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14 Aufgaben

Die Gleichungen (1), (2) und (3) ergeben sich durch Anwenden von analytischen
Hilfsmitteln. Insbesondere (3) legt die Frage nahe, wie sich dies rein arithmetisch
begriinden ldsst, was doch zweifellos moglich sein sollte, da es sich um eine rein
arithmetische Verflechtung der Pentagonalzahlen mit den Gréssen s, und p, handelt.

L. LocHER-ERNST

Aufgaben

Aufgabe 305. A convex (irregular) polygon P with » sides is subdivided into convex
polygons by d diagonals which do not intersect in the interior of P. Let S, denote the
number of all such subdivisions, d =0, 1, 2, ..., n — 3. Here is a short table:

n=3,4, 5 6 1, 8,
S,=1,'3, 11, 45, 197, 903.

1 —~/n—1\ /n—3
- —3—k
Ty (k+1)( k )2" o @)

S,=1 (mod#%) (n=prime). (2)

Show (1) and (2):

i

The problem is not new, but the form (1) of the solution seems to be new.
G. PéLvya, Stanford University, USA

Solution. Denote the vertices of a polygon of # + 1 sides by 0, 1, 2,..., » and put
Vi=1, V,=S,, . By considering diagonals through the vertex 0, we get the recursion

formulas
V2 == Vl 3

V3= 2 V2+ Vlz,

V4= 2 V3+4 V1V2+ Vls,

V5=2V4+4‘V1V3+4’V22+6V12 V2‘+‘ V14’
and so on. Now put

oo [o.0]
gx) =V, X", h(z)=x+) 2V, X"
1 2

Then the above recurrences imply

o0
— % = Bly) = N

glx) —x x;‘h (%) = 5 —h

Since k(x) = 2 g(x) — x, this yields
2g%%) — (14 2) g(x) + =0. *)
The problem is therefore equivalent to SCHRODER’S second problem (see NETTO’S
Lehvbuch der Combinatorik, pp. 196-198).
It follows from (*) that
o0
1
) = SV Xre L (4 a— (1= 6.
Thus
1 -
Vo= —5 BP0,
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where P#(x) denotes the ultraspherical polynomial (see for example SzEGS’s Ortho-
gonal Polynomials, p. 80). Using the formula

_ 1\» _
P,yl)-__(”“”n’1 1)(’”{ )F[—n ——n_z+%;z+1;—j}+—”,

we find that (for » = 2)

- T, r 2-r 1
Va nn—1) & ri{r-—1)! 2 )
1% n n—2
—_ N—2—7
n,;(:(r—kl)( v )2

hence

Finally for » = (prime), since

-1 -3
(€+1> = (—17*! (modp),  S,=Y (—1) (7’ . ) 2p-3-r=(2_1)p-3=1 (mod p).
L.Carritz, Durham, N.C. (USA)
Solution by the proposer: (1) Define

o0
S;=1 . and y=}'S,x"1,

Choose one of the » sides of the polygon P as its base. The number of those subdivisions
of P in which the base is a side of a subpolygon having & + 1 sides is the coefficient of
#7-1 in the expansion of y%; this fact can be established with or without picture-
writing; ¢f. Amer. math. Monthly 63, 689-697, especially Figure 4 (1956). Therefore

y =%+ 9ty it

1+y(1—2y)7?

By LAGRANGE’s formula (cf. e. g. G. PoLvA and G. SzeGO, Aufgaben und Lehysitze aus
der Analysis, vol. I, p. 124-125) (n — 1) S, is the coefficient of y#~2 in the expansion
in powers of y of the expression

or

=X.

n—2 1

14 1 —2y)-1n—1 — s k+1(1 -2 k-1
4y (-2ympis B (GT) s -29)

Pl ey R

Collecting the terms for which & 4+ 4+ 1= — 2 we obtain (1).
(2) If » is prime

(n;- 1) = (—1)* (mod %)

for k=0,1, 2,..., n — 1. This result can be derived from WiLsON’s theorem or by the

) @y=al@+1)(@+2 - (@+r—1).
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following argument that involves the indeterminate x:

A4+x) =041 -2+ 22— 234..)
=14+ (1—xr422—234-...)

=1—x+x2—...4 271 (modun).

Comparing the coefficients on both sides, we obtain the asserted congruence. From
(1) and from what we have just proved, it follows if » is a prime (» = 3)

n—3

Sp=— Y (—1)ppt (" N 3) 2n=3-h=(2—1)"~3 (mod n)
E=0

which is the assertion (2).

We can prove (2) also independently from (1), by considering the subdivisions of a
vegular polygon P. In fact, the number of different subdivisions that can be obtained
from each other by rotations of P is necessarily » when # is a prime number, provided
that we except the undivided polygon (which is an ‘improper’ subdivision of itself by
d = 0 diagonals).

Cf. E. Ne11O, Lehvbuch der Combinatorik, p. 196-198, and Edinburgh Mathematical
Notes 7940, No. 32, p. I-XII, a note by I. M. H. ETHERINGTON and another by A. ERDELYI
and I.M. H. ETHERINGTON.

Aufgabe 306. Die Kanten eines Simplexes (S,) des (# — 1)-dimensionalen Raumes
(R,_,) werden in je m =2k +1 gleiche Teile geteilt. Die n — 2 Punkte des S,, die
nicht zu der betreffenden Kante gehoren, bestimmen mit jedem Teilpunkte je einen
S, _1 bzw. einen R, _,. Die Teilpunkte einer jeden Kante bestimmen m — 1 verschiedene
R, _,, die wir der betreffenden Kante zuordnen. (3) je verschiedenen Kanten zugeordnete
(n — 2)-dimensionale Rdume haben im allgemeinen keinen gemeinsamen Punkt.

a) Bestimme den kleinsten Wert von m so, dass wenigstens ein Knotenpunkt — das
heisst ein gemeinsamer Punkt von (;‘) je verschiedenen Kanten zugeordneter R, _, —
entsteht.

b) Bestimme die Anzahl der Knotenpunkte beim kleinstmoglichen Wert von .

J. Scuorp, Budapest

Lisung des Aufgabenstellers : Wir teilen die Kanten des S, vorldufig in eine gerade An-
zahl gleicher Teile. Die den Kantenmittelpunkten zugeordneten R,_, befriedigen die
Forderung der Aufgabe, da ein jeder R, _, den Schwerpunkt (Punktschwerpunkt) des
Simplexes enthdlt. Jede Gerade, die eine Kantenmitte mit dem Schwerpunkte der
ausserhalb der betreffenden Kante liegenden % — 2 Simplexpunkte verbindet, ist
namlich ein Teil des betreffenden R, _, und geht durch den Schwerpunkt des Simplexes.
Wenn man jetzt den Simplexpunkten verschiedene ganzzahlige Gewichte zuordnet und
auf jeder Kante als Teilpunkt den gewichteten Schwerpunkt der Kantenendpunkte
wéhlt, so werden die entstandenen (n — 2)-dimensionalen Rdume den gewichteten
Simplexschwerpunkt als gemeinsamen Punkt enthalten.

a) Das Problem liegt also darin, die # verschiedenen ganzzahligen Gewichte der Simplex-
punkte so zu wihlen, dass m den kleinstmoglichen Wert annimmt. 0 <G, <Gy < -+ <G,
seien die verschiedenen ganzzahligen Gewichte. Wir bezeichnen mit 7;, = #;; den grossten
gemeinsamen Teiler von G; und G, und es sei weiterhin G, = G;/t;;, (G;p* G;) und
¥, =G+ Gp; (%;,=%p;). Nun sollen die G; so gewdhlt werden, dass das kleinste
gemeinsame Vielfache V,=m =2k 41 der x,, (i=1,2,..., 0, k=1,2,...,n;1*k)
seinen kleinstmdéglichen Wert annimmt.

%;p ist ungerade, da V, ungerade ist. Folglich muss von G, und G;; die eine gerade
und die andere ungerade sein. Hieraus folgt weiter, dass G; und G, den Faktor 2 in ver-
schiedener Potenz enthalten miissen. Die Gewichtszahlen haben also folgende Form:

G,=(2l;41)2%+ (i=1,2,...,%).

Da die Werte /; beliebig sind, kénnen wir /;=1{,=1 (i=1, 2,..., n) wihlen. Es sei
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nun (27 +41) 2*+1 =1 (wo A schon eine beliebige ganze Zahl bedeutet), dann wird
Gi=l'2i_1; tik=}.'2i—l ('Iz<k), Gik:]‘; Gki=2k_i; Xik=2k_i+1.

Es ist aber 0<k — 7<%, und & —¢ durchlduft simtliche ganzzahligen Werte von
1 bis #. Das gesuchte kleinste gemeinsame Vielfache ist also

V,={2141, 2241,..., 27141},

Beispiele: V;=151), V,=45, V;=1765, V,=8415, V,=109395.

b) Eine Zuordnung der gewonnenen Gewichtszahlen zu den Simplexpunkten ergibt
einen einzigen Knotenpunkt. Die Anzahl der verschiedenen Zuordnungen, das heisst die
Anzahl der Knotenpunkte, ist gleich der Anzahl der aus » Elementen gebildeten Per-
mutationen. Es ist also K,=n!

Aufgabe 307. a) Man zeige, dass die Anzahl der ungeraden Binomialkoeffizienten
in den ersten 27 Zeilen des Pascalschen Dreiecks 37 ist.

b) Gibt es eine natiirliche Zahl m so, dass in den ersten m Zeilen des Pascalschen
Dreiecks gleichviel gerade und ungerade Binomialkoeffizienten stehen ?

F.LEUENBERGER, Zuoz

Lésung: a) Wie sich bei Aufgabe 2872) ergab, enthilt die (‘1;1) enthaltende g-te Zeile
des Pascalschen Dreiecks A(q) = 27 ungerade Zahlen, wobei # die Vielfachheit, mit der
die Ziffer 1 in der Dualschreibweise von ¢ — 1 auftritt, bezeichnen soll. Gleichwertig
mit dieser Aussage ist die Rekursion A(274q)=2A(q) fiir 1<qg <27 mit dem
Beginn A(1) =1.

Da nun die ersten 2" Zeilennummern, jede um 1 vermindert, durch die Gesamtheit
der (hochstens) #n-stelligen Dualzahlen geliefert werden, also durch die Anordnungen
der Ziffern 0 und 1 auf » Plitze, gibt es darunter (:‘) Dualzahlen mit »-fachem Auf-
treten der Ziffer 1. Ist daher U(q) die Anzahl ungerader Binomialkoeffizienten in den
ersten g Zeilen, so gilt

U(2n = (3) 20_*_(;1) 21 f .t (Z) 2n— (24 1)n = 37,

was zu beweisen war.

b) Bedeutet H(m) die halbe Anzahl aller Binomialkoeffizienten bis und mit zur
m-ten Zeile, so gilt offenbar H(m)=m (m + 1)/4. Fir m =2?+q (1 < g < 29) ergibt
sich so H (2?4 q) > 4?—1. Anderseits ist dann

m
U(m) = U(29) +2A(v) =3P+ 2U(q) < 3P42.30=30+1,
$
Fiir p > 9 ist e
H (204 q) > 4p-1> 30412 U (2P 4-g),

so dass die in Frage stehende Ungleichung H(m) =U(m) nur fiir m < 2° erfiillt sein
kann. Dass sie iiberhaupt nicht eintrifft, konnte jetzt durch Abzéhlen in den ersten 512
Zeilen ermittelt werden (wobei auffillt, dass man bis zu (%) 178 Koeffizienten, davon
89 ungerade, abgezidhlt hat); kiirzer ergibt es sich wie folgt: Aus den Angaben unter
a) folgt bei Iteration der rekursiven Formel, dass fiir m = 2P0 271 ... 4 2%s, wo
fiir unsern Zweck 8= p,>p; > >p, =0 ist, Ulm)=3P+42.3P4 ... 4 2%.3P
gilt; letzteres ist sicher eine ungerade Zahl. Schreibt man aber m =8 ¥ 4y, so wird
Hm)=m(m+1)/4=1622+2x(2y+1)+y (y+1)/4 nur fiir y=3 und y =4 ganz-
zahlig und ungerade; dabei fillt y =4 aus, denn m wiirde zu einer Viererzahl, somit
wire p, =2 und damit U(m) eine Neunerzahl, wogegen H(m) =5 (x¥%41) mod 9 ist,
also nie =0 (mod9). Mit ¥y =3 wird nun p,=0, p,_ ;=1 und p,_,=3, wobei n =2

1) Vergleiche die Lésung von Aufgabe Nr, 280, El. Math. 12, 133 (1957).
%) ElL Math. 13, 43 (1958).
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vorausgesetzt werden darf, weil H(3) & U(3) ist. Diesmal ist nun U (8 ¥ + 3) = 2” (mod 3)
und U (8 ¥+ 3)=27-1.34 2% (mod 27). Dagegen gilt H(8x+3)=16x24+14x+3
=x (x +2) (mod 3); fiir » = 3zund » = 3 24 1 ist dieser Dreierrest 0, fiir ¥ = 3 z + 2 aber 2.
Der Vergleich, zusammen mit der Feststellung, dass 2#=0 (mod 3) unmoglich ist
und 27 =2 (mod 3) nur fiir ungerade #» eintritt, zeigt, dass » eine der Zahlen 3, 5, 7 sein
miisste, da ja » durch n < p, < 8 beschriankt ist. Die entsprechenden 27er Reste von
2#—1.3 4 2" sind aber 20, 26, 23, wiahrend H (8 x4 3) fiir die noch betrachteten
Werte ¥ =3 2+ 2 die Kongruenzen H (8 ¥ +3) =144 2242342 4+95=9224+18 24 14
(mod 27) liefert, also nur die 27er-Reste 14 und 5 lassen kann. H(m) und U(m) lassen
daher nie gleiche Reste, konnen also auch nicht gleich sein, was zu beweisen war.
H. DEBRUNNER, Bern
Die Losung von a) folgt mit den in der Losung von Nr. 287 gegebenen Formeln
f(2m)=f(m), f(2m—1)=2f(m—1), wo f(m) die Anzahl der ungeraden Binomial-
koeffizienten (}') ist, in folgender Weise mit vollstindiger Induktion:

on_1 2"—-1_1 2”—1 2‘”“1_1 271«"1 2"—1_1
D fmy =3 jam) + 3 fem—1)= 3 fm)+2 3 fm—1)=3 37 f(m).
m=0 m=0 m=1 m=0 m=1 m=0

Weitere Losungen sandten A. BAGER (Hjerring), L. Carritz (Durham, N. C., USA),
H. MemL1 (Winterthur), I. PaascHE (Miinchen). Eine Losung von a) allein sandte
P. StoLL (Bolligen).

Neue Aufgaben

346. Wieviele modulo einer Primzahl p irreduzible, ganzzahlige Polynome mit dem
ersten Koeffizienten 1 gibt es, wenn modulo p kongruente Polynome nicht unter-
schieden werden ? H. LeNz, Miinchen

347. In einer Ebene sind die Kreise K, K’ und die Punkte P,, P,, P, gegeben. Gesucht
werden die Punkte X,;, X,, X; auf K und X{, X;, X; auf K’, so dass die drei
Punkte-Quintupel X, X, X{X;P;, X, X, X; X3P, X, X, X;X{P, je auf einem
Kreis liegen. C. BINDSCHEDLER, Kiisnacht

348. Un triangle quelconque ABC admet une infinité de triangles inscrits MNP qui
lui sont semblables. Indiquer une construction simple de ces triangles en sup-
posant que LM = <L A, {N =B, {LP=<C, et que M est sur BC, N sur
AC et P sur AB. Trouver le lieu des centres des cercles circonscrits aux triangles
MNP ainsi que I'enveloppe de ces cercles. A. LOEFFLER, Pully-Rosiaz

349. Man beweise: Besitzt das Polynom f(2) =22—3a22+3bz—c (a%0) mit
komplexen, also zum Beispiel reellen Koeffizienten a, b, ¢ eine mindestens dop-
pelte Wurzel (sie heisse z = {), so ist, mit einem geeigneten Wert der Quadrat-
wurzel, { = (b — }/b® — a c)/a eine rationale Funktion { = R(a, b, ¢) der 3 Koeffi-
zienten; ebenso die eventuelle einfache Wurzel (sie heisse z =#) von f(z). Der
Fall a = 0 schliesst sich stetig an: { =R(0, b, ¢). I. PaascHE, Miinchen

Aufgaben fiir die Schule

Es wird kein Anspruch auf Originalitit der Aufgaben erhoben; Autoren und Quellen werden im allgemeinen

nicht genannt. Die Daten fiir Aufgaben aus der Darstellenden Geometrie sind durchweg so festgelegt, dass

der Ursprung des Koordinatensystems in der Mitte des linken Randes eines Blattes vom Format A 4 gewihlt

werden soll, ¥-Achse nach rechts, ¥-Achse nach vorn, z-Achse nach oben, Einheit 1 cm. Anregungen und
Beitrage sind zu senden an Prof, Dr, WiLLt LUssy, Biielrainstrasse 51, Winterthur.

1. Die Seite AB eines Dreiecks ist fest, die Seite AC hat eine feste Linge und dreht sich
um A. Welches ist der geometrische Ort des Schwerpunkts dieses Dreiecks ?
p Perspektiv-dhnliches Bild des geometrischen Ortes von C.
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2. Ein Dreieck ABC hat einen festen Umkreis und zwei feste Ecken 4 und B. Man triagt
auf AC die Strecke AU und auf BC die Strecke BV ab, dabei ist AU = BV = const.
Welches ist der geometrische Ort der Mitte von UV ?

p Kreis um die Mitte von 4B.

3. Einem Kreise werden Dreiecke ABC einbeschrieben, bei denen AB und AC feste
Richtungen haben. Der geometrische Ort des Hohenschnittpunktes ist eine Ellipse.

4. k,und &, sind zwei konfokale Kegelschnitte. Der geometrische Ort des Scheitelpunktes
des rechten Winkels, dessen einer Schenkel £; und dessen anderer %, beriihrt, ist ein
Kreis.

5. a ist eine drittprojizierende Gerade mit der ersten Kote 4; b ist eine erste Hauptgerade
mit der ersten Kote 6, deren Winkel gegen a 50° betrigt. Eine Kugel vom Radius 3
bewegt sich so, dass sie stets die beiden Geraden beriihrt. Zeichne den geometrischen
Ort ihres Mittelpunktes.

Bericht

Verein Schweizerischer Mathematik- und Physiklehrer
Bericht tber die 62. Jahresversammlung am 27. September 1958 in Basel

Im Mittelpunkt der von iiber 100 Mitgliedern besuchten Versammlung standen die
Vortrdage der Herren Prof. Dr. J. JaucH (Iowa) und Prof. G. CHoQUET (Paris), iiber
welche anschliessend etwas ausfiihrlicher referiert werden soll.

Von den Traktanden der Geschdftssitzung ist hervorzuheben: Jahvesbericht des Pra-
sidenten: Die definitive Bereinigung des Minimalprogramms fiir Mathematik und
Physik. Das Programm ist im « Gymnasium Helveticum» verdffentlicht worden, und der
eidgendssischen Maturititskommission wurden Sonderdrucke zugestellt. — Der von
der OECE (Genf) veranstaltete Fortbildungskurs fiir Physiker in Tutzing wurde von
Kollegen aus 15 Landern besucht. Von unserem Verein nahmen vier Mitglieder teil. Es
wire zu liberlegen, ob wir in der Schweiz einen dhnlichen Kurs organisieren sollten.

Die Bevichte des Kassiers und dev Lehvmittelkommissionen bewegten sich in gewohnten
Bahnen.

Der neu gewdhite Vorstand setzt sich wie folgt zusammen: R. FLoriN, Chur, Prisident ;
W. SoereENSEN, Neuchitel, Vizeprisident; Dr. G. HAusgRr, Luzern, Kassier; B. Opp-
LIGER, Chur, Sekretir; P. Borri, Genf, CH. RoTH, Genf und Dr. H. ScHILT, Biel, Beisitzer.

Vortvag von Herrn Prof. Dr. Josef Jauch, Universitit Towa (USA):
«Symmetrie und Elementartetlchen»

Die gewohnlichen Symmetrien der klassischen Geometrie sind schon lange bekannt;
sie konnen als Verschmelzung der beiden Fundamentalbegriffe der Transformation und
der Invarianz aufgefasst werden. In der Physik wurden durch die Forderung der Inva-
rianz gegeniiber von Lorenz-Transformationen im vierdimensionalen Raum neue Be-
ziehungen aufgedeckt (Relativititstheorie). Die Quantenphysik brachte weitere Sym-
metrien durch lineare Transformationen im vieldimensionalen Hilbertschen Raum mit
komplexen Grossen. Die S-Matrix, welche Vergangenheit und Zukunft der Elementar-
teilchen verkniipft, ist zwar noch nicht bekannt; sie wird aber durch Symmetrieforde-
rungen sehr eingeschrinkt. Aus diesen Symmetrien ergeben sich ebenfalls, wie in den
klassischen Betrachtungen, ganz bestimmte Erhaltungssitze. Wichtig sind bei den
neueren Betrachtungen vor allem die Raumumkehr, die Zeitumkehr und die Ladungs-
konjugation. Der Referent gibt Beispiele zu diesen, nicht so ohne weiteres evidenten
Symmetrien und zeigt Konsequenzen derselben. Eine derselben ist die Ununterscheid-
barkeit von links und rechts; beziiglich anderer sind experimentelle Untersuchungen
im Gange (Polarisation der Emissionselektronen beim Betazerfall).
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