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Ungelöste Probleme

Nr. 29. Existe-t-il une infinite de nombres premiers p de la forme 8 & + 1 tels que
le nombre 2 appartient mod p ä un exposant impair (Tels sont par exemple les

nombres 17, 41, 97.)
On peut demontrer que pour p premiers de la forme 8^ + 3 ou 8^ + 5 le nombre 2

appartient ä un exposant pair et que pour p premiers de la forme 8 k + 7 le nombre
2 appartient ä un exposant impair. MM. Browkin et Makowski ont remarque qu'il
existe une infinite de nombres premiers p de la forme 8 ß +1 tels que le nombre
2 appartient mod^> ä un exposant pair tels sont, par exemple, tous les facteurs

premiers des nombres de Fermat 22M+ 1, oü n 2, 3, —
II est encore k remarquer que M. A. Schinzel a deduit de son hypothese H sur les

nombres premiers [enoncee dans Acta Anthmetica 4, 188 (1958)] que la reponse ä

notre probleme est positive. W. Sierpinski

Nr. 30. M. S. Rolewicz a demande si Ton a

1- aa(n)hm —^—L + oo,
»=oo n

oü a(n) designe la somme des diviseurs naturels du nombre n. La reponse ä cette

question est negative. En effet, A. Renyi a demontre (dans le Journal Izwiestia
A. N. SSSR. 1948, 57-78) qu'il existe une infinite de nombres premiers n tels que
n + 2 a au plus k diviseurs premiers (oü k est une constante absolue). Pareillement
on peut demontrer l'existence d'une infinite de nombres premiers n tels que w + la
au plus k diviseurs premiers. Pour un tel n, a(n) a au plus k diviseurs premiers et le

nombre aa(n)ja(n) est born£, d'oü

-. aa(n)hm—— < -f-oo.

Le probleme se pose si Ton a

o a a(n)hm — < -f-oo
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et, generalement
k fois

a a o(n)hm ^——K—L < + oo.nn 00

Je ne connais pas la reponse ä ce probleme, mais je pense qu'elle est positive.
A. Schinzel

Kleine Mitteilungen

Extremaleigenschaften der Ecktransversalen des n-dimensionalen Simplex
Die Ecktransversalen durch einen beliebigen inneren Punkt P des w-dimensionalen

Simplex Ax(i 1, » + 1) schneiden die entsprechenden gegenüberliegenden Grenz-
raume m Bt (1 1, n +1). Bezeichnen wir mit R% (1 1, n +1) die Strecke
PAX, mit dt die Strecke PBt, so gilt bekanntlich1) die Ungleichung

R, ^ rc(*i"-*.-i *. + .••• *n+i)1/n

wenn man die entsprechenden baryzentrischen Koordinaten von P bezüglich der
Simplexeckpunkte mit x% (1 1, n + 1) bezeichnet. Nach einfacher Umformung
folgt aus obiger Ungleichung

/n + l \l/n

A > __Ai_+______L___ m^ ^(n + l)/n * V '
Sei nun

s*= £ ^^r (H- 'H=h -¦n+lh (2)

dann gilt die folgende Ungleichung

/n + l5^< *
\ nk. (3)

Beweis: Wendet man die Ungleichung zwischen arithmetischem und geometrischem
Mittel auf (2) an, so folgt, dass

v..M./<r) i#^T)Lnm)' t,= l, n + l), (4)

da die Ghederanzahl von Sk sich als die Anzahl der Kombinationen Ä-ter Ordnung aus
n + 1 Elementen ergibt.

Aus (1) folgt, dass
n + l \fc/n

n n*>R'i-R'k > \.-i /__ {5)
1 * (nA

x) J Schopf, Über emeExtremaletgenschaft des Stmplextmn-dtmenstonalen Raum, El Math 13,106-107
(1958).
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