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Kleine Mitteilungen

Eine Verallgemeinerung der Fibonaccischen Zahlenfolge

In der Fibonaccischen Zahlenfolge ist jedes Glied gleich der Summe der beiden
vorhergehenden; die Anfangsglieder sind 0 und 1. Der Quotient zweier aufeinanderfolgender

Glieder konvergiert gegen das Teilverhältnis beim Goldenen Schnitt. Nachfolgend
untersuchen wir eine Zahlenfolge, bei der jedes Glied die Summe der k vorhergehenden
ist und die erforderlichen k Anfangsglieder nicht-negative reelle Zahlen sind.

Wir betrachten zunächst das Polynom

f(%) xk — xh~1 (k>l).
Seine Nullstellen seien xv, v 1, 2, k. Nach der Descartesschen Zeichenregel1) hat
f(x) genau eine (einfache) positive Nullstelle; wir nennen sie x1. Wegen /(l) 1 — k und
/(2) 1 ist 1 < x1 < 2. Aus f(xv) 0 folgt f(\xv\) ^ 0 und daraus für v 2, 3, k

\xv\ ^x%;

andernfalls hätte f(x) zwei positive Nullstellen.
f(x) hat überhaupt nur einfache Nullstellen:
Wir bilden das Polynom g(x) (x — 1) f(x) =xk+1— 2 xk + l. Wäre £ =t= 1 mehrfache

Nullstelle von f(x), so wäre g'($) (k + 1) !*- 2 k I*"1 - 0, also | 0 oder { 2 kj(k + 1),
was unmöglich ist.

Aus g(xf4) g(xv) folgt für \x/A\ \xv\ die Gleichung \xß~ 2\ \xv— 2\ und für ju 4= v

daraus xM= xv. Mit (1) können wir jetzt schhessen

<xt für v 2, 3, k. (2)

Nun wählen wir k Zahlen an^ 0, n 0, 1, k — 1; es sei wenigstens ein an > 0. Aus
dem linearen Gleichungssystem

k

an= £Avx?, n 0, 1, k-1,
v=l

lassen sich die k Grössen Av eindeutig bestimmen, denn die Determinante des Systems
ist die Vandermondesche Determinante1)

Vh

Es gilt A t AfVk wobei

:k-l

1 1

xt

k-1

jTJ(^-^)*o.
ß > V

A~2](-l)nanV(n) (3)

und (—1)* VJp der zum Element x* gehörige Minor von Vk ist.
Indem wir in Vj^ zur ersten Zeile alle übrigen addieren, erhalten wir mit f(xv) 0

l) Vergleiche zum Beispiel O. Perron, Algebra (Berlin 1951).
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und xx x2-- xk= (—l)^-1 nach einigen Umformungen die Beziehung

dabei ist Vk_x die Vandermondesche Determinante für x2, x3, xk und Vk^~~l) 0.
Daraus folgt

^^(-l^-i^l, 0^n<k.
Ai-l *1

Nach (3) ist somit
k-1 n+l

/i (-i)*-ifä_12;«„2;-7,*o,
»=o ^=i xi

also

i4i*0. (4)
Jetzt bilden wir die Zahlenfolge

an ]TAvx?, n 0, 1, 2,
y l

Dann gilt
& k ni k — 1 n-\ k—1 k

«„+*=2><+*=2>_£**=_£ __><>
v=l v l /j « fx n v l

das heisst
M \ k-1

anvk= 2J V
,U-tt

Für den Quotienten

-(r)__ ^Wr __
*~1 v 2 x l7

ergibt sich wegen (2) und (4)

lim o$ x{.

A. Schönhofer und K. Zuser, München

Aufgaben

Aufgabe 308. Es bedeute {xv x2, xn} das kleinste gemeinsame Vielfache der
natürlichen Zahlen xv x2, xn. Man beweise, dass

oo
1

£n,2,...7n)
irrational ist. P. Erdös

Lösung: Wir verwenden den Primzahlsatz in der Form {1, 2, n} en + 0^1).
Hieraus folgt

{1,2,..., n}~1 e~n (1 + o(n))

x) Vergleiche E.Trost, Primzahlen, S. 56. Mit o{n) wird eine Grösse bezeichnet, die für n-*oo nach
Null strebt.
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