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Ungelöste Probleme 13

As for the excluded case r p — 2, it is clear from (10), (12) and (15) that

^P-^-W^T{-(P-2y.Alwf-' + (p-l)\(n+ £_l) «,*-!},

which reduces to

V2 =[(n-l)w + ^(w- 1)} w>~\ (17)

L. Carlitz, Durham (N.C., USA)

Ungelöste Probleme

Nr. 27. Es bedeute n eine beliebige natürliche Zahl. Mit sn werde die Summe der
sämtlichen Teiler von n bezeichnet, mit pn die Anzahl der Darstellungen von n als
Summe von natürlichen Zahlen, wobei die Reihenfolge der Summanden als unwesentlich

gilt. Also

^ 1, pz=2, 03 3, p, 5, p5 7, p, ll, p7 15,

p8 22, p9=30, p10 42, £u 56, p12 77 usw.

Für die Darstellung von n als Summe von lauter verschiedenen naturhchen Zahlen
spielen nach dem Pentagonalsatz Eulers die Pentagonalzahlen

~ k (3 k - 1) mit k 1, 2, 3, und i- k (3 k + 1) mit k 0, 1, 2, 3,

oder zusammengefasst

±-1(31-1) mit Z 0, ±1, ±2, ±3,

eine ausgezeichnete Rolle. Es sind dies die Zahlen

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57,

Zwischen sn und den Pentagonalzahlen sowie zwischen pn und den Pentagonalzahlen

bestehen bekanntlich die Beziehungen (alternierend ++ und ):

Sn Sn_t + SM_2— sn-b~ sn~7 + 5n-12 + 5«-15*'*» (1)

Ai A.-1 + At-2 - A-5 - Pn-1 + _V 12 + £n-15 " * ' • (2)

Dabei ist in (1) für eine Pentagonalzahl n für das dann formal auftretende letzte
Glied s0 die Zahl n selbst zu setzen. In (2) ist im gleichen Falle für p0 der Wert 1 zu
nehmen.

Unschwer erhält man die weitere merkwürdige Beziehung.

Sn Pn-1 + 2 Pn-2 ~ 5 Pn-h ~ 7 Pn-1 + 12 _Vl2 + 15 pn_Vo • • • (3)



14 Aufgaben

Die Gleichungen (1), (2) und (3) ergeben sich durch Anwenden von analytischen
Hilfsmitteln. Insbesondere (3) legt die Frage nahe, wie sich dies rein arithmetisch
begründen lässt, was doch zweifellos möglich sein sollte, da es sich um eine rein
arithmetische Verflechtung der Pentagonalzahlen mit den Grössen sn und pn handelt.

L. Locher-Ernst

Aufgaben

Aufgabe 305. A convex (irregulär) polygon P with n sides is subdivided into convex
polygons by d diagonals which do not intersect in the interior of P. Let Sn denote the
number of all such subdivisions, d 0, 1, 2, n — 3. Here is a short table:

n 3, 4, 5, 6, 7, 8,

S 1, '3, 11, 45, 197, 903.
Show (1) and (2):

^„-rjjfcDC; *)'--•
Sn 1 (mod n) (n prime). (2)

The problem is not new, but the form (1) of the Solution seems to be new.
G. Pölya, Stanford University, USA

Solution. Denote the vertices of a polygon of n + 1 sides by 0, 1, 2, n and put
Vt=l, Vn Sn+1. By considering diagonals through the vertex 0, we get the recursion
formulas

V2=Vlf

F3=2F2+^,
V^2V3 + 4V1V2+V1*,

F5- 2 F4 + 4 ^3 +4 Vi+ 6 V* V2+Vt\
and so on. Now put

E{*)-ZvnX; h(X)=x+£2VnX>>.
1

Then the above recurrences imply

x h(x£(*)-* *£_*(„) ^-^ •

Since h(x) 2 g(x) — x, this yields

2g*(x)-(l + x)g(x)+x 0. (*)

The problem is therefore equivalent to Schröder's second problem (see Netto's
Lehrbuch der Combinatorik, pp. 196-198).

It follows from (*) that
og 1

g(x) ÄJTFM*»==T {1 + x -(1-6^ + ^)1/2}.

Thus
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