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Organ fur den Verein Schweizerischer Mathematik- und Physiklehrer

Publiziert mit Unterstützung des Schweizerischen Nationalfonds
zur Forderung der wissenschaftlichen Forschung

El Math Band XIV Nr 3 Seiten 49-72 Basel, 10 Mai 1959

Elementare Begründung ausgewählter stetigkeitsgeometrischer
Sätze für Kreis und Kugelfläche

Zahlreiche stetigkeitsgeometrische Satze, insbesondere solche uber stetige
Funktionen auf euklidischen Sphären, gehören zwar der Topologie an und smd zum grossen
Teil auch nur mit Verwendung der ihnen adäquaten Hilfsmittel, insbesondere alge-
braisch-topologischer Methoden begrundbar, gestatten jedoch viele reizvolle
Anwendungen, die sich ganz im Rahmen der Elementargeometrie halten1) Es ist deshalb
besonders wunschbar, fur diese Schlusselaussagen wenigstens in den niedrigsten
Fallen, das heisst fur Kreis und Kugelflache, möglichst einfache Beweise zur Verfugung

zu haben. Dass bei der angedeuteten Beschrankung Herleitungen der
entsprechenden Satze möglich, sind, die durchaus elementar genannt werden dürfen, ist
bekannt. Die Überwindung der eigentlichen topologischen Schwierigkeiten vollzieht
sich fast unmerkbar bei einfachen Stetigkeitsbetrachtungen mit Drehwinkeln in der
Ebene, eine Möglichkeit, die in höheren Dimensionen leider kein ähnlich elementares

Analogon aufweist.
Nachfolgend will ich einige Satze der oben erwähnten Art kurz zusammenfassen

und unter der genannten Beschrankung auf möglichst einfache Weise herleiten.
Damit soll den Lesern em kleiner Ergebnisbericht zu dem hier einschlagigen Teil

der elementaren Stetigkeitsgeometrie zur Verfugung gestellt werden. Auch der
Kenner durfte hier das eine oder andere finden, das ihm neu ist, insbesondere sind

einige bekannte Satze im Zuge der elementaren Bearbeitung gleichzeitig verschärft
worden.

1. Stetige Funktionen im Kreisbereich

In der euklidischen Ebene E liege der abgeschlossene Kreisbereich K, der Rand
von K ist die Kreislinie L. Eine in E stetige Funktion <p(p), die fur alle Punkte p e K
definiert ist, nennen wir kurz eine stetige Funktion in K. Em positiver Umlaufssinn
orientiere die Kreislinie L und lege auch den positiven Drehsinn fur Winkelmessung
m der Ebene E fest. Fur zwei Punkte p,q e L erklaren wir eindeutig die Distanz

1) Einige Andeutungen findet man m [7] Die Ziffern m eckigen Klammern verweisen auf das
Literaturverzeichnis, Seite 59
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Q(P> #) a^s den Winkel q (0 fg q < 2 n), um den man den Punkt q im positiven Sinn
auf L um den Mittelpunkt von K drehen muss, damit er mit p zusammenfällt.

Beim Studium stetiger Funktionen in K stützt man sich oft auf eine einfache
Tatsache, die das Verhalten von q> auf L betrifft:

Satz 1.1: Ist <p(p) eine stetige Funktion im Kreisbereich K, so gibt es zu jedem
vorgeschriebenen Winkel q (0 < q fj n) ein Punktepaar p,q e L der Distanz q(p, q) — q
auf dem Kreisrand L derart, dass q>(p) <p(q) ausfällt.

Beweis 1.1: Man wähle p', p" e L so, dass

<p(p') Max <p(p), q)(p") Min (p(p) [p e L]
ist. Gilt

Q(pf,q')=Q(pff,q")=Q,
so wird

<P(P') - <PW) ^ 0 und ?#") - <p(q") <L 0

Dreht man ein Punktepaar p,q e L mit g(p, q) q in L stetig derart, dass dieses

zunächst mit p't q' und dann mit p", q" zusammenfällt, so muss für eine Zwischenlage

(p(p) — <p(q) 0 sein.
Die nachfolgenden beiden Sätze gestatten, vom Verhalten stetiger Funktionen auf

dem Kreisrand L auf das Verhalten im Kreisbereich K zu schhessen. Sie sind ihrem
Wesen nach mit den Nullstellensätzen vom Bolzanoschen Typ verwandt, die einerseits

an den klassischen Zeichenwechselsatz anschliessen, andererseits mit den höher-
dimensionalen Verallgemeinerungen in das Gebiet der Topologie hineinführen, wie
dies Hopf [11] ausführlich dargetan hat.

Satz 1.2: Sind <p(p) und y)(p) zwei stetige Funktionen im Kreisbereich K und gibt
es einen festen Winkel q (0 < q ^ n) so, dass für jedes Punktepaar p,q e L des

Kreisrandes L, das der Distanzbedingung q(p, q) — q genügt, die Beziehungen

<p(q) ^-<p(p); f(q) -tp(p)

gelten, so gibt es einen Punkt p e K derart, dass

nuMm <p(p)~y>(p) 0
ausfallt.

Beweis 1.2: Wir gehen von der Gegenannahme aus, wonach für p eK stets
{<p(P)]% + bpitW > 0 gelten muss. Lassen wir im Punkt p den Vektor

t t(£)-<?(£) * + ¥#)!)

angreifen, wo % und t) zwei orthonormierte Vektoren der Kreisebene E bezeichnen,

so entsteht im Kreisbereich K ein stetiges Feld nicht verschwindender Vektoren.
Bezeichnet pQ den Mittelpunkt von K und wandern wir von fQ auf einem Kreisradius
bis zum Punkt pt so dreht sieh der dem laufenden Punkt entsprechende Feldvektor
stetig, wobei die Richtung von i(p0)in diejenige von i(p) übergeht. Ist co(p) der Win-
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kel, um den sich der Feldvektor, im positiven Sinn gemessen, insgesamt gedreht hat,
so ist mit oj(p0) 0 und mit Respektierung der verlangten Stetigkeit auf allen Radien
von K mit co (p) eine in K eindeutig definierte und dort überall stetige Funktion
gegeben. Nach Satz 1.1 gibt es ein Punktepaar p,q e L so, dass q(p, q) q und
a>(p) co(q) ausfällt, so dass die Vektoren t(p) und i(q) parallel sind (was hier wie im
folgenden auch gleichgerichtet bedeuten soll).

Vergleicht man jedoch die Definition von i(p) mit der Nebenbedingung in unserm
Satz, so gewahrt man, dass i(p) und i(q) entgegengesetzt gerichtet sein müssen.
Dieser Widerspruch zeigt die Unzulässigkeit unserer Gegenannahme.

Satz 1.3: Sind qj(p), ip(p) und %(p) drei stetige Funktionen im Kreisbereich K und
gibt es einen festen Winkel q (0 < q ^ tz) so, dass für jedes (geordnete) Punktepaar
p, q E L des Kreisrandes L, das der Distanzbedingung q(p, q) q genügt, die
Beziehungen

<p(q) tp(p); ip(q) %(fi); x(q) <p(p)

gelten, so gibt es einen Punkt p e K derart, dass

ausfällt.
?>(_-) =Y#)=„(fl

Beweis 1.3: Die Gegenannahme besagt, dass für p e K stets

[?(_•) - ¥#)]2 + _/#) - %{PW > 0

ausfallen soll. Ähnlich wie im vorstehenden Beweis lassen wir in p den Vektor
t t(^>) [cp(p) — f(p)] x + bp(p) — x(P)] 1) angreifen und erzeugen in K wieder ein
stetiges Feld nichtverschwindender Vektoren. Mit der gleichen Überlegung wie oben
kann wieder ein Punktepaar p, q e L so gewählt werden, dass die beiden Vektoren
t(£) und t(#) parallel sind. Nach dem für t gewählten Ansatz muss die Determinantenbedingung

A 0 erfüllt sein, wo

A
<p(p) - xp(p) y)(p) - x(P)

9%) ~ Vis) Y(9) ~ X(9)

gesetzt ist. Berücksichtigt man hier die in unserem Satz vorausgesetzten Beziehungen,
so resultiert durch einfache Ausrechnung

-2A [9(p) - w(p)Y + bp(P) - %(PW + MP) - <p(P)l2;

somit stellt sich A 0 mit der oben getroffenen Gegenannahme in Widerspruch.

2. Stetige Funktionen auf der Kugelfläche; Spiegelungssätze

Im gewöhnlichen euklidischen Raum R beziehen wir uns auf eine Kugelfläche S

und betrachten insbesondere stetige Funktionen &(p), die für alle Punkte p e S
definiert sind. Der WerteVorrat solcher Funktionen unterliegt gewissen Bindungen. Die
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drei nachfolgenden Sätze drücken solche Gesetze aus, zu deren Formulierung Spiegelungen

E an Ebenen durch den Mittelpunkt der Kugelfläche S herangezogen werden.

Satz 2.1: Sind 0(p) und W(p) zwei stetige Funktionen auf der Kugelfläche S und
sind Uq,v0eS zwei vorgegebene Punkte, so gibt es eine Spiegelung E so, dass für ihre
Bildpunkte u,v, e S die Bedingungen

erfüllt sind. *M«*M; *» - W)

Beweis 2.1: Ohne wesentliche Einschränkung darf angenommen werden, dass der
Nordpol p0E S Mittelpunkt eines u0 und v0 verbindenden Meridiankreisbogens ist.
Es sei L der Äquator von S und K der von L berandete Kreisbereich. Für einen
Punkt p e K bezeichne f> e S den lotrecht über p stehenden Punkt der nördlichen
Hemisphäre von 5. Weiter sei E p die Spiegelung an der durch den Kugelmittelpunkt
p0 gehenden Symmetrieebene der beiden antipodischen Punkte ft und p*. Durch die
Ansätze cp(p) 0(u) — 0(v) und xp(p) W(u) — W(v), wobei u und v die Bildpunkte
von u0 und v0 bezüglich Ep sind, werden zwei stetige Funktionen in K definiert,
welche mit q nß die Voraussetzungen von Satz 1.2 erfüllen. In der Tat gelten für
die Bildpunkte von u0 und v0 bezüglich der Spiegelungen E p und E q mit p, q E L,
Q(P> Q) ^/2 die Relationen up — vq, vp uq. Die Behauptung von Satz 1.2 deckt
sich nun mit der hier nachzuweisenden.

Einen bekannten Sachverhalt bei einer stetigen Funktion auf der Kugelfläche
verschärft der folgende

Satz 2.2: Ist 0(p) eine stetige Funktion auf der Kugeifläche S und sind u0,v0,w0eS
drei vorgegebene Punkte, die ein reguläres Dreieck bilden, so gibt es eine Spiegelung E so,
dass für die Bildpunkte u,v,w E S die Bedingung

0(u) 0(v) 0(w)
erfüllt wird.

Es handelt sich hier um ein erstmals von de Mira-Fernandes [14] erzieltes
Resultat, das mit dem spezielleren Fall eines rechtwinkligen regulären Dreiecks das

Theorem von Kakutani [12] einschliesst. Allerdings beziehen sich die genannten
Aussagen auf beliebige Drehungen in S anstelle der mit unserem Satz vorgesehenen
Spiegelungen. Da aber die zweiparametrige Schar der Spiegelbilder eines regulären
Dreiecks in S eine echte Teilmenge der dreiparametrigen Schar der entsprechenden
Drehbilder ausmacht, wird mit dem Spiegelungssatz mehr ausgesagt. So lässt sich
Kakutanis Satz, wonach eine stetige Funktion der Richtungen im Raum stets für
drei paarweise orthogonale Richtungen gleiche Werte annehmen muss, dahin
verschärfen, dass dies für drei Richtungen der Fall ist, die spiegelbildlich zu den drei

Koordinatenrichtungen im Raum liegen.
Durch Yamabe und Yujobo [17] ist der Kakutanische Satz auf den w-dimensio-

nalen Raum erweitert worden; danach nimmt eine stetige Richtungsfunktion für n
paarweise aufeinander orthogonal stehende Richtungen gleiche Werte an. — Ferner
wurde das Theorem von Mira Fernandes von E. F. Floyd [5] insofern verallgemeinert,

als an die Stelle eines regulären Dreiecks ein beliebiges Dreieck treten kann;
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vermutlich reichen in diesem allgemeineren Fall die Spiegelungen aber nicht mehr
aus, um eine entsprechende Verschärfung zu formulieren.

Beweis 2.2: Es darf angenommen werden, dass der Nordpol p0 e S Symmetriezentrum

des von u0,v0, w0 gebildeten gleichseitigen sphärischen Dreiecks ist und dass
die gewählte alphabetische Reihenfolge der Punktbezeichnungen dem positiven
Umlaufssinn in der Äquatorebene entspricht. Dort begrenze der Äquator L wieder den
Kreisbereich K. Mit analogen Festsetzungen wie beim vorangehenden Beweis setzen
wir für einen Punkt p E K ähnlich

(p(p) 0(u); y>(p) 0(v); XiP) *W >

wo u, v, w die Bildpunkte von u0, v0, w0 bezüglich der Spiegelung E p bezeichnen, und
gewinnen so drei stetige Funktionen in K, welche mit q 2 tz/3 die Voraussetzungen
von Satz 1.3 erfüllen. In der Tat gelten für die Bildpunkte von u0, v0, w0 bezüglich
der beiden Spiegelungen E p und E q mit p,q e L und q(p, q) 2 tc/3 die Relationen

up wq; vp uq; wp vq. Die Behauptung von Satz 1.3 ist mit der hier zu beweisenden

identisch.
Ein Satz, der etwas weniger aussagt, als man bei der Erörterung der Ausgangssituation

erhofft, ist der folgende

Satz 2.3: Ist 0(p) eine stetige Funktion auf der Kugelfläche S und sind

Uq, Vq, Uq*, V$ E S

vier vorgegebene Punkte, die ein Rechteck derart bilden, dass sich die Punkte u0 und u$
bzw. v0 und v$ diagonal gegenüberliegen, so gibt es eine Spiegelung E so, dass für die

Bildpunkte u, v, u*, v* E S die Bedingungen

0(u) 0(u*); 0(v) 0(V*)
erfüllt sind.

Für vier Punkte, die ein einem Grosskreis der Kugelfläche S einbeschriebenes
Rechteck bilden, konnte Livesay [13] wesentlich mehr zeigen. Für ein passendes
Drehbild des Rechtecks nimmt eine stetige Funktion für alle vier Eckpunkte gleiche
Werte an. Der Livesaysche Satz verallgemeinert ein bekanntes Resultat von Dyson [4],
der schon etwas früher das analoge Ergebnis für ein Quadrat erzielte.

Beweis 2.3: Wieder sei p0E S Mittelpunkt des von u0,v0, u$, v$ gebildeten sphärischen

Vierecks. Analog wie in den beiden vorangehenden Beweisen setzen wir für
einen Punkt p eK

<p(p) 0(u) - 0(u*) und ip(p) 0(v) - 0(v*),

wo u, v, u*, v* die Bildpunkte von u0, v0, u$, v$ bezüglich der Spiegelung Ep
bezeichnen, wodurch zwei stetige Funktionen in K definiert sind, die mit q jt/2 die
Voraussetzungen von Satz 1.2 erfüllen. In der Tat gelten für zwei Spiegelungen
E p und E q mit p,q e L und q(p, q) n!2 die Relationen up u*;uq u$;vp v*;
vq t/£. Die Behauptung von Satz 1.2 deckt sich mit der hier nachzuweisenden.
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3. Stetige Richtungsfelder

Eine Richtung in der Ebene E oder im Raum R soll durch einen Einheitsvektor t
repräsentiert werden. Ist jedem Punkt p e K des Kreisbereichs K eine Richtung
t t(p) zugeordnet derart, dass t mit p stetig variiert, so ist damit ein stetiges
Richtungsfeld in K gegeben. Zur Veranschaulichung denke man sich in jedem Punkt
p E K den Richtungsvektor t(p) angreifend, der sich bei stetiger Veränderung von p
stetig dreht.

Auch für stetige Richtungsfelder bestehen mannigfaltige Bindungen. Einige
einfache Aussagen dieser Art, die bekannte Hilfssätze der elementaren Stetigkeitsgeometrie

darstellen, geben die folgenden drei sich auf den ebenen Fall beziehenden Sätze:

Satz 3.1: Ist t(p) ein stetiges Richtungsfeld im Kreisbereich K und ist q (0 < q ^n)
ein vorgegebener Winkel, so gibt es auf dem Kreisrand L ein Punktepaar p, q der
vorgeschriebenen Distanz q(p, q) q derart, dass die Richtungen t(p) und i(q) parallel sind.

Beweis 3.1: Ist p0 der Mittelpunkt von K und bezeichnet co(p) den Winkel, um den

man den Richtungsvektor t(p0) im positiven Sinne drehen muss, damit dieser mit
t(p) parallel wird, so lässt sich - wie bereits beim Beweis 1.2 ausgeführt - die
Vieldeutigkeit des genannten Winkels derart ausschalten, dass, ausgehend von der
Festsetzung co(p0) 0, eine in K überall eindeutig und stetig definierte Funktion w(p)
gegeben ist. Nach Satz 1.1 gibt es zu gegebenem q zwei Punkte p,q e L so, dass

co(p) co(q) ausfällt, so dass t(p) und t(q) parallel sind.

Satz 3.2: Ist t(p) ein stetiges Richtungsfeld im Kreisbereich K, so gibt es auf dem

Kreisrand L sowohl einen Punkt p, dessen Richtung t(p) radial nach aussen weist, als
auch einen Punkt q, dessen Richtung t(q) radial nach innen weist.

Beweis 3.2: Wir nehmen zunächst an, es gäbe auf L keine radial nach innen
weisende Richtung. Bezeichnet x(p) für p e L den radial nach aussen weisenden
Richtungsvektor, so wird t(p) =t= — x(p) für alle p e L gelten. Wir erweitern das im
Kreisbereich K vom Radius 1 gegebene stetige Richtungsfeld zu einem solchen, das im
konzentrischen Kreisbereich K vom Radius 2 definiert ist und in K mit dem gegebenen
übereinstimmt, in der folgenden Weise: Bezeichnet px für 0 fg X ^ 1 einen Punkt von
K, der mit p e L auf dem nämlichen Radialstrahl durch den Mittelpunkt pQ liegt und
von pQ den Abstand 1 + A aufweist, so sei der Richtungsvektor

HP*) r '
WO

t„ {W + (1 - „)* + 2 „ (1 - A) x(p) t(f) }1,a

gesetzt ist. Für das auftretende Skalarprodukt gilt x(p) t(p) > — 1, so dass ta > 0

ausfällt. Damit ist in K ein stetiges Richtungsfeld gegeben. Da aber i(pt) x(p) ist,
sind alle Vektoren auf der Randlinie von K radial nach aussen gerichtet. Nach
Satz 3.1 müssten aber Paare paralleler Richtungen auftreten, was hier ausgeschlossen
ist. Unsere Annahme muss also falsch sein. Analog zeigt man, dass auf L eine radial
nach aussen weisende Richtung realisiert sein muss.
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Satz 3.3: Sind t(p) und\(p) zwei stetige Richtungsfelder im Kreisbereich K und ist
q (0 < q ^ n) ein vorgegebener Winkel, so gibt es auf dem Kreisrand L ein Punktepaar
p, q der vorgeschriebenen DistanzQ(p, q)=o derart, dass die beiden Richtungen i(p) undi(q)
den entgegengesetzt gleichen Winkel miteinander bilden wie die Richtungen t (p) und t (q)

Beweis 3 3 Smd co(p) und co(p) die den beiden Feldern zugeordneten Hilfsfunk-
tionen, wie dies beim Beweis 3 1 naher erörtert wurde, so ist co(p) -f- cb(p) ebenfalls
eine in K stetige Funktion, fur die es nach Satz 1 1 zwei Punkte p, q e L der
vorgeschriebenen Distanz q so geben muss, dass co(p) 4- co(p) co(q) -f oo(q) gilt. Aus der
geometrischen Deutung der Folgerung co(p) — co(q) —[co(p) — oo(q)] ergibt sich die
nachzuweisende Behauptung

Ist jedem Punkt p e S der Kugelflache S eine Richtung t(p) im Raum so
zugewiesen, dass t(p) stetig von p abhangt, so liegt em stetiges Richtungsfeld auf S vor.
Gehort jeder Richtungsvektor i(p) der im Angriffspunkt p a,n S gelegten Tangentialebene

an, so heisst das Feld tangentiell Hier gilt es einen wichtigen bekannten
Tatbestand festzustellen, namhch

Satz 3.4: Es existiert kein stetiges tangentielles Richtungsfeld auf der Kugelflache S.

Es handelt sich um einen von Poincare [15] erstmals bewiesenen Satz Der sich
auf w-dimensionale Sphären, also auf Randflachen (n + l)-dimensionaler euklidischer
Vollkugeln beziehende berühmte Satz von Brouwer-Poincari_ sagt allgemeiner aus,
dass em stetiges tangentielles Richtungsfeld auf der w-dimensionalen Sphäre dann
und nur dann möglich ist, wenn n ungerade ist

Beweis 54 Es sei L der in der Ebene E liegende Äquator von S, der den Kreis-
bereich K berandet Durch stereographische Projektion des Richtungsfeldes der
südlichen Hemisphäre von S auf E vom Nordpol aus erzeugt man in K das stetige
Richtungsfeld i(p), analog gewinnt man em zweites Richtungsfeld | (p) m K durch
entsprechende Projektion des Richtungsfeldes der nördlichen Hemisphäre von S vom
Sudpol aus. Fur einen Punkt p e L liegen die beiden Feldvektoren t(p) und \(p)
spiegelsymmetnsch zu der Aquatortangente in p Bezeichnen &(p) bzw &(p) die
Winkel, um die man t(p) bzw t(p) im positiven Sinn drehen muss, damit diese
Vektoren mit dem im positiven Umlaufsinn von L orientierten Tangentenvektor m p
parallel gerichtet sind, so ist <x(p) — cn(p) (mod2 jt) Es sei 0 < q < n und p,q eL
mit g(p, q) Q Der Winkel zwischen t(p) und t(q) bzw zwischen l(p) und t (q) ist dann
A <x,(q) — <x(p) + q bzw Ä ql(P) — x(q) -f- Q Nach Satz 3 3 gilt fur em passendes
Punktepaar A —A, also q 0 (mod^r), damit ist em Widerspruch erzielt.

Eine anschauliche Folgerung aus dem Satz von PoiNCARit druckt der sogenannte
«Igelsatz» aus, dessen scherzhafte Emkleidungsmoghchkeit mit dem gewählten
Namen vorweggenommen ist Es handelt sich um den

Satz 3.5: Ist t(p) ein stetiges, auf der Kugelflache S definiertes Feld räumlicher
Richtungen, so gibt es einen Punkt p e S derart, dass die Richtung t(p) auf der Kugel-
flache S orthogonal steht.
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Beweis 3.5: Würde keine Richtung auf der Kugelfläche S orthogonal stehen, so liesse
sich durch Orthogonalprojektion des räumlichen Richtungsfeldes auf 5 ein stetiges
tangentielles Richtungsfeld erzeugen, das aber nach Satz 3.4 nicht existieren kann.

4. Stetige Abbildungen

Mit den vorstehend in Betracht gezogenen stetigkeitsgeometrischen Gegenständen,
also mit stetigen Funktionen und Vektorfeldern in engster Verbindung stehen die
stetigen Abbildungen, die sich von ihnen lediglich durch die besondere Art der
Interpretation unterscheiden.

Die nachfolgenden Abbildungssätze über Kreisbereich und Kugelfläche weisen
deutliche topologische Gesichtszüge auf. Beziehen sich die Studien lediglich auf diese
einfachsten Figuren, so befindet man sich in einem Grenzgebiet zwischen Elementargeometrie

und Topologie, wo die Frage nach der Zugehörigkeit einer einzelnen Aussage

keinen guten Sinn mehr besitzt, zumal es hier auch Tatbestände gibt, die
Wechselwirkungen zwischen den in verschiedenen Machtbereichen liegenden Gesetzen zum
Ausdruck bringen. Weiteres zu dieser Frage enthält der instruktive Vortrag von
Hopf [10].

Wir beginnen mit einem ebenen Sonderfall des berühmten Fixpunktsatzes von
Brouwer [3]:

Satz 4.1: Eine stetige Abbildung f(p) des Kreisbereichs K in sich weist wenigstens
einen Fixpunkt auf, das heisst, es gibt einen Punkt p e K so, dass f(p) — p ist.

Beweis 4.1: Wir treffen die Gegenannahme, wonach p 4= f(p) für alle p eK gelten
soll. Wird in jedem Punkt p E K der von p nach f(p) weisende Richtungsvektor t(p)
angebracht, so entsteht ein stetiges Richtungsfeld in K. Nach Satz 3.2 muss für einen

passenden Randpunkt p e L die Richtung i(p) radial nach aussen zeigen, was der
Konstruktion unseres Feldes widerspricht.

Hier schhessen sich zwei einfache Sätze dieser Art an.

Satz 4.2: Ist f(p) eine stetige Abbildung des Kreisbereiches K in den Kreisrand L und
wird ein Winkel q (0 < q ^n) vorgegeben, so gibt es zwei Punkte p,q E L des Randes

der Distanz q(p, q) q, die das nämliche Bild aufweisen, so dass also f(p) f(q) gilt.

Beweis 4 2: Wird in jedem Punkt p e K die Richtung des Vektors angebracht,
welcher den Kreismittelpunkt p0 mit f(p) e L verbindet, so entsteht ein stetiges
Richtungsfeld in K. Nach Satz 3,1 gibt es zwei Punkte p,q e L der vorgeschriebenen

Distanz q mit parallelen Richtungen. Offenbar gilt dann f(p) f(q).

Satz 4.3: Es existiert keine stetige Abbildung des Kreisbereiches K in den Kreisrand

L, welche den Rand punktweise fest lässt.

Beweis 4.3: Wählen wir p, q e L, p 4= q so, dass f(p) f(q) ausfällt, was nach
Satz 4.2 möglich ist! Dies verträgt sich nicht mit der Annahme, dass L punktweise
fest bleibt, wonach f(p) p für alle p e L gelten sollte.
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Nun zur Kugelflache

Satz 4.4: Ist f(p) eine stetige Abbildung der Kugelflache S in die Ebene E und ist der
Winkel q (0 < q ^ n) vorgegeben, so gibt es zwei Punkte p, q e S der vorgeschriebenen
Distanz q(p, q) q, welche das gleiche Bild aufweisen, so dass f(p) f(q) ist.

Es handelt sich hier um einen wohl einfachsten nichttnvialen Spezialfall eines
allgemein sich auf n-dimensionale geschlossene Mannigfaltigkeiten Mn mit Riemann-
scher Metrik beziehenden Satzes von Hopf [9], wonach sich bei einer stetigen
Abbildung von Mn in den n-dimensionalen euklidischen Raum En stets zwei Punkte mit
vorgeschriebener geodätischer Distanz q finden lassen, deren Bilder m En zusammenfallen.

Em besonders wichtiger Spezialfall hegt dann vor, wenn Mn mit der n-dimen-
sionalen Sphäre Sn identisch ist und spezieller noch q n gesetzt wird. Es handelt
sich dann um einen bekannten Antipodensatz, der aussagt, dass bei einer stetigen
Abbildung der Sn in den En stets zwei antipodische Punkte das nämliche Bild
aufweisen müssen. Vergleiche hierzu weiteres bei Alexandroff und Hopf ([1] S. 486).

Beweis 4 4 Sind 0(p) und W(p) fur p e 5 die beiden Koordinaten des Bildpunktes
f(p) E E bezüglich eines kartesischen Systems m E, so smd zwei stetige Funktionen
auf S definiert, auf die sich Satz 2 1 anwenden lasst Fur zwei Punkte p, q e S der
vorgeschriebenen sphärischen Distanz q gilt dann f(p) f(q).

Satz 4.5: Ist f(p) eine stetige fixpunktfreie Abbildung der Kugelflache S in sich, so

gibt es einen Punkt p E S, der in den antipodischen Punkt p* e S übergeht, so dass also

f(p) p* ist.

Beweis 4 5 Wurde f(p) 4= p und f(p) 4= p* zugleich fur alle p e S gelten, so
konnte man dadurch, dass man p mit f(p) durch einen gerichteten Grosskreisbogen
der Lange < n verbindet, em stetiges tangentielles Richtungsfeld auf S erzeugen,
das aber nach Satz 3.4 nicht existiert.

5. Überdeckungssätze

Wir schhessen die Reihe unserer stetigkeitsgeometrischen Studien mit einigen
Sätzen uber abgeschlossene Überdeckungen ab Die abgeschlossenen Punktmengen
smd den Belangen der Stetigkeitsgeometrie aus verschiedenen Gründen gut angepasst.
Bei den nachfolgenden Betrachtungen wird insbesondere der Umstand ausschlaggebend

sein, dass der Abstand d(p, A) eines Punktes von p von einer abgeschlossenen
Menge A eine stetige Funktion von p ist und dann und nur dann verschwindet,
wenn der Punkt p der Menge A angehört. Wir erinnern an die Definition von d(p, A)
als kleinste euklidische Distanz, die zwischen p und beliebigen Punkten von A realisiert

wird.
Die beiden ersten Satze beziehen sich auf Distanzen, die durch die einen Kreis-

bereich überdeckenden Punktmengen geliefert werden. Eine erste elementare Aussage

ist

Satz 5.1: Ist der Einheitskreisbereich K von drei abgeschlossenen Punktmengen
überdeckt und ist die Distanz d (0 < d ^ |/J) vorgegeben, so enthalt stets wenigstens eine
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der drei Mengen ein Punktepaar p,q eK der Distanz d(p, q) d; die Distanzschranke
\/3 kann nicht vergrössert werden.

Beweis 5.1: Die mit K konzentrische Kreislinie Lö vom Radius 2 <$/j/3 ist offenbar
ebenfalls von den drei Punktmengen überdeckt. Beteiligt sich nur eine dieser drei
Mengen, so ist die Behauptung bereits bewiesen, da auf Lö zwei Punkte der Distanz <5

liegen. Beteiligen sich an der Überdeckung von Lö zwei oder alle drei Mengen, so lässt
sich auf Ld ein Punkt u wählen, der zum nichtleeren Durchschnitt zweier Mengen
gehört. Bilden die Punkte v und w zusammen mit u ein der Kreislinie Lö einbeschriebenes

reguläres Dreieck der Seitenlänge d, so lässt sich mit Verwendung eines
naheliegenden Schubfachschlusses leicht einsehen, dass von den drei Punkten u, v, w
wenigstens zwei derselben Menge angehören müssen. Die zusätzliche Aussage, dass
die Schranke j/J nicht verbessert werden kann, ergibt sich aus der Tatsache, dass
sich K durch drei kongruente Kreissektoren mit den Öffnungswinkeln 2tt/3
überdecken lässt, deren Durchmesser genau |/J betragen.

Etwas tiefer liegend und mit den vorstehenden Sätzen verbunden ist der folgende

Satz 5.2: Ist der Einheitskreisbereich K von drei abgeschlossenen Punktmengen mit
leerem, gemeinsamem Durchschnitt überdeckt und wird die Distanz d (0 < d ^ 2)
vorgegeben, so enthält wenigstens eine der drei Mengen ein Punktepaar p, q e K der
Distanz d(p, q) d.

Beweis 5.2: Der Kreisbereich K sei durch die drei abgeschlossenen Punktmengen
A, B, C überdeckt. Für einen Punkt p E K bezeichnen a a.(p), ß ß(p) und

7 yiP) die Abstände der Mengen A, B und C von p. Wenigstens einer der drei
Abstände muss verschwinden, so dass a ß y 0 ist; ferner sind nachfolgend noch die
Bedingungen a _i_ 0, ß ^ 0 und y S=__ 0 zu beachten. Setzen wir

2t*-(oL-ß)*+(ß-y)*+(y-*)*,
so muss r > 0 ausfallen, da andernfalls auf a ß y 0 geschlossen werden kann,
was im Gegensatz zur Bedingung steht, dass der gemeinsame Durchschnitt Ar\Br\C
leer sei. Sind n, n und tö drei Einheitsvektoren, die paarweise den Winkel 2 Ttß ein-
schliessen, so wird mit dem Ansatz i(p) (a u + ß n + y w)/t in K ein stetiges
Richtungsfeld definiert. Wählt man den Winkel q so, dass d 2 sin (g/2) ist, so weisen
zwei Punkte p,q eL des Randes von K, für die q(p, q) =• q ist, die Distanz 6 auf.
Nach Satz 3.1 können diese beiden Punkte so gewählt werden, dass t(p) mit i(q)
parallel ist. Hieraus lässt sich schhessen, dass wenigstens eine der drei Bedingungen
a(p) cn(q) 0, ß(p) ß(q) 0, y(p) y(q) 0 erfüllt sein muss. Das Punktepaar
p, q gehört zu einer der drei Mengen _4, JE? oder C.

Der oben formulierte Überdeckungssatz 5.2 für den Kreisbereich ist stärker als der
ebene Spezialfall des bekannten Lemmas von Sperner [16], das sich auf die
Überdeckung eines Dreiecks bezieht, wobei ausgesagt wird, dass drei abgeschlossene, ein
Dreieck überdeckende Punktmengen einen nichtleeren Durchschnitt haben müssen,
wenn sich die drei Mengen den drei Dreiecksseiten so zuordnen lassen, dass jede der
Mengen mit der ihr entsprechenden Seite leeren Durchschnitt aufweist. Das Sper-
nersche Lemma ist ein Korollar unseres Satzes, nicht aber umgekehrt.
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Wir schhessen mit einem Überdeckungssatz fur die Kugelflache

Satz 5.3: Ist die Kugelflache S von drei abgeschlossenen Punktmengen überdeckt und
ist ein Winkel q (0 < q ^n) vorgeschrieben, so enthalt wenigstens eine der drei Mengen
ein Punktepaar p,q e S der Distanz q (p, q) q

Es handelt sich um eine Variante des Antipodensatzes von Lusternik, Schnirel-
mann und Borsuk, der m seiner ^-dimensionalen Form aussagt, dass bei einer
Überdeckung der Sphäre Sn durch n + l abgeschlossene Punktmengen wenigstens eine
der Mengen em antipodisches Punktepaar enthalten muss Diese Aussage ist im
Sonderfall der gewöhnlichen Kugelflache m unserem Satz enthalten, sie entspricht
der speziellen Wahl q n Der sehr bekannte Antipodensatz fur die Sphäre Sn

erlaubt zahlreiche Varianten und Erweiterungen ahnlicher Art Vergleiche hierzu
auch Hopf [8] Einen Beweis, der ohne höhere topologische Hilfsmittel, insbesondere
ohne Verwendung algebraischer Methoden auskommt, gab Borsuk [2]

Beweis 5 3 Die Kugelflache S sei von A, B und C überdeckt Smd 0(p) und W(p)
die Abstände des Punktepaares p e S von A und B, so smd 0 und W zwei stetige
Funktionen auf S Nach Satz 2 1 gibt es em Punktepaar p,q e S mit der vorgeschriebenen

Distanz q so, dass 0(p) 0(q) a und W(p) W(q) ß ist Aus a 0 folgt
p, q e A, aus ß 0 analog p,q e B Ist aber a > 0 und ß > 0, so resultiert p, q e C.

Damit ist die Behauptung bewiesen
Der hier fur die gewohnliche Kugelflache bewiesene Satz lasst sich noch m der

folgenden Weise verscharfen Wenigstens eine der drei Mengen hat die Eigenschaft,
zu federn Winkel q (0 < q ^ n) em Punktepaar der Distanz q aufzuweisen Vergleiche
hierzu [6] H Hadwiger, Bern
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Ungelöste Probleme

Nr. 29. Existe-t-il une infinite de nombres premiers p de la forme 8 & + 1 tels que
le nombre 2 appartient mod p ä un exposant impair (Tels sont par exemple les

nombres 17, 41, 97.)
On peut demontrer que pour p premiers de la forme 8^ + 3 ou 8^ + 5 le nombre 2

appartient ä un exposant pair et que pour p premiers de la forme 8 k + 7 le nombre
2 appartient ä un exposant impair. MM. Browkin et Makowski ont remarque qu'il
existe une infinite de nombres premiers p de la forme 8 ß +1 tels que le nombre
2 appartient mod^> ä un exposant pair tels sont, par exemple, tous les facteurs

premiers des nombres de Fermat 22M+ 1, oü n 2, 3, —
II est encore k remarquer que M. A. Schinzel a deduit de son hypothese H sur les

nombres premiers [enoncee dans Acta Anthmetica 4, 188 (1958)] que la reponse ä

notre probleme est positive. W. Sierpinski

Nr. 30. M. S. Rolewicz a demande si Ton a

1- aa(n)hm —^—L + oo,
»=oo n

oü a(n) designe la somme des diviseurs naturels du nombre n. La reponse ä cette

question est negative. En effet, A. Renyi a demontre (dans le Journal Izwiestia
A. N. SSSR. 1948, 57-78) qu'il existe une infinite de nombres premiers n tels que
n + 2 a au plus k diviseurs premiers (oü k est une constante absolue). Pareillement
on peut demontrer l'existence d'une infinite de nombres premiers n tels que w + la
au plus k diviseurs premiers. Pour un tel n, a(n) a au plus k diviseurs premiers et le

nombre aa(n)ja(n) est born£, d'oü

-. aa(n)hm—— < -f-oo.

Le probleme se pose si Ton a

o a a(n)hm — < -f-oo
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