Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 14 (1959)

Heft: 2

Rubrik: Kleine Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Kleine Mitteilungen

Eine Verallgemeinerung der Fibonaccischen Zahlenfolge

In der Fibonaccischen Zahlenfolge ist jedes Glied gleich der Summe der beiden vorhergehenden; die Anfangsglieder sind 0 und 1. Der Quotient zweier aufeinanderfolgender Glieder konvergiert gegen das Teilverhältnis beim Goldenen Schnitt. Nachfolgend untersuchen wir eine Zahlenfolge, bei der jedes Glied die Summe der k vorhergehenden ist und die erforderlichen k Anfangsglieder nicht-negative reelle Zahlen sind.

Wir betrachten zunächst das Polynom

$$f(x) = x^k - x^{k-1} - \dots - x - 1$$
 $(k > 1).$

Seine Nullstellen seien x_v , $v=1, 2, \ldots, k$. Nach der Descartesschen Zeichenregel¹) hat f(x) genau eine (einfache) positive Nullstelle; wir nennen sie x_1 . Wegen f(1) = 1 - k und f(2) = 1 ist $1 < x_1 < 2$. Aus $f(x_v) = 0$ folgt $f(|x_v|) \le 0$ und daraus für v = 2, 3, ..., k

$$|x_{\nu}| \le x_1; \tag{1}$$

andernfalls hätte f(x) zwei positive Nullstellen.

f(x) hat überhaupt nur einfache Nullstellen:

Wir bilden das Polynom g(x) = (x-1) $f(x) = x^{k+1} - 2$ $x^k + 1$. Wäre $\xi \neq 1$ mehrfache Nullstelle von f(x), so wäre $g'(\xi) = (k+1)$ $\xi^k - 2$ k $\xi^{k-1} = 0$, also $\xi = 0$ oder $\xi = 2$ k/(k+1), was unmöglich ist.

Aus $g(x_{\mu}) = g(x_{\nu})$ folgt für $|x_{\mu}| = |x_{\nu}|$ die Gleichung $|x_{\mu} - 2| = |x_{\nu} - 2|$ und für $\mu \neq \nu$ daraus $x_{\mu} = \bar{x}_{\nu}$. Mit (1) können wir jetzt schliessen

$$|x_{\nu}| < x_1$$
 für $\nu = 2, 3, ..., k$. (2)

Nun wählen wir k Zahlen $a_n \ge 0$, n = 0, 1, ..., k-1; es sei wenigstens ein $a_n > 0$. Aus dem linearen Gleichungssystem

$$a_n = \sum_{\nu=1}^k A_{\nu} x_{\nu}^n, \qquad n = 0, 1, ..., k-1,$$

lassen sich die k Grössen A, eindeutig bestimmen, denn die Determinante des Systems ist die Vandermondesche Determinante¹)

$$V_{k} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{k} \\ \vdots & \vdots & & \vdots \\ x_{1}^{k-1} & x_{2}^{k-1} & \cdots & x_{k}^{k-1} \end{vmatrix} = \prod_{\mu > \nu} (x_{\mu} - x_{\nu}) \neq 0.$$

Es gilt $A_1 = \Delta/V_k$, wobei

$$\Delta = \sum_{n=0}^{k-1} (-1)^n \ a_n \ V_k^{(n)}$$
 (3)

und $(-1)^n V_k^{(n)}$ der zum Element x_1^n gehörige Minor von V_k ist. Indem wir in $V_k^{(n)}$ zur ersten Zeile alle übrigen addieren, erhalten wir mit $f(x_v) = 0$

^{... 1)} Vergleiche zum Beispiel O. Perron, Algebra (Berlin 1951).

Aufgaben 39

und $x_1 x_2 \cdots x_k = (-1)^{k-1}$ nach einigen Umformungen die Beziehung

$$V_k^{(n)} = \frac{(-1)^{n+k-1}}{x_1} V_{k-1} - \frac{1}{x_1} V_k^{(n-1)}, \quad 0 \le n < k;$$

dabei ist V_{k-1} die Vandermondesche Determinante für x_2 , x_3 , ..., x_k und $V_k^{(-1)} = 0$. Daraus folgt

$$V_k^{(n)} = (-1)^{n+k-1} V_{k-1} \sum_{\mu=1}^{n+1} \frac{1}{x_1^{\mu}}, \quad 0 \le n < k.$$

Nach (3) ist somit

$$\Delta = (-1)^{k-1} V_{k-1} \sum_{n=0}^{k-1} a_n \sum_{\mu=1}^{n+1} \frac{1}{x_1^{\mu}} \neq 0,$$

also

$$A_1 \neq 0. \tag{4}$$

Jetzt bilden wir die Zahlenfolge

$$a_n = \sum_{v=1}^k A_v x_v^n, \qquad n = 0, 1, 2, \dots$$

Dann gilt

$$a_{n+k} = \sum_{v=1}^{k} A_v x_v^{n+k} = \sum_{v=1}^{k} A_v \sum_{\mu=n}^{n+k-1} x_v^{\mu} = \sum_{\mu=n}^{n+k-1} \sum_{v=1}^{k} A_v x_v^{\mu},$$

das heisst

$$a_{n+k} = \sum_{\mu=n}^{n+k-1} a_{\mu}.$$

Für den Quotienten

$$\sigma_{m}^{(r)} = \frac{a_{m+r}}{a_{m}} = \frac{\sum_{v=1}^{k} A_{v} x_{v}^{m+r}}{\sum_{v=1}^{k} A_{v} x_{v}^{m}} = \frac{A_{1} x_{1}^{r} + \sum_{v=2}^{k} A_{v} x_{v}^{r} \left(\frac{x_{v}}{x_{1}}\right)^{m}}{A_{1} + \sum_{v=2}^{k} A_{v} \left(\frac{x_{v}}{x_{1}}\right)^{m}}$$

ergibt sich wegen (2) und (4)

$$\lim_{m\to\infty}\sigma_m^{(r)}=x_1^r.$$

A. Schönhofer und K. Zuser, München

Aufgaben

Aufgabe 308. Es bedeute $\{x_1, x_2, \dots, x_n\}$ das kleinste gemeinsame Vielfache der natürlichen Zahlen x_1, x_2, \dots, x_n . Man beweise, dass

$$\sum_{n=1}^{\infty} \frac{1}{\{1, 2, \ldots, n\}}$$

irrational ist.

P. Erdös

Lösung: Wir verwenden den Primzahlsatz in der Form $\{1, 2, ..., n\} = e^{n+o(n)}$! Hieraus folgt

$$\{1, 2, \ldots, n\}^{-1} = e^{-n} (1 + o(n)).$$

¹) Vergleiche E. Trost, *Primzahlen*, S. 56. Mit o(n) wird eine Grösse bezeichnet, die für $n \to \infty$ nach Null strebt.