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Ungelöste Probleme

Nr. 28. Im dritten Band der History of the Theory of Numbers von L E. Dickson,
Kapitel X, findet man Satze von Jacobi, Liouville und anderen Autoren uber die
Anzahlen der Darstellungen einer ganzen Zahl n durch positive quaternare quadratische

Formen. Liouville hat immer nur ganz spezielle Formen, wie zum Beispiel

x2 + y2 + z2 + t2,

betrachtet. Es fragt sich, ob man diese Satze verallgemeinern kann. Hurwitz hat
den Satz von Jacobi uber die Anzahl der Darstellungen von n als Summe von vier
Quadraten mittels Quaternionen bewiesen (siehe A. Hurwitz, Vorlesungen uber die
Zahlentheorie der Quaternionen, Berlin 1919, sowie Dickson-Bodewig, Algebren und
ihre Zahlentheorie, Kapitel IX). Diese Beweismethode lasst sich wahrscheinlich auf
andere Formen übertragen, deren Disknmmante em Quadrat ist. Einfache Ergebnisse
smd allerdings nur dann zu erwarten, wenn die Idealklassenzahl der zugrunde gelegten
Quatermonen-Ordnung gleich Ems ist. Humbert hat Satze uber binare Hermitesche
Formen bewiesen (siehe Dickson, History... Kapitel XV), aus denen man Satze
uber quaternare quadratische Formen gewinnen kann. Auch diese Beweismethode
lasst sich nur auf solche quaternare Formen anwenden, deren Disknmmante ein
Quadrat ist. Eine allgemeinere Methode zur Auswertung von Darstellungszahlen
durch quadratische Formen, die zu Gittern aus einem Idealkomplex gehören, findet
man bei M. Eichler, Quadratische Formen, Kapitel IV.

Bei quaternaren Formen mit quadratischer Determinante lassen sich diese Dinge
auch m der Sprache der Quatermonenalgebren formulieren und ausserdem vertiefen
[vgl. M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren, J. reme angew. Math.
195 (1956)]. Alle diese Methoden sollten miteinander in Zusammenhang gebracht
und auf einfache Beispiele angewandt werden. Ferner wäre es erwünscht, diese

Untersuchungen auf quaternare Formen mit nicht quadratischer Disknmmante
auszudehnen und die von Eichler definierten Anzahlmatrizen im Zusammenhang mit
der Cliffordschen Algebra naher zu untersuchen.

B. L. van der Waerden und M. Eichler
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