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Eindeutige Lösungen der Funktionalgleichung

/[*+/(*)]=/(*)

I.

In den Elementen der Mathematik 8, 20 (1953) wurde als Aufgabe Nr. 173 das

Problem gestellt, alle Lösungen der auf Euler zurückgehenden Funktionalgleichung

/[*+/(*)]=/(*) (i)

zu bestimmen. Die folgenden Bemerkungen sollen den von Lüssy in derselben
Zeitschrift1) angegebenen Lösungsweg ergänzen. Eine solche Ergänzung scheint mir
hauptsächlich deswegen angebracht zu sein, weil man nicht sehen kann, wie unter
den von Lüssy konstruierten - im allgemeinen mehrdeutigen - Lösungen die eindeutigen

herauszufinden sind. Gerade die Frage nach den eindeutigen Lösungen von (1)
soll hier behandelt werden.

II.
Wir sprechen, ohne das weiterhin immer wieder zu erwähnen, stets von eindeutigen

und für alle reellen Werte von x definierten Lösungen von (1). Die Konstanzmengen
einer Funktion f(x) werden nach Bourbaki mit f~1(y) bezeichnet; es ist also

xef~1(y) gleichwertig mit f(x) y.

Ausserdem verabreden wir die Schreibweise M + a für die Menge aller x mit
x — ol e M, wenn M irgendeine Menge reeller Zahlen und a reell ist.

Eine Funktion f(x) befriedigt (1) dann und nur dann, wenn alle ihre Konstanzmengen

f"x(y) mit y #= 0 die Eigenschaft

/-W + y C/-My) (2)

haben.

1) W. Lüssy, El. Math. 9, 40 (1954). Lösung zu Aufgabe Nr. 173. Dort findet sich auch ein Hinweis
darauf, wie Euler das Problem gefunden und behandelt hat.
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Grundlegend für das weitere Vorgehen ist der folgende Satz, in dem dargelegt wird,
wie man aus einer gegebenen Lösung f(x) von (1) eine weitere Lösung g(x) mit
umfassenderem Wertevorrat gewinnen kann.

Satz 1: f(x) sei eine Lösung von (1), die den Wert y0 nicht annimmt, und H° irgendeine

Teilmenge von
oo

rv[/-1(0)-»y«];
aus H° bilde man die Menge

a) Die Funktion

H \j[H<> + ny0].
M 0

I yo für xgH,
.(*)

I f(x) sonst

ist eine Lösung von (1).

b) Ist h(x) eine weitere Lösung von (1), die sich von f(x) höchstens auf der
Nullstellenmenge /_1(0) unterscheidet, dann befriedigt H° h~1(y0) die oben für H° gestellte

Forderung, und es ist H — H°.

Beweis: a) Es gilt H C /^(O). Daraus folgt

g'Hyo) H und g-*(y) f^(y) für y 4= 0, y0.

Da definitionsgemäss H -f- y0 C H ist, haben alle Konstanzmengen von g(x) die

Eigenschaft (2); also ist g(x) Lösung von (1). Die Behauptung b) ergibt sich aus

h-x(yQ) +ny0C A-1^) C /^(O) für n 0, 1, 2,

Wir geben eine Funktion u(x, y) von zwei reellen Variablen und eine die Null
enthaltende Menge M von reellen Zahlen vor und nennen u(x, y) eine erzeugende Funktion

auf M, wenn folgende Forderungen erfüllt sind:
(A) u(x, y) ist für alle yeM und alle x eindeutig erklärt und nimmt nur Werte aus

M an;
(B) für jedes feste y0eM ist u(x, y0) eine Lösung von (1);
(C) hält man x0 fest und lässt y in M variieren, so nimmt u(x0, y) höchstens einen

von Null verschiedenen Wert an.
Für erzeugende Funktionen erklären wir einen Operator

(«(#o» Vol» falls u(xo> Vq) * ° für ein y0^;0 u(xQ, y) {
yeM [0 falls u(x0, y) =0 für alle yeM.

Wegen (C) ist trotz der eventuellen Willkür bei der Auswahl von y0 die Funktion

/(*) - f u(x, y)

für alle x emdeutig erklärt, und zwar ist f(x)»eine Lösung von (1), die nur Werte aus

M annimmt. Das letztere ist klar, weil u(x, y) nur in M variiert. Bei der Nachprüfung
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der Funktionalgleichung darf man f(x0) =|= 0 annehmen Dann ist

f(x0) =u(x0, y0) fur passendes y0eM

und, weil u(x, y0) Losung von (1) ist,

w[*o + /(*o)iyo] /W*°>
also

/[*o + /W_ /W>
wie behauptet

III
Mit Hilfe eines transfimten Fortsetzungsprozesses können wir uns erzeugende

Funktionen auf einer gegebenen Menge M aufbauen Dabei wird eine Wohlordnung
«-<» von M verwendet, bei der 0<y fur alle yeM sein möge

Wir setzen zunächst
u(x, 0) EE 0

Nun wählen wir irgendein y0 =t= 0 aus M und setzen voraus, u(x, y) sei auf dem durch
y ~n ^o beschriebenen Abschnitt von M erzeugende Funktion Dann ist

f(x, y0) 0 u(x, y) -< y0

eine Losung von (1), auf die der Satz la angewendet werden kann Man hat mit
gebotener Rucksicht eine Menge H° H°(y0) zu wählen und daraus die Menge
H H(y0) zu bilden, dann erhalt man eine Losung g(x) von (1) mit g(x) < y0, die wir
zur Fortsetzung der schon vorliegenden Funktion u(x, y) verwenden

g(x) für y y0
u(x, y) l

u(x, y) fur y-<y0

y0 fur y y0, xeH(y0),

f(x,y0) fur y y0, x$H(y0),

u(x, y) fur y<y0

(3)

ist erzeugende Funktion auf dem erweiterten Abschnitt y < y0 von M Problematisch
ist hierbei höchstens die Frage, ob an einer Stelle xQ der neue Funktionswert u(x0, y0)

die Eigenschaft (C) stören kann Sei also etwa u(x0, yx) =*= 0 (yi^y0), dann ist per
defimtionem f(x0, y0) u(x0, yx) + 0, so dass xQ nicht in /_1(0), also erst recht nicht
in H(y0) hegt (vgl Beweis von Satz la) Das ergibt wunschgemass

«(*o> To) f{*o> Vo) u(xo> Vi) 2)

Nach Vorgabe des Mengensystems H°(y) (yeM) ist also tatsachhch eine erzeugende
Funktion u(x, y) auf der ganzen Menge M durch transfinite Induktion erklart Die

*) Die letzte Schlussweise zeigt, dass u(x, y) sogar einer Verschärfung von (C) genügt Wenn
u(*o > Vi) * 0 und yx^y0 ist, so wird u{x0, y0) u{x0, yx) Es folgt zum Beispiel, dass die Funktion f{x, yQ)
mit u(x, yx) identisch ist, falls y0 m der Wohlordnung den Vorgänger yt hat
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aus u(x, y) hervorgehende Funktion

h(x) fu(x, y)

ist die allgemeine Lösung von (1), die nur Werte aus M annimmt!
Zur Begründung dieser Behauptung geben wir irgendeine in M variierende Lösung

h(x) von (1) vor und versuchen, den Aufbau von u(x, y) so zu lenken, dass schliesslich die

Bildung von 0 u(x, y) gerade die vorgelegte Funktion h(x) liefert. Genauer gesagt:
yZM

die bei dem Fortsetzungsverfahren verfügbaren Mengen H°(y) können so eingerichtet
werden, dass

ih(x),
falls y >h(x),

0 falls y ~< h(x)

herauskommt. Für y — 0 steht beiderseits identisch Null. Hat u(x, y) die genannte
Eigenschaft für alle y -< y0, so findet sich

Ih(x),
falls h(x)^y0,

0 falls h(x) >y0.

Nach Satz lb kann man H°(y0) h~1(y0) wählen; denn f(x, y0) unterscheidet sich

von h(x) höchstens dann, wenn es verschwindet. Man erhält H(y0) A-1(y0) und
[vergleiche (3)]

y0 falls h(x) y0
h(x), falls h(x) < yQ,

u(x> yo) — | Hx)> falls h(x) ¦< y0 j
0 falls Ä(*)>y0.

0 falls h(x) > y0

u(x, y) hat also die angegebene Gestalt auch für alle y^y0 und damit allgemein in M
(transfinite Induktion!). Das führt nun unmittelbar auf

h(x) f u(x,y).
y €Af

Damit ist gezeigt, dass unser Verfahren bei geeigneter Lenkung jede Lösung von (1)

zu hefern vermag, deren Wertevorrat in M liegt. Da M eine ganz behebige Menge
reeller Zahlen sein darf, besitzen wir jetzt sämtliche eindeutige Lösungen von (1).

IV.

In dieser Allgemeinheit erfordert unser Vorgehen die Heranziehung des

Wohlordnungssatzes; dadurch verliert es hoffnungslos jeden konstruktiven Charakter. Der
Wohlordnungssatz ist entbehrlich, wenn man sich auf Lösungen von (1) mit abzählbarem

Wertevorrat beschränkt. Es wäre in diesem Zusammenhang interessant zu
wissen, ob sich ohne Wohlordnungssatz überhaupt eindeutige Lösungen von (1)

angeben lassen, die einen nichtabzählbaren Wertevorrat besitzen.
Im Falle einer abzählbaren Menge M {0 =*y0, ylt ,yk,...} ist durch die natürliche

Anordnung der Indizes eine Wohlordnung erklärt. Mit Hilfe von Satz la kann
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man jetzt durch gewöhnliche Induktion nach k erzeugende Funktionen u(x, y) auf M
konstruieren; der Operator 0 ist dabei entbehrlich, was aus der Fussnote 2) hervorgeht.

Die allgemeine Lösung von (1) mit Werten aus M ist durch

h(x) 0u(x, y) lim u(x, yk)
v€M £->oo

darstellbar.
Die Abzählbarkeitseigenschaft folgt schon aus recht schwachen und handlichen

Zusatzforderungen an die Lösungen. Abzählbaren Wertevorrat haben zum Beispiel
alle Lösungen von (1), die durchweg nichtnegativ und in einem offenen Intervall
stetig sind, ohne dort identisch zu verschwinden; das wird durch die beiden folgenden
Sätze belegt. Bei den Beweisen verwenden wir die Tatsache, dass mit f(x) jeweils auch
f(oLX + y)/a Lösung von (1) ist.

Satz 2: Eine eindeutige Lösung von (1) ist in jedem offenen Stetigkeitsintervall
konstant.

Beweis: Ist f(x) Lösung von (1) und im offenen Intervall stetig, aber nicht konstant,
so enthält der WerteVorrat ein offenes Intervall. Man darf also annehmen, für ein
passendes xQ sei

i /(0)</W
und f(x) zwischen 0 und x0 einschliesslich der Grenzen stetig. Durch Auswahl hinreichend

grosser natürlicher Zahlen m und n mit n > m > x0 erreicht man

—=^- < f(x0); —— > /(0) 1.
n — m 'v u/ n— m /v/

Daher existiert ein | zwischen 0 und x0 mit

n — | (n — m) /(£), das heisst f + (n — m) /(£) n.

Wendet man die Funktionalgleichung (n — w)-mal auf /(f) und n-mal auf /(0) an, so
erhält man /(£) 1 und daraus f m\ das aber widerspricht der Zwischenwerteigen-
schaft von f.

Satz 3: Hat eine Lösung von (1) in einem, offenen Intervall einen konstanten positiven

Wert und wird sie nirgends negativ, so sind die Funktionswerte durchweg
ganzzahlige Vielfache einer gewissen positiven reellen Zahl.

Beweis: Wir beschränken uns erlaubterweise auf eine Lösung f(x) 2__ 0 von (1) mit
f(x) =1 für \x\ <*<5; ferner sei f(xx) =yx* 1. Dann ist für je zwei ganze Zahlen
m, n ^0

\x1 + ny1 — m\ ^d.

Andernfalls läge x1 + ny1 — m in /-1(1)> also xi + n ^i zugleich in /-1(1) und Z"1^),
was nicht geht.

Da man, falls yx irrational und positiv ist, die Grösse \x1 + ny1 — m\ durch Wahl
passender ganzer Zahlen m,n^0 behebig klein machen kann3), muss yt rational sein,

3) Beweis mit Kettenbruchapproximation von yx oder mit Gitterpunktvorstellungen.
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etwa yx p\q mit teilerfremden natürlichen Zahlen p und q. Nun können m, n ^ 0 so

gewählt werden, dass

\qx1 + np — mq\ ^ y
wird, also, wie anfangs gezeigt,

qd H=*q\xx-\-ny1 — m\ \q xx + n p — mq\ fg -y.

Somit haben die rationalen Funktionswerte von f(x) beschränkte Nenner; sie werden
ganzzahlig, wenn man sie mit einer geeigneten Zahl durchmultipliziert. Das war
behauptet worden.

Nebenbei sieht man, dass beschränkte Funktionen, die den Voraussetzungen von
Satz 3 genügen, notwendig periodisch sind.

Ein Beispiel für den in Satz 2 und Satz 3 betrachteten Lösungstyp ist die
Funktion

wenn m — 1 < x ^ m und 2k die grosste in 3w+l 4= 0
f(x)=2k + 1,

steckende Potenz von 2 ist (m ganz, k 0, 1,

Der genaue Wertevorrat besteht aus den Zahlen 2, 4,8,... ,2k+1, Die Funktion
ist durchweg linksseitig stetig und nur für ganzzahlige Werte von x unstetig.

Zum Abschluss sei noch auf ein bequemes Konstruktionsverfahren hingewiesen,
das behebig viele Lösungen von (1), nicht aber die allgemeine Lösung liefert. Man
wähle irgendeine Untergruppe G in der additiven Gruppe R der reellen Zahlen und
eine beliebige Abbildung g von RjG in G. Dann ist f(x) g(x + G) eine Lösung von (1).

R. Wagner, Karlsruhe

Schrägrisse als Hilfsmittel zur Konstruktion
von Durchdringungskurven

Zur Konstruktion der Durchdringungskurve k zweier Flächen 0, W zieht man im
allgemeinen eine Schar günstig gewählter Hilfsflächen cp (meist Ebenen oder Kugeln)
heran. Wird 0 von qo nach der Kurve p und W von cp nach q geschnitten, so gehören
die Schnittpunkte von p und q der Durchdringungskurve k an. So einfach diese

Überlegung ist, so ermüdend gestaltet sich meist bei komplizierteren Flächen die

praktische Durchführung wegen der rasch anwachsenden Zahl der Konstruktionslinien.

- Unter der Voraussetzung, dass 0 und W je eine Schar einigermassen leicht zu
zeichnender Parallelschnitte aufweisen, soll nun gezeigt werden, wie man durch
Verwendung bereits gezeichneter Konstruktionslinien den Zuwachs an Konstruktionslinien

weitgehend drosseln kann. Es wird hier ausdrücklich der Zuwachs betont, da

man sich leicht davon überzeugen kann, dass die Ermittlung der ersten Punkte von k

bei den meisten Verfahren sowohl quantitäts- als auch qualitätsmässig nahezu den

selben Konstruktionsaufwand verlangt.
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