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Eindeutige Losungen der Funktionalgleichung
flx + ()] = f(x)

I.

In den Elementen der Mathematik 8, 20 (1953) wurde als Aufgabe Nr. 173 das
Problem gestellt, alle Lésungen der auf EULER zuriickgehenden Funktionalgleichung

flx + ()] = f() (1)

zu bestimmen. Die folgenden Bemerkungen sollen den von LUssy in derselben Zeit-
schriftl) angegebenen Losungsweg erginzen. Eine solche Ergdnzung scheint mir
hauptsichlich deswegen angebracht zu sein, weil man nicht sehen kann, wie unter
den von LUssy konstruierten — im allgemeinen mehrdeutigen — Losungen die eindeu-
tigen herauszufinden sind. Gerade die Frage nach den eindeutigen Losungen von (1)
soll hier behandelt werden.

II.

Wir sprechen, ohne das weiterhin immer wieder zu erwdhnen, stets von eindeutigen
und fiir alle reellen Werte von x definierten Lésungen von (1). Die Konstanzmengen
einer Funktion f(x) werden nach BoURBAKI mit f~1(y) bezeichnet; es ist also

x € f~1(y) gleichwertig mit f(x) = y.

Ausserdem verabreden wir die Schreibweise M + a fiir die Menge aller x mit
x — o€ M, wenn M irgendeine Menge reeller Zahlen und « reell ist.

Eine Funktion f(x) befriedigt (1) dann und nur dann, wenn alle ihre Konstanz-
mengen f-1(y) mit y + 0 die Eigenschaft

) +y <) (2)
haben.

1) W. Lussy, El. Math. 9, 40 (1954). Lésung zu Aufgabe Nr. 173. Dort findet sich auch ein Hinweis
darauf, wie EULER das Problem gefunden und behandelt hat.
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Grundlegend fiir das weitere Vorgehen ist der folgende Satz, in dem dargelegt wird,
wie man aus einer gegebenen Losung f(x) von (1) eine weitere Losung g(x) mit um-
fassenderem Wertevorrat gewinnen kann.

Satz 1: f(x) ser eine Losung von (1), die den Wert yy nicht annimmt, und H° irgend -
eine Tetlmenge von
N [[7H0) — n yol;

n=0
aus H® bilde man die Menge

H = SO[H"-{—nyO].

a) Die Funktion .
l yo fiér x€H,
g(x) =

l f(x) sonst
ist esne Losung von (1).

b) Ist h(x) eine weitere Losung von (1), die sich von f(x) hichstens auf der Null-
stellenmenge f~1(0) unterscheidet, dann befriedigt H® = h=1(y,) die oben fiir HO gestelite
Forderung, und es i1st H = HO.

Beweis: a) Es gilt H C f~1(0). Daraus folgt

g7y =H und g7y)=/f"y) firy+0,y,.

Da definitionsgemidss H + y, C H ist, haben alle Konstanzmengen von g(x) die
Eigenschaft (2); also ist g(x) Losung von (1). Die Behauptung b) ergibt sich aus

h(yo) +m Yo Ch7H(ye) CfH0) fiir #=0,1,2,....

Wir geben eine Funktion #(x, y) von zwei reellen Variablen und eine die Null ent-
haltende Menge M von reellen Zahlen vor und nennen #(x, y) eine erzeugende Funk-
tion auf M, wenn folgende Forderungen erfiillt sind:

(A) u(x,v) ist fiir alle y e M und alle x eindeutig erkldrt und nimmt nur Werte aus

M an;

(B) fiir jedes feste y,e M ist u(x, y,) eine Losung von (1);

(C) hilt man x, fest und ldsst y in M variieren, so nimmt #(x,, y) hochstens einen

von Null verschiedenen Wert an.

Fiir erzeugende Funktionen erkliren wir einen Operator

w(%y, Vo), falls u(xy, v,) + 0 fiir ein y,e M;

¢M“(x0’ y) = .
v€ 0 , falls u(x,,y) =0 fiir alle ye M.

Wegen (C) ist trotz der eventuellen Willkiir bei der Auswahl von y, die Funktion
f(x) = @ ulx,y)

yeEM

fir alle x eindeutig erklirt, und zwar ist f(x). eine Losung von (1), die nur Werte aus
M annimmit. Das letztere ist klar, weil u(x, y) nur in M variiert. Bei der Nachpriifung
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der Funktionalgleichung darf man f(x,) + 0 annehmen. Dann ist
f(xg) = u(x,, v,) fiir passendes y,e M

und, weil u(x, y,) Losung von (1) ist,

u [%g + [(%0), Vol = [(x) £ 0,
also

f[%0 + f(x0)] = f(x0),
wie behauptet.

I1I.

Mit Hilfe eines transfiniten Fortsetzungsprozesses konnen wir uns erzeugende
Funktionen auf einer gegebenen Menge M aufbauen. Dabei wird eine Wohlordnung
«<» von M verwendet, bei der 0 < y fiir alle yeM sein moge.

Wir setzen zundchst

u(x, 0) =0.

Nun wihlen wir irgendein y, #+ 0 aus M und setzen voraus, #(x, ) sei auf dem durch
y < ¥, beschriebenen Abschnitt von M erzeugende Funktion. Dann ist

fx, y0) = @ u(x,y) < ¥
y<¥

eine Lésung von (1), auf die der Satz la angewendet werden kann. Man hat mit
gebotener Riicksicht eine Menge H®= H%y,) zu wihlen und daraus die Menge
H = H(y,) zu bilden; dann erhilt man eine Losung g(x) von (1) mit g(x) < vy,, die wir
zur Fortsetzung der schon vorliegenden Funktion «(x, y) verwenden:

S Yo fiir y = v,, x€H(y,),
g X ur y = y
ul(x, y) = ST 2 iy fir y =y, x¢Hiyy), (3)
u(x, y) fir y <, () fiir y < J
u(x, y) fur Yo

ist erzeugende Funktion auf dem erweiterten Abschnitt y <y, von M. Problematisch
ist hierbei héchstens die Frage, ob an einer Stelle x, der neue Funktionswert #(x,, ¥,)
die Eigenschaft (C) stéren kann. Sei also etwa u(x,, ¥;) += 0 (y; <4¥,); dann ist per
definitionem f(x,, yo) = #(%y, ¥;) + 0, so dass x, nicht in f~2(0), also erst recht nicht
in H(y,) liegt (vgl. Beweis von Satz 1a). Das ergibt wunschgemass

u(%o, ¥o) = (%o, Vo) = #(%q, ¥1) ?)-

Nach Vorgabe des Mengensystems H(y) (y €M) ist also tatsichlich eine erzeugende
Funktion u(x, y) auf der ganzen Menge M durch transfinite Induktion erkldrt. Die

%) Die letzte Schlussweise zeigt, dass w(x,y) sogar einer Verschirfung von (C) geniigt: Wenn
%(xy,v,) % 0 und y1 Xy, ist, so wird u(x,, ¥y) = #(%,, y1). Es folgt zum Beispiel, dass die Funktion f(x, y,)
mit u(x, y,) identisch ist, falls y, in der Wohlordnung den Vorgénger y, hat.
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aus u(x, y) hervorgehende Funkiion

h(x) = @ u(x,y)

yEM

ist die allgemeine Losung von (1), die nur Werte aus M annimmt !

Zur Begriindung dieser Behauptung geben wir irgendeine in M variierende Losung
h(x) von (1) vor und versuchen, den Aufbau von %(x, y) so zu lenken, dass schliesslich die
Bildung von yg)Mu(x, y) gerade die vorgelegte Funktion /4(x) liefert. Genauer gesagt:

die bei dem Fortsetzungsverfahren verfiigbaren Mengen H%(y) kénnen so eingerichtet

werden, dass
h(x), falls y > h(x),
u(x, y) =

0 , falls y< h(x)

herauskommt. Fiir y = 0 steht beiderseits identisch Null. Hat «(x, y) die genannte
Eigenschaft fiir alle y < y,, so findet sich

f(x, y0) = @ ulx,y) =

h(x), falls A(x)<<y,,
y—= Yo

0 , falls A(x) > v,.

Nach Satz 1b kann man H(y,) = A~(y,) wihlen; denn f(x, y,) unterscheidet sich
von A(x) hochstens dann, wenn es verschwindet. Man erhdlt H(y,) = A~1(y,) und
[vergleiche (3)]

Vo , falls A(x) = v,

u(x, yo) = 1{ h(x), falls h(x) <y, = l
0 , falls A(x) > v,

h(x), falls A(x) < y,,
0 , falls A(x) >v,.

u(x, y) hat also die angegebene Gestalt auch fiir alle y <y, und damit allgemein in M
(transfinite Induktion!). Das fithrt nun unmittelbar auf

h(x) = D u(x, y).

yEM

Damit ist gezeigt, dass unser Verfahren bei geeigneter Lenkung jede Losung von (1)
zu liefern vermag, deren Wertevorrat in M liegt. Da M eine ganz beliebige Menge
reeller Zahlen sein darf, besitzen wir jetzt simtliche eindeutige Losungen von (1).

IV.

In dieser Allgemeinheit erfordert unser Vorgehen die Heranziehung des Wohl-
ordnungssatzes; dadurch verliert es hoffnungslos jeden konstruktiven Charakter. Der
Wohlordnungssatz ist entbehrlich, wenn man sich auf Losungen von (1) mit abzéhl-
barem Wertevorrat beschrinkt. Es wire in diesem Zusammenhang interessant zu
wissen, ob sich ohne Wohlordnungssatz iiberhaupt eindeutige Lésungen von (1)
angeben lassen, die einen nichtabzihlbaren Wertevorrat besitzen.

Im Falle einer abzihlbaren Menge M = {0 ='y,, ¥;, ..., Y%, ...} ist durch die natiir-
liche Anordnung der Indizes eine Wohlordnung erklirt. Mit Hilfe von Satz 1a kann
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man jetzt durch gewdhnliche Induktion nach % erzeugende Funktionen u(x, y) auf M
konstruieren; der Operator @ ist dabei entbehrlich, was aus der Fussnote 2) hervor-
geht. Die allgemeine Lésung von (1) mit Werten aus M ist durch

h(x) = D u(x, y) = lim u(x, y,)
vEM koo
darstellbar.

Die Abzihlbarkeitseigenschaft folgt schon aus recht schwachen und handlichen
Zusatzforderungen an die Losungen. Abzdhlbaren Wertevorrat haben zum Beispiel
alle Losungen von (1), die durchweg nichtnegativ und in einem offenen Intervall
stetig sind, ohne dort identisch zu verschwinden ; das wird durch die beiden folgenden
Sitze belegt. Bei den Beweisen verwenden wir die Tatsache, dass mit f(x) jeweils auch
f(x % + )/ Losung von (1) ist.

Satz 2: Eine eindeutige Losung von (1) ist sn jedem offenen Stetigkeitsintervall
konstant.

Beweis: Ist f(x) Losung von (1) und im offenen Intervall stetig, aber nicht konstant,
so enthilt der Wertevorrat ein offenes Intervall. Man darf also annehmen, fiir ein

passendes x, sei
1= /(0) < f(xo)

und f(x) zwischen 0 und x, einschliesslich der Grenzen stetig. Durch Auswahl hinrei-
chend grosser natiirlicher Zahlen » und » mit » > m > x, erreicht man
n n—

_*:;Z < f(%0); —-——%>f(0) =1.

n n—

Daher existiert ein & zwischen 0 und x, mit
n—&=(n—m)f(&), dasheisst &+ (n —m) f(&) =n.

Wendet man die Funktionalgleichung (# — m)-mal auf f(£§) und #-mal auf f(0) an, so
erhdlt man f(£) =1 und daraus & = m; das aber widerspricht der Zwischenwerteigen-
schaft von &.

Satz 3: Hat eine Losung von (1) in einem offenen Intervall einen komstanten posi-
tiven Wert und wird sie nirgends negativ, so sind die Funktionswerte durchweg ganz-
zahlige Vielfache einer gewissen positiven reellen Zahl.

Bewers: Wir beschrinken uns erlaubterweise auf eine Losung f(x) = 0 von (1) mit
f(x) =1 fiir || <9; ferner sei f(x,) =y, +=1. Dann ist fiir je zwei ganze Zahlen
m, n =0

|2+ ny,—m| = 6.

Andernfalls lige x, + #n y, — m in f~1(1), also x, + n y; zugleich in (1) und f-(y,),
was nicht geht.

Da man, falls y, irrational und positiv ist, die Grosse |%; + # y, — m| durch Wahl
passender ganzer Zahlen m, n = 0 beliebig klein machen kann?®), muss y, rational sein,

3) Beweis mit Kettenbruchapproximation von y; oder mit Gitterpunktvorstellungen.
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etwa y, = p/q mit teilerfremden natiirlichen Zahlen $ und ¢. Nun kénnen m, n = 0 so
gewihlt werden, dass
1

gz +np—mg] <5

wird, also, wie anfangs gezeigt,
gé=q|m+nyn—ml=|gx+np—mq| <.

Somit haben die rationalen Funktionswerte von f(x) beschrinkte Nenner; sie werden
ganzzahlig, wenn man sie mit einer geeigneten Zahl durchmultipliziert. Das war
behauptet worden.
Nebenbei sieht man, dass beschrinkie Funktionen, die den Voraussetzungen von
Satz 3 geniigen, notwendig periodisch sind.
Ein Beispiel fiir den in Satz 2 und Satz 3 betrachteten Losungstyp ist die
Funktion
wenn m — 1< x <m und 2% die grosstz in 3m +1 +0
/(x) — 2k+1,
steckende Potenz von 2 ist (m ganz, k =0, 1, ..)).

Der genaue Wertevorrat besteht aus den Zahlen 2, 4, 8, ..., 25¥+1 ... Die Funktion
ist durchweg linksseitig stetig und nur fiir ganzzahlige Werte von x unstetig.

Zum Abschluss sei noch auf ein bequemes Konstruktionsverfahren hingewiesen,
das beliebig viele Losungen von (1), nicht aber die allgemeine Losung liefert. Man
wihle irgendeine Untergruppe G in der additiven Gruppe R der reellen Zahlen und
eine beliebige Abbildung g von R/G in G. Dann ist f(x) = g(x + G) eine Losung von (1).

R. WAGNER, Karlsruhe

Schrigrisse als Hilfsmittel zur Konstruktion
von Durchdringungskurven

Zur Konstruktion der Durchdringungskurve & zweier Flichen @, ¥ zieht man im
allgemeinen eine Schar giinstig gewihlter Hilfsflichen ¢ (meist Ebenen oder Kugeln)
heran. Wird @ von ¢ nach der Kurve p und ¥ von ¢ nach ¢ geschnitten, so gehdren
die Schnittpunkte von p und ¢ der Durchdringungskurve % an. So einfach diese
Uberlegung ist, so ermiidend gestaltet sich meist bei komplizierteren Flichen die
praktische Durchfiihrung wegen der rasch anwachsenden Zahl der Konstruktions-
linien. — Unter der Voraussetzung, dass @ und ¥ je eine Schar einigermassen leicht zu
zeichnender Parallelschnitte aufweisen, soll nun gezeigt werden, wie man durch Ver-
wendung bereits gezeichneter Konstruktionslinien den Zuwachs an Konstruktions-
linien weitgehend drosseln kann. Es wird hier ausdriicklich der Zuwachs betont, da
man sich leicht davon iiberzeugen kann, dass die Ermittlung der ersten Punkte von %
bei den meisten Verfahren sowohl quantitits- als auch qualititsmissig nahezu den
selben Konstruktionsaufwand verlangt.
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