 2 cos

Hence, we get
l 2%+ (—1)"2v, for m=2v (mod35),

55(mn, 57 =_2"—(-1)"y,, , for n=274+1 (modS5),

20+ (=)o, , for n=27 4+2 (mod35).

L.CarLitz, Durham, N.C. (USA)

L. CarriTz bemerkt, dass eine zur Schlussformel in Losung 1 dhnliche Formel im
Amer. math. Monthly 53, 344-346 (1946), erschienen ist und dass allgemeinere Formeln
dieser Art in den R. C. Mat. [V] 76, 74-95 (1957), zu finden sind. J. CIGLER beweist die
Aussage in Losung 2 mit vollstindiger Induktion.

Aufgabe 321. Dans un tétraédre, si I’'on prolonge les arétes issues d’'un méme sommet
de & fois leurs longueurs au-dela des faces opposées, & étant un nombre entier, le rapport
de la somme des puissances de chacun des douze points obtenus par rapport a la sphére
décrite sur 1’aréte opposée a celle sur laquelle il est situé, comme diameétre, et de la somme
des carrés des arétes, est une somme de deux carrés consécutifs.

V. THEBAULT, Tennie, Sarthe (France)
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Solution: Let VABC be the given tetrahedron with edges VA, VB, VC, BC, C4, AB
of lengths a, b, ¢; u, v, w respectively; M is the midpoint of BC, M N of length x is perpen-
dicular to VA. VM = p and AM = q are the medians of AVBC and A4 BC respectively.
The points P and Q are on the extension of the edge VA: Q4 =%ka, QV=(k+1)a
PV =ka, PA = (k +1) a. Then, by PyTHAGORAS, VN = |/p? — 42, AN = |/¢* — »* and
so YpE— 22+ Vg — a2 =a.

Therefore the sum S, of the powers of P and Q with respect to the sphere on BC as
diameter is s

S, = [P“N“%N‘ME_ (_g_)z] " [Qﬁz N (ﬁ)z]

2

_ oyt N R e LIPS
[ka+)pr—a2] +x 4+[ka+]/g—[— 22"+ x 3

—2ktat+2hat+ gt — o,

2
But from AVBC and AABC we have
u2 u2
btct=2p"+ —, vt wi=2¢"4 —,
hence
b2 c? V2 w?
- 2 ;2 24 Z Y- S N Eadi
S, 2ka+2ka+2+2 u+2.2.

By cyclic permutation of a, b, ¢ and «, v, w we get
S+ Sp+ S, =(2k2+ 2k +1) (a®+ b2+ ¢?),
Sy+ S, +S,=(2k2+2k+1) (u2+v2+ w?).
Hence the required ratio is
2R24+ 2R+ 1=(k+1)24 k%
R. WHITEHEAD, St. Ives, Cornwall (England)

Weitere Lésungen sandten J. BRejcHA (Brno) und R. LAUFFER (Graz).

Berichtigung zur Losung der Aufgabe 308 [El. Math. 74, 39-40 (1959)]:
Der Aufgabensteller teilt uns mit, dass der Ausdruck

DI
r>n {1 2
fiir allgemeines # nicht nach Null strebt. Hingegen verschwindet der Grenzwert, wenn
man sich auf die Zahlen # = — 1 (p Primzahl) beschrinkt. Das geniigt fiir den Beweis
des behaupteten Satzes, wie die folgende Losung des Aufgabenstellers zeigt:

Es seien ¢ und b ganze Zahlen und

a =3 1 .
"IT‘Z a,2,...,n}" . *)

Wir beniitzen, dass lim inf p, . ,/py =1 und p,,, — p, <p,, Wo p, die k-te Primzahl be-
deutet. Fiir ein genugend grosses p; gllt Pri1<Pr+ Pp/2b. Multiplizieren wir beide
Seiten von (*) mit {1, 2, ..., p, — 1} b, dann ergibt sich links eine ganze Zahl G, und
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man hat
vy b{L,2..., -1 Pesr—Pr | Praz—Prer | Pros—Pras
G = b "
”"Zf:k {1, 2,...,m} = [ P + Pr Prir + PrPri1Prys + ]
Pry1— Pr 1 1 1 1 1 b
p|Pr+r"Pe . ~ % L letapl e ot et O
= [ P +2bk+PkPk+1+ ]<2+ [Pk+PkPk+1+ ]<2+P1¢”‘1'

Fir pp,>2b+1 wird also G <1, und aus diesem Widerspruch folgt, dass die rechte
Seite von (*) eine irrationale Zahl darstellt.

Neue Aufgaben
358. Man berechne

Sn:2;€1€2"'8n (era1 + e 8y + -+ + &, a,)",

WO a,, a,, ..., a, Grossen eines kommutativen Ringes sind und {&,, &,, ..., &,} alle
2n verschiedenen Variationen mit Wizderholung zur #n-ten Klasse der Zahlen + 1, —1
durchliuft. RupoLr STEUERWALD, Alzing (Deutschland)

359. Find the number of solutions of the congruence

(¥2 —1) (¥2 — 2) -+ <x2~p;1)50 (mod p) ,

where p is an odd prime. L. CarriTz, Durham, N. C. (USA)

360. Es sei e die Eckenanzahl und » der Umkugelradius eines reguldren oder halbreguliaren
Polyeders P,, ferner sei S, die Quadratsumme siamtlicher Kanten und Diagonalen
von P,. Man beweise, dass

S,=e%y?.
J. Scuorp, Budapest

367. Gegeben sei ein Dreieck 4 B C mit den Seiten a, b, c und dem Hohenschnittpunkt H.
Wir bezeichnen seine Hohenfusspunkte mit H,, H,, H,, die Fusspunkte der aus
diesen Punkten auf die Dreiecksseiten gefillten Lote mit H,,, H,,, Hy., Hy,, H,,,
H,, und die 12 Fusspunkte der aus diesen Punkten erneut auf die Dreiecksseiten
geféllten Lote mit H,,,,. Hier gibt H,, (p, ¢ = a, b, ¢) jeweils den Ausgangspunkt an;
v bezeichnet die Dreiecksseite, auf die das Lot gefillt wurde. Es soll gezeigt werden:
1. Die Quadrupel H,,y H, o H,p o Hyop usw. sind jeweils die Ecken von Kreisvierecken,

deven Mittelpunkie A*, B*, G* seien.
2. Die Hohen des Dreiecks A* B¥*C* gehen bzw. durch die Ausgangspunkte A, B, C.
KarRL WANKA, Wien

Aufgaben fiir die Schule

Es wird kein Anspruch auf Originalitdt der Aufgaben erhoben; Autoren und Quellen werden im allgemeinen

nicht genannt. Die Daten fiir Aufgaben aus der Darstellenden Geometrie sind durchweg so festgelegt, dass

der Ursprung des Koordinatensystems in der Mitte des linken Randes eines Blattes vom Format A 4 gewéhlt

werden soll, x-Achse nach rechts, y-Achse nach vorn, z-Achse nach oben, Einheit 1 cm. Anregungen und
Beitrige sind zu senden an Prof. Dr. WiLLr LUssy, Biielrainstrasse 51, Winterthur.

1. Wenn sich beim Verkauf einer Ware ein Gewinn von p%, des Ankaufs oder von ¢9%,
des Verkaufs ergibt, so gilt stets

1 1 1

7 P " 100
2. Die Zahl xy243z mit den drei zu bestimmenden Ziffern x, y und z soll ohne Rest durch
396 teilbar sein.
} 432432; 392436.
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3. Welches ist die Summe aller Zahlen, die sich durch Permutation der Ziffern 1, 2, 3,
4 bilden lassen ?

p Jede Ziffer steht sechsmal an jeder Stelle, also ist die Summe gleich 66660.

4. a) Die letzte Ziffer der neunten Potenz irgendeiner Zahl ist gleich der letzten Ziffer
dieser Zahl.
b) Welches sind die zwei letzten Ziffern von 2%° und von 399 ?
p 88 und 67. Die zwei letzten Ziffern aufeinanderfolgender Potenzen von 2 und von 3
weisen je eine Periode von 20 Gliedern auf.

5. m und # sind zwei teilerfremde Zahlen. Eine Strecke 4B = g wird in m gleiche Teile
geteilt, die Teilpunkte werden mit Nullen bezeichnet. Dann wird dieselbe Strecke in
n gleiche Teile geteilt, die Teilpunkte bezeichnet man mit Kreuzen. Welches ist der
kiirzeste Abstand einer Null von einem Kreuz (abgesehen vom Abstand 0 in den End-
punkten) ?
pamn.
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R. P. Boas jun. et R. CREIGHTON Buck:
Polynomial Expansions of Analytic Functions

Ergebnisse der Mathematik und ihrer Grenzgebiete, nouvelle série, volume 19.
Springer Verlag, Berlin, Gottingen et Heidelberg 1958

1. Introduction. 11. Représentation de fonctions entiéves. 111. Représentation de fonctions
végulieves a Uovigine. IV. Applications. Bibliographie. Index.

Les polynomes définis par des fonctions génératrices possédent des propriétés qui
rendent leur étude a la fois intéressante et féconde; quoique ancienne, cette théorie a
donné lieu, dans ces derniéres années, a de nombreuses recherches dont ce petit ouvrage
donne un excellent apergu: on y trouvera notamment de nombreuses suggestions pour
des recherches nouvelles. CH. BrLanc

FumitoMo MAEDA: Kontinuierliche Geometrien

Ubersetzt und fiir die deutsche Ausgabe bearbeitet von: SiByLLA CRAMPE, GUNTER PICcKERT und RuDOLF
ScHAUFFLER. X + 244 Seiten. Grundlehren der Mathematischen Wissenschaften, Band 95. Springer-
Verlag, Berlin-Go6ttingen-Heidelberg 1958

Der Begriff «Geometrie» hat sich im Laufe der Entwicklung der Mathematik immer
mehr erweitert. Einerseits ergaben sich viele Ausdehnungen des Begriffes als Folge der
axiomatischen Methode, indem man nimlich nicht nur versuchte, fiir das, was man ur-
spriinglich unter Geometrie verstand, ein vollstindiges Axiomensystem aufzustellen,
sondern auch solche mathematische Systeme untersuchte, welche nur einem Teil der
betrachteten Axiome geniigen; also indem man gewisse Axiome fallen liess oder allenfalls
durch andere ersetzte, wodurch man «allgemeinere Geometrien» erhielt, bzw. Systeme,
welche dem der Geometrie verwandt sind und daher auch «Geometrien» genannt wurden.

Anderseits fand man Beziehungen der Geometrie zu anderen, selbstindigen Gebieten
der Mathematik. Als man zum Beispiel entdeckte, dass es in einer beliebigen projektiven
Geometrie Konstruktionen gibt, welche aus den Punkten einer Geraden einen Korper
machen, gelangte man zur Erkenntnis, dass man jeder projektiven Geometrie einen
Korper zuordnen kann und dass umgekehrt jede projektive Geometrie (bestimmter
Dimension) durch den zugehorigen Koérper vollstindig bestimmt ist, wodurch ein enger
Zusammenhang zwischen Korpertheorie und projektiver Geometrie offenbar wurde.

Ein dhnlicher Zusammenhang, bestehend zwischen projektiver Geometrie und Verbands-
theorie, ist grundlegend fiir den Inhalt des vorliegenden Buches. Ordnet man nidmlich
die Gesamtheit der linearen Teilrdume einer projektiven Geometrie durch die mengen-
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