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Kleine Mitteilungen

Eine Verallgemeinerung der Fibonaccischen Zahlenfolge

In der Fibonaccischen Zahlenfolge ist jedes Glied gleich der Summe der beiden vor-
hergehenden; die Anfangsglieder sind 0 und 1. Der Quotient zweier aufeinanderfolgen-
der Glieder konvergiert gegen das Teilverhiltnis beim Goldenen Schnitt. Nachfolgend
untersuchen wir eine Zahlenfolge, bei der jedes Glied die Summe der £ vorhergehenden
ist und die erforderlichen 2 Anfangsglieder nicht-negative reelle Zahlen sind.

Wir betrachten zunichst das Polynom

f(x) =ak—xk-1 ... g1 (R >1).
Seine Nullstellen seien x,, v =1, 2, ..., k. Nach der Descartesschen Zeichenregell) hat
f(x) genau eine (einfache) positive Nullstelle; wir nennen sie x,. Wegen f(1) =1 — k und
f(2) =1ist 1 < x; < 2. Aus f(#,) = 0 folgt f(|»,]) <0 und daraus fiir v=2, 3, ..., %
| %] = %45 (1)

andernfalls hitte f(x) zwei positive Nullstellen.

f(x) hat tiberhaupt nur einfache Nullstellen:

Wir bilden das Polynom g(x) = (¥ —1) f(¥) =x*+1—2x%4+ 1. Wire &+1 mehrfache
Nullstelle von f(#), so wére g’(§) = (k +1) £k — 2k EF-1= 0, also £ =0 oder & =2 k/(k + 1),
was unmdoglich ist.

Aus g(x,) = g(x,) folgt fiir |x,| =|»,| die Gleichung |x,— 2| =|#,— 2| und fiir p+v
daraus x,=¥,. Mit (1) konnen wir jetzt schliessen

(2, < x4 fir v=2,3,...,4. (2)

Nun wiéhlen wir & Zahlen a,>0,%2=0,1, ...,k —1; es sei wenigstens ein a, > 0. Aus
dem linearen Gleichungssystem

3
a”=2A,,x,t', n=01,...,8~1,
y=1

lassen sich die & Grossen A4, eindeutig bestimmen, denn die Determinante des Systems
ist die Vandermondesche Determinante?)

1 1 1
x X e X
v, = .1 .2 'k = [ [(x,— 2) *o0.

N : ‘ n>v

xlk—l xi-l e xlge-l
Es gilt A,=A4/V, wobei
' k-1

4= 2(_1)n a, V" (3)
n=0 .

und (—1)» V,,(”) der zum Element x' gehorige Minor von V} ist.
Indem wir in Vk(") zur ersten Zeile alle iibrigen addieren, erhalten wir mit f(x,) =0

:.. 1) Vergleiche zum Beispiel O. PErrON, Algebra (Berlin 1951).



Aufgaben 39

und x, ¥, .-+ ¥, = (—1)%¥—1 nach einigen Umformungen die Beziehung

__1)n+k—1

(n) —_ ( T n— l < .
Vv, 7 Vi_1 ) V 0=n<k;
dabei ist V;_, die Vandermondesche Determinante fiir x,, #,, ..., ¥, und Vk(—l)x 0
Daraus folgt
nt+l
Vi = (—1)n+k-1y, 12 0=n<k.
Nach (3) ist somit
n+1 1
A= i, Sa 3 v
n=0
also .
A, +0. (4)

Jetzt bilden wir die Zahlenfolge

k
an=2A,.xv", n=20,1,2,.

. v=1
Dann gilt
nik—1 n+k—1 k
2
n+k-— EA Pt = EA E xl = EA,x"
. =n u=n v=1
das heisst
nik-—1
anl_k= E a”.
" . p=n
Fiir den Quotienten
YA, P Ayl z'A,,x;(x”>
e = Py _ r=1 — v=2 :

Ay k k Xy m
24w A1+2Av(7)
y=1 =2

1
ergibt sich wegen (2) und (4)

lim ¢ =x".
m—>o00 M 1

A. Scu6nuHOFER und K. Zusgr, Miinchen

Aufgaben

Aufgabe 308. Es bedeute {x, x,, ..., #,} das kleinste geieinsame Vielfache der
natiirlichen Zahlen x,, %,, ..., x,. Man beweise, dass
ST
' ~ {1,2,...,n}
irrational ist. P. ErpnGs
Lésung: Wir verwenden den Primzahlsatz in der Form ({1, 2, ..., n} = er*tolm 1),

Hieraus folgt
{1,2,...,n}t=e" (14 o(n)).

1) Vergleiche E. TrRosT, Primsahlen, S. 56. Mit o(n) wird eine Grosse bezeichnet, die fiir #—> o0 nach
Null strebt.
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