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und der entsprechende Flidcheninhalt ist

an(l—cosz—g):g;?‘n(l— 1f2+2>.

4

In bezug auf den totalen Flicheninhalt bekommen wir

1— ﬂj 2 ~0,146.

Z.SCHNEIDER und B. STANKOVITSCH, Beograd

Some Congruences Involving Binomial Coeflicients

GLAISHER?Y) (p.21) has proved that

(nsz——ll) =1-— ‘13‘ n(n—1)p’B, 4 (mod ¢, (1)

where $ is a prime > 3 und B,, denotes the m-th Bernoulli number in the even suffix
notation. It follows from (1) that

("2 = () =S m -1 B, modp). (@)

p—1
In view of (2) it may be of interest to examine the »-th difference
] ' -1
—1y-s (7> np+sp ) (3)
S ()52

Indeed it is no more difficult to discuss
: s (YN (Mwt+sw—1
a,= 3= () (" ) K
where # is an arbitrary integer and
plo (1), 5)
Put
=1 (x—2) - (x—p+1)=a?"1—A x4 ... + A4, (6)
Then GLAISHER?) has proved that for p>3, 1< 2¢<p—1
1 1

—EA” =— 7By  (modp), (7)
1 2t+1
7 Ay = 2EE1 B, (modp). (8)

1) J. W. L. GLAISHER, Congruences Relating to the Sum of Products of the First n Numbers and to Other
Sums of Products, Quart. J. Math. 31, 1-35 (1900).

2) J. W. L. GLAISHER, On the Residues of the Sums of Products of the First p — 1 Numbers, and Their
Powers, to Modulus p2 or p3, Quart. J. Math. 31, 321-353 (1900).
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Now it is clear from (4) that
4,=0 (r>p—1). (9)
Thus we may confine ourselves to values of 7 in the range 1 < » < p — 1. It follows
at once from (4) and (6) that
R

8= G X0, X () o e, (10)

where for convenience we put 4,=1. Then in the first place, for » =p —1, (10) yields
[with (12)]
A,  =wPL, (11)

For 0 <7 =2¢<p —1, it follows from (7) and

r

S;O'(_n“s (Z) (n +s) =7! (12)
that
By= — 12V B, L wtp (modp¥ et (0<2t<p-1).  (13)

For odd values of » we consider separately the cases ¢ >1 and e=1. For e >1
it follows from (8) and (12) that

—_ A(?f;j‘_}ﬂ_ 2¢+1 42 (2¢+1)e+3
Ay = 2(2%+ 3) B, 4 3w p* (modp ) (14)
1=22t+1<p—-2, e>1).
For e =1 we need both (7) and (8) as well as (12) and
’ 1
3 (—1)r- (:) (n 45 = (r +1)! <n+ 77). (15)
$=0
Thus (10) yields for 1 < 2¢+1<<p — 2
1 1 :
A2t+1 = “(i)“”;’”’]j‘!— {___(2 t _{__ 1)! ‘41,—2t_2 w2t+1 + (2 t + 2)! (n + t -{'— 2‘) AP—Z[—~3w2t+2}
2t+2 ’
= (2 t+ 1) —2“(*2‘{:;—3’)‘ Bp-2t—-3 w2t+1 ?2
1
ntit g P
__(25+2) §t+3 Bﬁ*ﬂ_?)wz”zp (mod;b2’+4)
so that
= wg)"_ — ( __1_ B 2t+1 2¢+4
Aypq = 2 (217 3) [P 2{n+t+ z)w] po2ig® P (mod ") (16)

(1<2t4+1<p—2, e=1).
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As for the excluded case » =p — 2, it is clear from (10), (12) and (15) that

which reduces to
Ap_zz{(n——l)w—}—g (wul)}wf’“z. (17)

L.Carritz, Durham (N.C., USA)

Ungeloste Probleme

Nr. 27. Es bedeute #n eine beliebige natiirliche Zahl. Mit s, werde die Summe der
sdmtlichen Teiler von # bezeichnet, mit p, die Anzahl der Darstellungen von # als
Summe von natiirlichen Zahlen, wobei die Reihenfolge der Summanden als unwesent-
lich gilt. Also

Plzlx ;b2:2, P3:3’ Zb4:5: P5:7’ 756:11’ ?7:15;
ps =22, py=30, p1o=142, P13 =156, P =77 usw.

Fiir die Darstellung von # als Summe von lauter verschiedenen natiirlichen Zahlen
spielen nach dem Pentagonalsatz EULERS die Pentagonalzahlen

—;«k(?)k—l) mit £=1,2,3, ... und %—k(3k+1) mit £=0,1,2,3, ...

oder zusammengefasst

SUBI=1) mit 1=0,4+1,4+2,43,...

eine ausgezeichnete Rolle. Es sind dies die Zahlen
0,1, 2 5,7, 12, 15, 22, 26, 35, 40, 51, 57, ....

Zwischen s, und den Pentagonalzahlen sowie zwischen p, und den Pentagonal-

zahlen bestehen bekanntlich die Beziehungen (alternierend + + und — —):
Su="Spu_ 1t Su_2— Su_5— Su_7t Sp_12+ Sy_15°"", (1)
pﬂ:pn-1+pn~2‘pn—5_pn-7+pn—l2+Pn—15"'- (2)

Dabei ist in (1) fiir eine Pentagonalzahl » fiir das dann formal auftretende letzte
Glied s, die Zahl » selbst zu setzen. In (2) ist im gleichen Falle fiir p, der Wert 1 zu
nehmen.

Unschwer erhilt man die weitere merkwiirdige Beziehung:

Sp=Pu-1+ 2 Pn—2 -3 Pu-s— 7 Pn—7 +12 Pu_12+ 15 pn—la cee, (3)
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