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Ungeloste Probleme

Nr.28. Im dritten Band der History of the Theory of Numbers von L. E. DICKSON,
Kapitel X, findet man Sitze von JAcoBi, L1oUVILLE und anderen Autoren iiber die
Anzahlen der Darstellungen einer ganzen Zahl # durch positive quaternire quadra-
tische Formen. L1ouvILLE hat immer nur ganz spezielle Formen, wie zum Beispiel

x2+y2+ 22+t2,

betrachtet. Es fragt sich, ob man diese Sitze verallgemeinern kann. HuUrRwITZ hat
den Satz von JAcosI iiber die Anzahl der Darstellungen von » als Summe von vier
Quadraten mittels Quaternionen bewiesen (siehe A. Hurwitz, Vorlesungen iiber die
Zahlentheorie der Quaternionen, Berlin 1919, sowie DicKSON-BODEWIG, Algebren und
thre Zahlentheorie, Kapitel IX). Diese Beweismethode ldsst sich wahrscheinlich auf
andere Formen iibertragen, deren Diskriminante ein Quadrat ist. Einfache Ergebnisse
sind allerdings nur dann zu erwarten, wenn die Idealklassenzahl der zugrunde gelegten
Quaternionen-Ordnung gleich Eins ist. HUMBERT hat Sitze iiber binire Hermitesche
Formen bewiesen (sieche DicksoN, History..., Kapitel XV), aus denen man Sitze
iiber quaterndre quadratische Formen gewinnen kann. Auch diese Beweismethode
lisst sich nur auf solche quaternire Formen anwenden, deren Diskriminante ein
Quadrat ist. Eine allgemeinere Methode zur Auswertung von Darstellungszahlen
durch quadratische Formen, die zu Gittern aus einem Idealkomplex gehéren, findet
man bei M. EICHLER, Quadratische Formen, Kapitel IV.

Bei quaterniren Formen mit quadratischer Determinante lassen sich diese Dinge
auch in der Sprache der Quaternionenalgebren formulieren und ausserdem vertiefen
[vgl. M. EICHLER, Zur Zahlentheorie der Quaternionen-Algebren, J. reine angew. Math.
7195 (1956)]. Alle diese Methoden sollten miteinander in Zusammenhang gebracht
und auf einfache Beispiele angewandt werden. Ferner wire es erwiinscht, diese
Untersuchungen auf quaternire Formen mit nicht quadratischer Diskriminante aus-
zudehnen und die von EICHLER definierten Anzahlmatrizen im Zusammenhang mit
der Cliffordschen Algebra niher zu untersuchen.

B. L. vAN DER WAERDEN und M. EICHLER
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