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Elementare Begriindung ausgewihlter stetigkeitsgeometrischer
Sitze fir Kreis und Kugelfliche

Zahlreiche stetigkeitsgeometrische Sitze, insbesondere solche iiber stetige Funk-
tionen auf euklidischen Sphiren, gehoren zwar der Topologie an und sind zum grossen
Teil auch nur mit Verwendung der ihnen addquaten Hilfsmittel, insbesondere alge-
braisch-topologischer Methoden begriindbar, gestatten jedoch viele reizvolle Anwen-
dungen, die sich ganz im Rahmen der Elementargeometrie halten!). Es ist deshalb
besonders wiinschbar, fiir diese Schliisselaussagen wenigstens in den niedrigsten
Fillen, das heisst fiir Kreis und Kugelfliche, moglichst einfache Beweise zur Verfii-
gung zu haben. Dass bei der angedeuteten Beschrinkung Herleitungen der entspre-
chenden Sidtze moglich sind, die durchaus elementar genannt werden diirfen, ist
bekannt. Die Uberwindung der eigentlichen topologischen Schwierigkeiten vollzieht
sich fast unmerkbar bei einfachen Stetigkeitsbetrachtungen mit Drehwinkeln in der
Ebene, eine Moglichkeit, die in hoheren Dimensionen leider kein dhnlich elementares
Analogon aufweist.

Nachfolgend will ich einige Sdtze der oben erwdhnten Art kurz zusammenfassen
und unter der genannten Beschrinkung auf moglichst einfache Weise herleiten.

Damit soll den Lesern ein kleiner Ergebnisbericht zu dem hier einschlidgigen Teil
der elementaren Stetigkeitsgeometrie zur Verfiigung gestellt werden. Auch der
Kenner diirfte hier das eine oder andere finden, das ihm neu ist; insbesondere sind
einige bekannte Sidtze im Zuge der elementaren Bearbeitung gleichzeitig verscharft
worden.

1. Stetige Funktionen im Kreisbereich

In der euklidischen Ebene E liege der abgeschlossene Kreisbereich K; der Rand
von K ist die Kreislinie L. Eine in E stetige Funktion ¢(p), die fiir alle Punkte p € K
definiert ist, nennen wir kurz eine stetige Funktion in K. Ein positiver Umlaufssinn
orientiere die Kreislinie L und lege auch den positiven Drehsinn fiir Winkelmessung
in der Ebene E fest. Fiir zwei Punkte p, ¢ € L erkliren wir eindeutig die Distanz

1) Einige Andeutungen findet man in [7]. Die Ziffern in eckigen Klammern verweisen auf das Literatur-
verzeichnis, Seite 59,
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o(p, ¢) als den Winkel p (0 < p < 27), um den man den Punkt ¢ im positiven Sinn
auf L um den Mittelpunkt von K drehen muss, damit er mit 4 zusammenfallt.

Beim Studium stetiger Funktionen in K stiitzt man sich oft auf eine einfache Tat-
sache, die das Verhalten von ¢ auf L betrifft:

Satz 1.1: Ist @(p) eine stetige Funktion im Kreisbereich K, so gibt es zu jedem vor-
geschriebenen Winkel o (0 < o < n) ein Punktepaar p,q € L der Distanz o(p, q9) = ¢
auf dem Kreisrand L derart, dass @(p) = @(q) ausfdllt.

Beweis 1.1: Man wihle $', p” € L so, dass
p(p') = Max @(p), @(p") =Ming(p) [pel]
ot ¢') =o#".¢") =0,
@) — 9(g) 20 und @) —@¢") =0.

Dreht man ein Punktepaar $, ¢ € L mit g(p, ¢) = ¢ in L stetig derart, dass dieses
zunichst mit ¢’, ¢ und dann mit $”, ¢” zusammenfillt, so muss fiir eine Zwischen-
lage @(p) — @(g) = O sein.

Die nachfolgenden beiden Sitze gestatten, vom Verhalten stetiger Funktionen auf
dem Kreisrand L auf das Verhalten im Kreisbereich K zu schliessen. Sie sind ihrem
Wesen nach mit den Nullstellensitzen vom Bolzanoschen Typ verwandt, die einer-
seits an den klassischen Zeichenwechselsatz anschliessen, andererseits mit den héher-
dimensionalen Verallgemeinerungen in das Gebiet der Topologie hineinfithren, wie
dies Hopr [11] ausfiihrlich dargetan hat.

ist. Gilt

so wird

Satz 1.2: Sind @(p) und y(p) zwes stetige Funktionen im Kreisbereich K und gibt
es einen festen Winkel o (0 < o < 7) so, dass fiir jedes Punktepaar p, g € L des Kreis-
randes L, das der Distanzbedingung o(p, q) = o geniigt, die Beziehungen

olg) = —); wig) = —y(p)

gelten, so gibt es einen Punkt p € K derart, dass

ausfillt. () =y(p) =0

Beweis 1.2: Wir gehen von der Gegenannahme aus, wonach fiir p € K stets
[@p(p)]? + [p(p)]2 > O gelten muss. Lassen wir im Punkt p den Vektor

t=1() =@ x+v()y

angreifen, wo x und 1 zwei orthonormierte Vektoren der Kreisebene E bezeichnen,
so entsteht im Kreisbereich K ein stetiges Feld nicht verschwindender Vektoren.
Bezeichnet p, den Mittelpunkt von K und wandern wir von p, auf einem Kreisradius
bis zum Punkt $, so dreht sich der dem laufenden Punkt entsprechende Feldvektor
stetig, wobei die Richtung von t(p,) in diejenige von t(p) iibergeht. Ist w(p) der Win-
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kel, um den sich der Feldvektor, im positiven Sinn gemessen, insgesamt gedreht hat,
so ist mit w(p,) = 0 und mit Respektierung der verlangten Stetigkeit auf allen Radien
von K mit w(p) eine in K eindeutig definierte und dort iiberall stetige Funktion
gegeben. Nach Satz 1.1 gibt es ein Punktepaar p, ¢ € L so, dass g(p, g) = ¢ und
w(p) = w(g) ausfillt, so dass die Vektoren 1(p) und t(g) parallel sind (was hier wie im
folgenden auch gleichgerichtet bedeuten soll).

Vergleicht man jedoch die Definition von t(p) mit der Nebenbedingung in unserm
Satz, so gewahrt man, dass t(p) und t(g) entgegengesetzt gerichtet sein miissen.
Dieser Widerspruch zeigt die Unzulissigkeit unserer Gegenannahme.

Satz 1.3: Sind @(p), w(p) und y(p) drei stetige Funktionen im Kreisbereich K und
gibt es einen festen Winkel ¢ (0 < o < n) so, dass fiir jedes (geordnete) Punktepaar
p,q € L des Kreisrandes L, das der Distanzbedingung o(p, q) = o geniigt, die Bezie-
hungen

ausféllt. p(p) = p(p) = x(p)

Beweis 1.3: Die Gegenannahme besagt, dass fiir p € K stets

[p(p) — w(@)1* + [w(p) — x(p)]* > 0

ausfallen soll. Ahnlich wie im vorstehenden Beweis lassen wir in p den Vektor
t =1(p) = [p(p) — v(®)] x + [w(p) — x(p)] vy angreifen und erzeugen in K wieder ein
stetiges Feld nichtverschwindender Vektoren. Mit der gleichen Uberlegung wie oben
kann wieder ein Punktepaar $, ¢ € L so gewédhlt werden, dass die beiden Vektoren
t(p) und t(g) parallel sind. Nach dem fiir t gewihlten Ansatz muss die Determinanten-
bedingung A = 0 erfiillt sein, wo

Cop) —p(p)  (p) — ()
plg) —v(@  v»@ — x(9

A:

gesetzt ist. Beriicksichtigt man hier die in unserem Satz vorausgesetzten Beziehungen,
so resultiert durch einfache Ausrechnung

—24 = [pp) —p@)? + [v@) — xB)1* + [2(8) — ()]

somit stellt sich 4 = 0 mit der oben getroffenen Gegenannahme in Widerspruch.

2. Stetige Funktionen auf der Kugelfliche; Spiegelungssiitze

Im gewohnlichen euklidischen Raum R beziehen wir uns auf eine Kugelfliche S
und betrachten insbesondere stetige Funktionen @(p), die fiir alle Punkte € S defi-
niert sind. Der Wertevorrat solcher Funktionen unterliegt gewissen Bindungen. Die
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drei nachfolgenden Sitze driicken solche Gesetze aus, zu deren Formulierung Spiege-
lungen X an Ebenen durch den Mittelpunkt der Kugelfliche S herangezogen werden.

Satz 2.1: Sind D(p) und V(p) zwei stetige Funktionen auf dev Kugelfliche S und
sind uy, vy € S 2wet vorgegebene Punkte, so gibt es eine Spiegelung X' so, dass fiir ihre
Bildpunkte u, v, € S die Bedingungen

erfiillt sind.

Beweis 2.7: Ohne wesentliche Einschrankung darf angenommen werden, dass der
Nordpol p, € S Mittelpunkt eines %, und v, verbindenden Meridiankreisbogens ist.
Es sei L der Aquator von S und K der von L berandete Kreisbereich. Fiir einen
Punkt p € K bezeichne $ € S den lotrecht iiber p stehenden Punkt der nérdlichen
Hemisphire von S. Weiter sei 2’ p die Spiegelung an der durch den Kugelmittelpunkt
po gehenden Symmetrieebene der beiden antipodischen Punkte 4 und p*. Durch die
Ansitze @(p) = O(u) — P(v) und p(p) = ¥(u) — ¥(v), wobei » und v die Bildpunkte
von #, und v, beziiglich X' p sind, werden zwei stetige Funktionen in K definiert,
welche mit p = /2 die Voraussetzungen von Satz 1.2 erfiillen. In der Tat gelten fiir
die Bildpunkte von #, und v, beziiglich der Spiegelungen 2'$ und X' g mit p,q € L,
o(p, q9) = m/2 die Relationen u, = v,, v, = u,. Die Behauptung von Satz 1.2 deckt
sich nun mit der hier nachzuweisenden.

Einen bekannten Sachverhalt bei einer stetigen Funktion auf der Kugelfliache ver-
schirft der folgende

Satz 2.2: Ist D(p) eine stetige Funktion auf der Kugelfidche S und sind uy, vy, wy € S
drei vorgegebene Punkte, die ein reguldres Dreteck bilden, so gibt es eine Spiegelung 2. so,
dass fiir die Bildpunkte u, v, w € S die Bedingung

/

erfiillt wird.

Es handelt sich hier um ein erstmals von DE MIRA-FERNANDES [14] erzieltes Re-
sultat, das mit dem spezielleren Fall eines rechtwinkligen reguliren Dreiecks das
Theorem von KAKUTANI[12] einschliesst. Allerdings beziehen sich die genannten
Aussagen auf beliebige Drehungen in S anstelle der mit unserem Satz vorgesehenen
Spiegelungen. Da aber die zweiparametrige Schar der Spiegelbilder eines reguldren
Dreiecks in S eine echte Teilmenge der dreiparametrigen Schar der entsprechenden
Drehbilder ausmacht, wird mit dem Spiegelungssatz mehr ausgesagt. So lisst sich
KAKUTANIS Satz, wonach eine stetige Funktion der Richtungen im Raum stets fiir
drei paarweise orthogonale Richtungen gleiche Werte annehmen muss, dahin ver-
schirfen, dass dies fiir drei Richtungen der Fall ist, die spiegelbildlich zu den drei
Koordinatenrichtungen im Raum liegen.

Durch YAMABE und YujoBo [17] ist der Kakutanische Satz auf den n#-dimensio-
nalen Raum erweitert worden; danach nimmt eine stetige Richtungsfunktion fiir #
paarweise aufeinander orthogonal stehende Richtungen gleiche Werte an. — Ferner
wurde das Theorem von MiRA FERNANDES von E. F. FLoYD [5] insofern verallgemei-
nert, als an die Stelle eines reguliren Dreiecks ein beliebiges Dreieck treten kann;
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vermutlich reichen in diesem allgemeineren Fall die Spiegelungen aber nicht mehr
aus, um eine entsprechende Verschirfung zu formulieren.

Beweis 2.2: Es darf angenommen werden, dass der Nordpol p, € S Symmetrie-
zentrum des von u,, v,, w, gebildeten gleichseitigen sphirischen Dreiecks ist und dass
die gewidhlte alphabetische Reihenfolge der Punktbezeichnungen dem positiven
Umlaufssinn in der Aquatorebene entspricht. Dort begrenze der Aquator L wieder den
Kreisbereich K. Mit analogen Festsetzungen wie beim vorangehenden Beweis setzen
wir fiir einen Punkt $ € K dhnlich

wo u, v, w die Bildpunkte von #,, vy, w, beziiglich der Spiegelung X p bezeichnen, und
gewinnen so drei stetige Funktionen in K, welche mit ¢ = 2 /3 die Voraussetzungen
von Satz 1.3 erfiillen. In der Tat gelten fiir die Bildpunkte von u,, v,, @, beziiglich
der beiden Spiegelungen 2'$ und X g mit p, ¢ € L und g(p, ¢) = 2 n/3 die Relationen
Up = Wy, Up = Uy, W, = v,. Die Behauptung von Satz 1.3 ist mit der hier zu beweisen-
den identisch.

Ein Satz, der etwas weniger aussagt, als man bei der Erérterung der Ausgangs-
situation erhofft, ist der folgende

Satz 2.3: Ist D(p) eine stetige Funktion auf der Kugelfliche S und sind
Uy, Vo, U, V5 € S

vier vorgegebene Punkte, die ein Rechteck derart bilden, dass sich die Punkte uy und ug
bzw. vy und v} diagonal gegeniiberliegen, so gibt es eine Spiegelung X' so, dass fir die
Bildpunkte u, v, u*, v* € S die Bedingungen

B() = Bu*); Do) — DY
erfiillt sind.

Fiir vier Punkte, die ein einem Grosskreis der Kugelfliche S einbeschriebenes
Rechteck bilden, konnte Livesay [13] wesentlich mehr zeigen. Fiir ein passendes
Drehbild des Rechtecks nimmt eine stetige Funktion fiir alle vier Eckpunkte gleiche
Werte an. Der Livesaysche Satz verallgemeinert ein bekanntes Resultat von Dyson[4], .
der schon etwas frither das analoge Ergebnis fiir ein Quadrat erzielte.

Beweis 2.3: Wieder sei p, € S Mittelpunkt des von u,, vy, #¥, v} gebildeten sphiri-
schen Vierecks. Analog wie in den beiden vorangehenden Beweisen setzen wir fiir
einen Punkt p € K

p(p) = P(u) — P(w*) und y(p) = Pv) — P(v*),

wo u, v, w*, v* die Bildpunkte. von u,, vy, #¥, v¥ beziiglich der Spiegelung X' be-
zeichnen, wodurch zwei stetige Funktionen in K definiert sind, die mit ¢ = =/2 die
Voraussetzungen von Satz 1.2 erfiillen. In der Tat gelten fiir zwei Spiegelungen
2'pund X ¢ mit p, ¢ € L und g(p, ¢) = n/2 die Relationen u, = u}; u, = u}; v, = v};
v, = v}. Die Behauptung von Satz 1.2 deckt sich mit der hier nachzuweisenden.
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3. Stetige Richtungsfelder

Eine Richtung in der Ebene E oder im Raum R soll durch einen Einheitsvektor t
reprasentiert werden. Ist jedem Punkt p € K des Kreisbereichs K eine Richtung
t = t(p) zugeordnet derart, dass t mit p stetig variiert, so ist damit ein stetiges Rich-
tungsfeld in K gegeben. Zur Veranschaulichung denke man sich in jedem Punkt
p € K den Richtungsvektor {(p) angreifend, der sich bei stetiger Verdnderung von p
stetig dreht.

Auch fiir stetige Richtungsfelder bestehen mannigfaltige Bindungen. Einige ein-
fache Aussagen dieser Art, die bekannte Hilfssitze der elementaren Stetigkeitsgeo-
metrie darstellen, geben die folgenden drei sich auf den ebenen Fall beziehenden Sitze:

Satz 3.1: Ist t(p) ein stetiges Richtungsfeld im Kreisbereich K und ist o (0 < o < x)
ewn vorgegebener Winkel, so gibt es auf dem Kreisrand L ein Punktepaar p, q der vor-
geschriebenen Distanz o(p, q) = o derart, dass die Richtungen t(p) und t(q) parallel sind.

Beweis 3.7: Ist pyder Mittelpunkt von K und bezeichnet w(p) den Winkel, um den
man den Richtungsvektor t(p,) im positiven Sinne drehen muss, damit dieser mit
t(p) parallel wird, so lisst sich — wie bereits beim Beweis 1.2 ausgefiihrt — die Viel-
deutigkeit des genannten Winkels derart ausschalten, dass, ausgehend von der Fest-
setzung w(p,) = 0, eine in K iiberall eindeutig und stetig definierte Funktion w(p)
gegeben ist. Nach Satz 1.1 gibt es zu gegebenem p zwei Punkte $, ¢ € L so, dass
w(p) = w(g) ausfillt, so dass t(p) und t(g) parallel sind.

Satz 3.2: Ist t(p) ein stetiges Richtungsfeld im Kreisbereich K, so gibt es auf dem
Kreisrand L sowohl einen Punkt p, dessen Richtung t(p) radial nach aussen weist, als
auch einen Punkt q, dessen Richtung t(q) radial nach innen weist.

Beweis 3.2: Wir nehmen zunichst an, es gibe auf L keine radial nach innen wei-
sende Richtung. Bezeichnet r(p) fiir p € L den radial nach aussen weisenden Rich-
tungsvektor, so wird t(p) = —r(p) fiir alle p € L gelten. Wir erweitern das im Kreis-
bereich K vom Radius 1 gegebene stetige Richtungsfeld zu einem solchen, das im
konzentrischen Kreisbereich K vom Radius 2 definiert ist und in K mit dem gegebenen
iibereinstimmt, in der folgenden Weise: Bezeichnet p; fiir 0 < 4 < 1 einen Punkt von
K, der mit p € L auf dem nimlichen Radialstrahl durch den Mittelpunkt p, liegt und
von p, den Abstand 1 + 4 aufweist, so sei der Richtungsvektor

A -4t
) = r(p)+£_11 ) p)

wo
T={A+ (1 =22+ 221 -2 x(p) tp) }'"

gesetzt ist. Fiir das auftretende Skalarprodukt gilt t(p) t(p) > —1, so dass 1, > 0
ausfillt. Damit ist in K ein stetiges Richtungsfeld gegeben. Da aber t(p,) = t(p) ist,
sind alle Vektoren auf der Randlinie von K radial nach aussen gerichtet. Nach
Satz 3.1 miissten aber Paare paralleler Richtungen auftreten, was hier ausgeschlossen
ist. Unsere Annahme muss also falsch sein. Analog zeigt man, dass auf L eine radial
nach aussen weisende Richtung realisiert sein muss.
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Satz 3.3: Sind t(p) und 1(p) zwes stetige Richtungsfelder im Kreisbereich K und ist
o (0 < g = 7) ein vorgegebener Winkel, so gibt es auf dem Kreisrand L ein Punktepaar
P, q der vorgeschriebenen Distanz o(p, q) = devart, dass die beiden Richtungen t(p) undt(q)
den entgegengesetzt gleichen Winkel miteinander bilden wie die Richtungen t(p) und ¥(q).

Beweis 3.3: Sind w(p) und w(p) die den beiden Feldern zugeordneten Hilfsfunk-
tionen, wie dies beim Beweis 3.1 néher erdrtert wurde, so ist w(p) + w(p) ebenfalls
eine in K stetige Funktion, fiir die es nach Satz 1.1 zwei Punkte p, ¢ € L der vorge-
schriebenen Distanz g so geben muss, dass w(p) + w(p) = w(g) + w(g) gilt. Aus der
geometrischen Deutung der Folgerung w(p) — w(q) = —[w(p) — w(g)] ergibt sich die
nachzuweisende Behauptung.

Ist jedem Punkt p € S der Kugelfliche S eine Richtung t(p) im Raum so zuge-
wiesen, dass t(p) stetig von p abhingt, so liegt ein stetiges Richtungsfeld auf S vor.
Gehort jeder Richtungsvektor t(p) der im Angriffspunkt $ an S gelegten Tangential-
ebene an, so heisst das Feld tangentiell. Hier gilt es einen wichtigen bekannten
Tatbestand festzustellen, namlich:

Satz 3.4: Es existiert kein stetiges tangentielles Richtungsfeld auf der Kugelfliche S.

Es handelt sich um einen von POINCARE [15] erstmals bewiesenen Satz. Der sich
auf n-dimensionale Sphéren, also auf Randflichen (# + 1)-dimensionaler euklidischer
Vollkugeln beziehende beriihmte Satz von BROUWER-POINCARE sagt allgemeiner aus,
dass ein stetiges tangentielles Richtungsfeld auf der n-dimensionalen Sphire dann
und nur dann moglich ist, wenn # ungerade ist.

Beweis 3.4: Es sei L der in der Ebene E liegende Aquator von S, der den Kreis-
bereich K berandet. Durch stereographische Projektion des Richtungsfeldes der siid-
lichen Hemisphidre von S auf E vom Nordpol aus erzeugt man in K das stetige
Richtungsfeld t(p); analog gewinnt man ein zweites Richtungsfeld ¥ (p) in K durch
entsprechende Projektion des Richtungsfeldes der nérdlichen Hemisphére von S vom
Siidpol aus. Fiir einen Punkt p € L liegen die beiden Feldvektoren t(p) und %(p)
spiegelsymmetrisch zu der Aquatortangente in p. Bezeichnen «(p) bzw. a(p) die
Winkel, um die man t(p) bzw. 1(p) im positiven Sinn drehen muss, damit diese Vek-
toren mit dem im positiven Umlaufsinn von L orientierten Tangentenvektor in
parallel gerichtet sind, so ist a(p) = —a(p) (mod 27). Essei 0 <9 <z und p,g €L
mit g(p, g) = o. Der Winkel zwischen t(p) und t(g) bzw. zwischen {(p) und (g) ist dann
4 = «(g) — a(p) + o bzw. A = a(p) — «(g) + ¢. Nach Satz 3.3 gilt fiir ein passendes
Punktepaar 4 = —4, also g = 0 (mod ); damit ist ein Widerspruch erzielt.

Eine anschauliche Folgerung aus dem Satz von POINCARE driickt der sogenannte
«Igelsatz» aus, dessen scherzhafte Einkleidungsmoglichkeit mit dem gewihlten
Namen vorweggenommen ist. Es handelt sich um den

Satz 3.5: Ist t(p) ein stetiges, auf der Kugelfliche S definiertes Feld rdumlicher
Richtungen, so gibt es einen Punkt p € S derart, dass die Richtung t(p) auf der Kugel-
fliche S orthogonal steht.
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Beweis 3.5: Wiirde keine Richtung auf der Kugelfliche S orthogonal stehen, so liesse
sich durch Orthogonalprojektion des rdaumlichen Richtungsfeldes auf S ein stetiges
tangentielles Richtungsfeld erzeugen, das aber nach Satz 3.4 nicht existieren kann.

4. Stetige Abbildungen

Mit den vorstehend in Betracht gezogenen stetigkeitsgeometrischen Gegenstianden,
also mit stetigen Funktionen und Vektorfeldern in engster Verbindung stehen die
stetigen Abbildungen, die sich von ihnen lediglich durch die besondere Art der Inter-
pretation unterscheiden.

Die nachfolgenden Abbildungssitze iiber Kreisbereich und Kugelfliche weisen
deutliche topologische Gesichtsziige auf. Beziehen sich die Studien lediglich auf diese
einfachsten Figuren, so befindet man sich in einem Grenzgebiet zwischen Elementar-
geometrie und Topologie, wo die Frage nach der Zugehorigkeit einer einzelnen Aus-
sage keinen guten Sinn mehr besitzt, zumal es hier auch Tatbestédnde gibt, die Wech-
selwirkungen zwischen den in verschiedenen Machtbereichen liegenden Gesetzen zum
Ausdruck bringen. Weiteres zu dieser Frage enthilt der instruktive Vortrag von
Hopr [10].

Wir beginnen mit einem ebenen Sonderfall des beriihmten Fixpunktsatzes von
BrOUWER [3]:

Satz 4.1: Eine stetige Abbildung f(p) des Kreisbereichs K in sich weist wenigstens
einen Fixpunkt auf, das heisst, es gibt esnen Punkt p € K so, dass f(p) = p ist.

Beweis 4.1: Wir treffen die Gegenannahme, wonach p =+ f(p) fiir alle p € K gelten
soll. Wird in jedem Punkt $ € K der von p nach f(p) weisende Richtungsvektor t(p)
angebracht, so entsteht ein stetiges Richtungsfeld in K. Nach Satz 3.2 muss fiir einen
passenden Randpunkt ¢ € L die Richtung t(p) radial nach aussen zeigen, was der
Konstruktion unseres Feldes widerspricht.

Hier schliessen sich zwei einfache Sitze dieser Art an.

Satz 4.2: Ist {(p) eine stetige Abbildung des Kreisbereiches K in den Kreisrand L und
wird ein Winkel ¢ (0 < o < 7) vorgegeben, so gibt es zwei Punkte p, q € L des Ran-
des der Distanz o(p, q) = o, die das ndmliche Bild aufweisen, so dass also f(p) = f(q) gilt.

Beweis 4.2: Wird in jedem Punkt p € K die Richtung des Vektors angebracht,
welcher den Kreismittelpunkt p, mit f(p) € L verbindet, so entsteht ein stetiges
Richtungsfeld in K. Nach Satz 3.1 gibt es zwei Punkte p, ¢ € L der vorgeschriebe-
nen Distanz g mit parallelen Richtungen. Offenbar gilt dann f(p) = f(g).

Satz 4.3: Es existiert keine stetige Abbildung des Kreisberewkes K in den Kreis-
rand L, welche den Rand punkiweise fest ldsst.

Beweis 4.3: Wihlen wir p,g € L, p + ¢ so, dass f(p) = f(g) ausfillt, was nach
Satz 4.2 moglich ist! Dies vertragt sich nicht mit der Annahme, dass L punktweise
fest bleibt, wonach f(p) = pfirallep € L gelten sollte.
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Nun zur Kugelfliache:

Satz 4.4: Ist f(p) eine stetige Abbildung der Kugelfliche S in die Ebene E und ist der
Winkel p (0 < p = 7) vorgegeben, so gibt es zwes Punkte p, q € S der vorgeschriebenen
Distanz o(p, q) = o, welche das gleiche Bild aufweisen, so dass f(p) = f(q) ist.

Es handelt sich hier um einen wohl einfachsten nichttrivialen Spezialfall eines all-
gemein sich auf n#-dimensionale geschlossene Mannigfaltigkeiten M, mit Riemann-
scher Metrik beziehenden Satzes von HoPF [9], wonach sich bei einer stetigen Ab-
bildung von M, in den n-dimensionalen euklidischen Raum E,, stets zwei Punkte mit
vorgeschriebener geoddtischer Distanz g finden lassen, deren Bilder in E, zusammen-
fallen. Ein besonders wichtiger Spezialfall liegt dann vor, wenn M, mit der #-dimen-
sionalen Sphire S, identisch ist und spezieller noch g = 7 gesetzt wird. Es handelt
sich dann um einen bekannten Antipodensatz, der aussagt, dass bei einer stetigen
Abbildung der S, in den E, stets zwei antipodische Punkte das niamliche Bild auf-
weisen miissen. Vergleiche hierzu weiteres bei ALEXANDROFF und HoprF ([1] S. 486).

Beweis 4.4: Sind @(p) und W(p) fiir p € S die beiden Koordinaten des Bildpunktes
f(p) € E beziglich eines kartesischen Systems in E, so sind zwei stetige Funktionen
auf S definiert, auf die sich Satz 2.1 anwenden lasst. Fiir zwei Punkte p, ¢ € S der
vorgeschriebenen sphirischen Distanz g gilt dann f(p) = f(g).

Satz 4.5: Ist f(p) eine stetige fixpunkifreie Abbildung der Kugelfliche S in sich, so
gibt es einen Punkt p € S, der in den antipodischen Punkt p* € S iibergeht, so dass also

{(p) = p* ust.

Beweis 4.5: Wiirde f(p) + p und f(p) + p* zugleich fiir alle p € S gelten, so
kénnte man dadurch, dass man $ mit f(p) durch einen gerichteten Grosskreisbogen
der Linge < & verbindet, ein stetiges tangentielles Richtungsfeld auf S erzeugen,
das aber nach Satz 3.4 nicht existiert.

5. Uberdeckungssitze

Wir schliessen die Reihe unserer stetigkeitsgeometrischen Studien mit einigen
Sitzen iiber abgeschlossene Uberdeckungen ab. Die abgeschlossenen Punktmengen
sind den Belangen der Stetigkeitsgeometrie aus verschiedenen Griinden gut angepasst.
Bei den nachfolgenden Betrachtungen wird insbesondere der Umstand ausschlag-
gebend sein, dass der Abstand d(p, A) eines Punktes von $ von einer abgeschlossenen
Menge A eine stetige Funktion von p ist und dann und nur dann verschwindet,
wenn der Punkt p der Menge A angehort. Wir erinnern an die Definition von §(p, 4)
als kleinste euklidische Distanz, die zwischen $ und beliebigen Punkten von A4 reali-
siert wird.

Die beiden ersten Sitze beziehen sich auf Distanzen, die durch die einen Kreis-
bereich iiberdeckenden Punktmengen geliefert werden. Eine erste elementare Aus-
sage ist

Satz 5.1: Ist der Einheitskreisbereich K von drer abgeschlossenen Punktmengen diber-
deckt und ist die Distanz & (0 < & <3 vorgegeben, so enthilt stets wenigstens eine
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der drei Mengen ein Punktepaar p, q € K der Distanz 6(p, q) = 6; die Distanzschranke
V3 kann nicht vergrissert werden.

Beweis 5.1: Die mit K konzentrische Kreislinie L, vom Radius 2 §/)/3 ist offenbar
ebenfalls von den drei Punktmengen iiberdeckt. Beteiligt sich nur eine dieser drei
Mengen, so ist die Behauptung bereits bewiesen, da auf Ls zwei Punkte der Distanz ¢
liegen. Beteiligen sich an der Uberdeckung von L, zwei oder alle drei Mengen, so ldsst
sich auf Ly ein Punkt # wihlen, der zum nichtleeren Durchschnitt zweier Mengen
gehort. Bilden die Punkte » und w zusammen mit # ein der Kreislinie L, einbeschrie-
benes regulidres Dreieck der Seitenldnge d, so ldsst sich mit Verwendung eines nahe-
liegenden Schubfachschlusses leicht einsehen, dass von den drei Punkten u, v, w
wenigstens zwei derselben Menge angehéren miissen. Die zusétzliche Aussage, dass
die Schranke Vi—i' nicht verbessert werden kann, ergibt sich aus der Tatsache, dass
sich K durch drei kongruente Kreissektoren mit den Offnungswinkeln 2 7/3 iiber-
decken lisst, deren Durchmesser genau }/3 betragen.

Etwas tiefer liegend und mit den vorstehenden Sitzen verbunden ist der folgende

Satz 5.2: Ist der Einheitskreisbereich K von drei abgeschlossenen Punkimengen mit
leerem, gemeinsamem Durchschnitt iiberdeckt und wivd die Distanz 6 (0 < § < 2) vor-
gegeben, so enthdilt wenigstens eine der drei Mengen ein Punktepaar p,q € K der
Distanz d(p, q) = 0.

Beweis 5.2: Der Kreisbereich K sei durch die drei abgeschlossenen Punktmengen
4, B, C iiberdeckt. Fiir einen Punkt p € K bezeichnen a = a(p), f = f(p) und
y = y(p) die Abstinde der Mengen 4, B und C von p. Wenigstens einer der drei
Abstdnde muss verschwinden, so dass a # ¢ = 0 ist; ferner sind nachfolgend noch die
Bedingungena« = 0, # = Ound ¥ = 0 zu beachten. Setzen wir

20 = @~ PP+ (B— 1)+ (v — ),

so muss 7 > 0 ausfallen, da andernfalls auf « = f# =y = 0 geschlossen werden kann,
was im Gegensatz zur Bedingung steht, dass der gemeinsame Durchschnitt ANBNC
leer sei. Sind u, » und w drei Einheitsvektoren, die paarweise den Winkel 2 7/3 ein-
schliessen, so wird mit dem Ansatz t(p) == (xu + f v + y w)/r in K ein stetiges Rich-
tungsfeld definiert. Wahlt man den Winkel g so, dass d = 2 sin (g/2) ist, so weisen
zwei Punkte p, ¢ € L des Randes von K, fiir die g(p, g) = p ist, die Distanz ¢ auf.
Nach Satz 3.1 konnen diese beiden Punkte so gewihlt werden, dass {(p) mit t(q)
parallel ist. Hieraus ldsst sich schliessen, dass wenigstens eine der drei Bedingungen
a(p) = alg) = 0, B(p) = B(g) = 0, y(p) = y(g) = O erfiillt sein muss. Das Punktepaar
$, q gehort zu einer der drei Mengen 4, B oder C.

Der oben formulierte Uberdeckungssatz 5.2 fiir den Kreisbereich ist stirker als der
ebene Spezialfall des bekannten Lemmas von SPERNER [16], das sich auf die Uber-
deckung eines Dreiecks bezieht, wobei ausgesagt wird, dass drei abgeschlossene, ein
Dreieck iiberdeckende Punktmengen einen nichtleeren Durchschnitt haben miissen,
wenn sich die drei Mengen den drei Dreiecksseiten so zuordnen lassen, dass jede der
Mengen mit der ihr entsprechenden Seite leeren Durchschnitt aufweist. Das Sper-
nersche Lemma ist ein Korollar unseres Satzes, nicht aber umgekehrt.
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Wir schliessen mit einem Uberdeckungssatz fiir die Kugelfliche:

Satz 5.3: Ist die Kugelfliche S von drei abgeschlossenen Punktmengen iiberdeckt und
ist ein Winkel o (0 < o < 7) vorgeschrieben, so enthilt wenigstens eine der drei Mengen
ein Punktepaar p, q € S der Distanz ¢ (p, g) = o.

Es handelt sich um eine Variante des Antipodensatzes von LUSTERNIK, SCHNIREL-
MANN und BoORSUK, der in seiner #-dimensionalen Form aussagt, dass bei einer Uber-
deckung der Sphire S, durch » 4 1 abgeschlossene Punktmengen wenigstens eine
der Mengen ein antipodisches Punktepaar enthalten muss. Diese Aussage ist im
Sonderfall der gewohnlichen Kugelfliche in unserem Satz enthalten; sie entspricht
der speziellen Wahl ¢ = n. Der sehr bekannte Antipodensatz fiir die Sphire S,
erlaubt zahlreiche Varianten und Erweiterungen dhnlicher Art. Vergleiche hierzu
auch HoprF [8]. Einen Beweis, der ohne hohere topologische Hilfsmittel, insbesondere
ohne Verwendung algebraischer Methoden auskommt, gab BorsUK [2].

Beweis 5.3: Die Kugelfliche S sei von 4, B und C iiberdeckt. Sind @(p) und ¥(p)
die Abstinde des Punktepaares p € S von 4 und B, so sind @ und ¥ zwei stetige
Funktionen auf S. Nach Satz 2.1 gibt es ein Punktepaar $, ¢ € S mit der vorgeschrie-
benen Distanz g so, dass @(p) = D(g) = o und ¥Y(p) = ¥Y(9) = B ist. Aus a = 0 folgt
$,q9 € A, aus f = O analog p, ¢ € B. Ist abera > Ound g > 0, so resultiert p, g € C.
Damit ist die Behauptung bewiesen.

Der hier fiir die gewohnliche Kugelfliche bewiesene Satz ldsst sich noch in der
folgenden Weise verschirfen: Wenigstens eine der drei Mengen hat die Eigenschaft,
zu jedem Winkel p (0 < p < 7) ein Punktepaar der Distanz g aufzuweisen. Vergleiche
hierzu [6]. H. HADWIGER, Bern
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Ungeloste Probleme

Nr. 29. Existe-t-il une infinité de nombres premiers p de la forme 8 &2 + 1 tels que
le nombre 2 appartient mod p a un exposant impair? (Tels sont par exemple les
nombres 17, 41, 97.)

On peut démontrer que pour, p premiers de la forme 8 2 + 3 ou 8 £ 4 5 le nombre 2
appartient a un exposant pair et que pour p premiers de la forme 8 2 4 7 le nombre
2 appartient a un exposant impair. MM. BROWKIN et MAKOWSKI ont remarqué qu’il
existe une infinité de nombres premiers p de la forme 8 £ + 1 tels que le nombre
2 appartient mod$ & un exposant pair: tels sont, par exemple, tous les facteurs
premiers des nombres de FERMAT 22"+ 1, ol n=2,3,....

Il est encore a remarquer que M. A. SCHINZEL a déduit de son hypothése H sur les
nombres premiers [énoncée dans Acta Arithmetica 4, 188 (1958)] que la réponse a
notre probleme est positive. W. SIERPINSKI

Nr.30. M. S. RoLewicz a demandé sil'on a

lim "‘;(”) o o0,

7 =00

ol g(n) désigne la somme des diviseurs naturels du nombre #. La réponse a cette
question est négative. En effet, A. RENYI a démontré (dans le journal Izwiestia
A. N. SSSR. 7948, 57-78) qu’il existe une infinité de nombres premiers # tels que
7 + 2 a au plus & diviseurs premiers (ol % est une constante absolue). Pareillement
on peut démontrer 'existence d’une infinité de nombres premiers # tels que n 41 a
au plus & diviseurs premiers. Pour un tel #, o(n) a au plus £ diviseurs premiers et le
nombre ¢ o(n)/o(n) est borné, d’otr

lim 2 o(n)
7 =00

< 4o0.

Le probléme se pose sil’on a
oo o(n)

dim —=—= < +o0

" =00
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