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L. Carlitz Some Congruences Involvmg Binomial Coefficients 11

und der entsprechende Flächeninhalt ist

e-„(l-C03--j)-e«W(l-J^+A).
In bezug auf den totalen Flächeninhalt bekommen wir

l-J^JA, 0,146.4

Z. Schneider und B. Stankovitsch, Beograd

Some Congruences Involving Binomial Coefficients

Glaisher1) (p. 21) has proved that

f/-"!1) 1 - * (» - 1) P*BP_, (mod*4), (1)

where p is a prime > 3 und Bm denotes the m-th. Bernoulli number in the even suffix
notation. It follows from (1) that

(7-Tl1) - ("f-l) -1 (« - ») (m + » - 1) P'Bp_, (modP% (2)

In view of (2) it may be of mterest to examine the r-th difference

zi-v-'OCi'-'r1)- (3)

Indeed it is no more difficult to discuss

^(-ip'öp^r1)' w

where n is an arbitrary integer and

pe\w (-__1). (5)

Put
(x -1) (*-2) • • • (* -p +1) x^1 -A1 xf-2 +¦¦¦+ Ap_t. (6)

Then Glaisher2) has proved that for p > 3, l<2t<p — l

JA2t=--2jB2t {modp), (7)

-A._i2(+lSAi+iß2( {modp)_ (8)

*) J. W L Glaisher, Congruences Relatmg to the Sum of Products of the First n Numbers and to Other
Sums of Products, Quart J Math 31,1-35(1900)

2) J. W L Glaisher, On the Residues of the Sums of Products of the First p — \ Numbers, and Their
Powers, to Modulus p2 or ps, Quart J Math 31, 321-353 (1900)
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Now it is clear from (4) that

4 0 (r>p-l). (9)

Thus we may confine ourselves to values of r in the ränge 1 -^ r ^ p — 1. It follows
at once from (4) and (6) that

4=^4ryr_r1(-i)*^-1-*i'(-irsQ (n + s)kw\ (10)

where for convemence we put A0 1. Then in the first place, for r =p — 1, (10) yields
[with (12)]

VAp_x w*-\ (11)

For 0 < r 2 t < p - 1, it follows from (7) and

Z(-l)'-gQ(n + s)' r\ (12)

that

4^--#^T^-2.-i^/>(mod^^+2) (0<2*<*-l). (13)

For odd values of r we consider separately the cases e > 1 and e 1. For e > 1

it follows from (8) and (12) that

A«+is Är^y V«-. ™2t+1 p2 (mod^(»+i)->)
:(2* + 3)

(1^2* + l<£-2, *>1).

For ,=lwe need both (7) and (8) as well as (12) and

(14)

27(-irs Q (n + s)' + 1

(r +1)! (« + A f) (15)

Thus (10) yields ior 1^2t + l<p-2
A2t+1^Tp4W{-(2t + l)\Ap_2t_2w^l+(2t + 2)\{n + t+^jAp^t_3w-it+2}

-(2^i)!^AA_V-3-2i+1/>2
n + t-t A

-(2*+ 2)! 2f +3 -_?,_„_, W"+^ (mod0*' + *)

so that

4«+ia-51?m,r[#-2(" + + T)»]V.«-.-',,f^ (mod^-)

(lg2( + K^-2, =1)
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As for the excluded case r p — 2, it is clear from (10), (12) and (15) that

^P-^-W^T{-(P-2y.Alwf-' + (p-l)\(n+ £_l) «,*-!},

which reduces to

V2 =[(n-l)w + ^(w- 1)} w>~\ (17)

L. Carlitz, Durham (N.C., USA)

Ungelöste Probleme

Nr. 27. Es bedeute n eine beliebige natürliche Zahl. Mit sn werde die Summe der
sämtlichen Teiler von n bezeichnet, mit pn die Anzahl der Darstellungen von n als
Summe von natürlichen Zahlen, wobei die Reihenfolge der Summanden als unwesentlich

gilt. Also

^ 1, pz=2, 03 3, p, 5, p5 7, p, ll, p7 15,

p8 22, p9=30, p10 42, £u 56, p12 77 usw.

Für die Darstellung von n als Summe von lauter verschiedenen naturhchen Zahlen
spielen nach dem Pentagonalsatz Eulers die Pentagonalzahlen

~ k (3 k - 1) mit k 1, 2, 3, und i- k (3 k + 1) mit k 0, 1, 2, 3,

oder zusammengefasst

±-1(31-1) mit Z 0, ±1, ±2, ±3,

eine ausgezeichnete Rolle. Es sind dies die Zahlen

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57,

Zwischen sn und den Pentagonalzahlen sowie zwischen pn und den Pentagonalzahlen

bestehen bekanntlich die Beziehungen (alternierend ++ und ):

Sn Sn_t + SM_2— sn-b~ sn~7 + 5n-12 + 5«-15*'*» (1)

Ai A.-1 + At-2 - A-5 - Pn-1 + _V 12 + £n-15 " * ' • (2)

Dabei ist in (1) für eine Pentagonalzahl n für das dann formal auftretende letzte
Glied s0 die Zahl n selbst zu setzen. In (2) ist im gleichen Falle für p0 der Wert 1 zu
nehmen.

Unschwer erhält man die weitere merkwürdige Beziehung.

Sn Pn-1 + 2 Pn-2 ~ 5 Pn-h ~ 7 Pn-1 + 12 _Vl2 + 15 pn_Vo • • • (3)
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