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Uber die Anzahl und Anordnung der Diagonalschnitte
in einem regelmissigen #-Eck

Angeregt durch ein in dieser Zeitschrift erschienenes Bild!) eines regelmissigen
48-Eckes, in welchem alle Diagonalen eingezeichnet waren, sind wir zu einigen Eigen-
schaften iiber die Anzahl und Anordnung der Diagonalschnitte gekommen.

Wir hoffen, dieser Artikel gebe den Anstoss zu weiterer Arbeit an diesem inter-
essanten Problem.

A n-1
Figur 1 Figur 2

Der Ubersichtlichkeit wegen fithren wir folgende Bezeichnungen ein: Mit 4,, 4,,
..., 4, bezeichnen wir die Ecken in ihrer Reihenfolge, mit p und O den Halbmesser
und den Mittelpunkt des umschriebenen Kreises, mit d? , die Diagonale, welche die
Ecke A; mit der Ecke 4, ; verbindet. Den Index ¢ wie auch das Zeichen |- lassen
wir weg, wenn nicht hervorgehoben werden muss, welche Ecken durch diese Diago-
nale verbunden sind (Figur 1). Der Index % nimmt die Werte 2 < & < [#/2] an.
Mit ¢, bezeichnen wir den Abstand der Diagonalen 4, vom Mittelpunkt O.

Hilfssatz 1: Der Abstand des Schwittes QF zweier Diagonalen d*, und d**? vom
Mittelpunkt O ist

b cosk mjn
"w=Q cos(k— p)m/n’

Bewers : Es soll mit Cder Schnitt der Diagonalen d* , und der Normalen aus O auf
d* , bezeichnet werden (Figur 2).
Aus A0C A, folgt
0C, = gcosk L =g,
n

1) El Math. 9, 93 (1954).
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demnach aus A0C,Qf:

Q;fo . Ck . Cosk nt/n b

 cos(k—p)ajn @ Cos (& — p) a/n = Tk

Man sieht, dass 7? seinen grossten Wert fiir # = 1 annimmt. Darum befinden sich
alle Schnitte, die auf den Diagonalen d, und nicht gleichzeitig auf einer Diagonalen
d,, ¢ <k, gelegen sind, in einem Kreis des Halbmessers 7;. Ausserdem sind die
Schnitte aller Diagonalen in dem Ring

73 Thial
angeordnet.

Satz 1: Fiir jeden Wert von k und n =4 istc,_, — v~ >0, und fiir jeden Wert von
kist lim (c;_, — 7f~") = 0. Fiir jeden Wert von k und n =4 ist ¢;_, — vt > —0[2;

in  speziellen Fillen fir n <11 ist ¢,y — 7t >0, und fiir k= (n+2)/3 ist
N (¢, 13 = 7(ar2y) = —0/2.

#n—>00

Beweis : Nach dem Hilfssatz 1 ist
cos L] n
n
T—Q
COS —
n

k-1

Da cos(m/n) > 0 ist fiir » > 2, hingt das Zeichen der Differenz ¢,_, — 7~ vom
Zeichen der Funktion f(x) ab, wo

f(x) = cos 7 cos X" g — cos 2T
n n n

Aus ihrer ersten Ableitung

-1
f'(x) = —Z— cos =~

sieht man, dass immer f'(x) > 0 ist, wenn 1 < x < /2, weil dann cos(x — 1) w/n > 0.
Das heisst, dass in diesem Intervall die Funktion f(x) wichst. Weil f(2) > 0 ist,
schliessen wir, dass fiir jedes 1 <x <#%/2 f(x) >0 bzw. ¢;_; —7F~1 >0 ist.

Wenn wir noch die Differenz in der Form

27 . R n 2

e . _pk-1_ ___@ cosin cos - % —1 —1—sm~~n~sm-E

k-1 E - n n n L
Zcos;

schreiben, folgt, dass lim (c,_; —7f~') = O fiir jedes &.

Wir werden jetzt den zweiten Teil dieses Satzes beweisen. Das Zeichen der Differenz

[ofe ]S} iﬁ
1 k—1 n

Choy— 7 =QCOS— — N —Q —F—7 —
COS 4

n

hidngt vom Zeichen der Funktion f(x) ab, wo
—cos? X m— 41
f(x) = cos® — 7 — cos 7.



8 Z. ScuneIipeR und B. StankoviTscH: Diagonalschnitte im regelmissigen n-Eck

In der Ableitung dieser Funktion

' 7 3x+1 . ox—1
f(x)———2~n—cos T ESin———an
bleibt
.ox—1
sin——— 7

immer positiv fiir n =4 und 1< x < »/2, wihrend aber

3 -1
cos—ﬁ“n:O
2n

ist fiir x = (n — 1)/3. Die Funktion f(x) hat ihr Minimum fiir x = (» — 1)/3, und sie
wachst fiir x > (n — 1)/3. Die Funktion

n—1 of1 1 1 2
f( 3 )=cos <?——ﬁ>n~cos(?+—3~—)n

n
1 3 27 35 2n
= 5~ 0S5y, Ty /3m T
ist gleich Null, wenn
2 1
cos n  1+)24
3n 6

ist, woraus folgt, dass n ~ 12.
Man kann leicht zeigen, dass die Funktion f((n — 1) /3) eine monoton abnehmende
Funktion von # ist; fiir # ~ 12 nimmt sie den Wert 0 an, woraus folgt, dass

Ai+k-1 A i+k

Aibz

iel

Figur 3
f((n —1)/3) >0 und auch ¢, , —#; > 0 fiir » <11. Ausserdem ist

: 1 4
lim (C(n-l)/3 - "(n+2)/3) =—7

7n—>»00

und deshalb ¢;_; — 7} > —p/2 fiir alle Werte von k.

Folgerung aus Satz 1: Fir n > 11 sind neben den Schnitten, die auf den Diagonalen
d,, r <k, liegen, auch die Schnitte der Diagonalen 4,, ¢ = %, ausserhalb des Kreises
mit dem Halbmesser c,.
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Hilfssatz 2: Die Anzahl der Schnitte an allen Diagonalen d,, welche nicht zu den
Diagonalen d, _,dy o, ... d2 gehoren, ist n (R —1) (n — 2 k).

Beweis: Die Diagonale 4%, wird von den Diagonalen aus den k2 —1 Ecken
Ai1, 4,09, oo, Aisp_q geschnitten (Flgur 3). Aus jeder von diesen Ecken schneiden
n — k —1 Diagonalen die Diagonale d% ,. Also ist die Gesamtanzahl der Diagonalen
aus den & —1 Ecken, welche die Diagonale d°, schneiden, (¢ —1) (» — %k —1). In
dieser Zahl sind die 2 (¢ — 1) Schnitte der Diagonalen d, inbegriffen. Bedenkt man,
dass jeder von diesen Schnitten zu zwei Diagonalen dj gehért und dass es in einem
regelmissigen #n-Eck # Diagonalen d, gibt, so erhidlt man die totale Anzahl der
Schnitte an allen Diagonalen d:

nk—1)(n—k—1)—nk—1)=n(k—1)(n—k - 2).

Eine Diagonale d°, wird von (¢ —1) (k — 2) Diagonalen Ap_1y Ap_g, ..., dy ge-
schnitten, und darum ist die Anzahl der Schnitte an einer Diagonalen d*,, welche
diesen Diagonalen nicht angehéren, gleich (¢ —1) (» — 2% + 1). Die totale Anzahl
der Schnitte an allen Diagonalen d;, welche den Diagonalen d;_;, d;_,, ..., dy nicht

angehoren, ist demnach
nk—1) (n—2Rk).

Satz 2: Die Anzahl der Diagonalschnitte, die auf allen Diagonalend,,,m=2,3,..., &,

liegen, ist n
—6—(k-—1) (B3kn—4%—4k).

Beweis : Nach dem Hilfssatz 2 ist die Anzahl der Schnitte an allen Diagonalen

dy, dg, ..., d, gleich N

D) nim—1) (n—2m).

m=2

Verteilen wir diese Summe in drei Summen:

5 k 5
n2m2=;2'm— angzmz——nZ(n —2m).

m=2

Wenn man von m? = 2 (%) + m ausgeht, bekommt man

%
k
m=2

+5%+6).
Hieraus folgt

mzz:zn(m—l) (n—m) =7 (k—1) Bkn -4k —4k).

Folgerung aus Satz 2 : Die Gesamtanzahl der Diagonalschnitte ist

o5 (m=1) (n—=2) (0 —3),
wenn # ungerade ist, und

Ezn(n——Z) (n —4),
wenn # gerade ist.
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Wir miissen bhervorheben, dass dies nicht die Anzahl der Schnittpunkte ist, weil
es vorkommen kann, dass sich zwei oder auch mehrere Diagonalschnitte in einem
Punkte decken.

Satz 3: Ausserhalb des Kreises, dessen Halbmesser v ist, v} < v < ¢y, gibt es

Z(k=1)(Bkn—4kr2—4k)
Diagonalschnitte, wenn n <11 1st.

Beweis: Im Satz 1 haben wir bewiesen, dass ¢, —7,,, > 0 ist fir » <11. Wir
wissen, dass ausserhalb des Kreises mit dem Halbmesser 7;,, keine Schnitte von
Diagonalen d,, ¢ < % +1 liegen; ausserhalb des Kreises mit dem Halbmesser ¢,
liegen alle Diagonalen d,,, m < k. Nach Satz 2 ist die Anzahl der Schnitte an diesen

Diagonalen
V(]

T (k=1 @kn—4k—4F).

Zuletzt wollen wir ein Bild von der Anordnung der Diagonalschnitte geben.

Satz 4: Fiir n — oo hat die Anzahl der in einem Ring mit den Radien o und o VE/ 2
liegenden Schwitte einen Grenzwert, der grosser oder gleich der Hilfte der totalen Anzahl
der Schnitte ist.

Bewers. Ausserhalb des Kreises mit dem Halbmesser 7 = ¢, gibt es, nach dem Satz 2,

bestimmt mehr als
n

% (E=1) Bhn—4%—4k)

Schnitte. Das Verhiltnis zur totalen Anzahl der Schnitte ist

B\  4(h—1)(3hn—4Kk—4k)
N(y) = n—1) (n—2) (n—3)

Wenn man in Betracht zieht, dass

VD~ (2 Pod)] e

N(i) ~3  (n>o0).

2 k1
n n — 2

ist, bekommt man

und fiir 2/n =1/4:
4

Der Flicheninhalt des Kreisringes mit den Radien g und 7 = g cos(k/n) = ist fiir
k[n = 1/4 gleich
2 (1 — cac? ) _ 1 2
o°m cos” ) = 5 0" 7.

Ein klareres Bild der Anordnung der Schnitte auf einer Einheit des Flacheninhalts
bekommt man, wenn man k/n = 1/8 setzt. Dann bekommen wir
1

5
N (é«) ~ o R 0,156,
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und der entsprechende Flidcheninhalt ist

an(l—cosz—g):g;?‘n(l— 1f2+2>.

4

In bezug auf den totalen Flicheninhalt bekommen wir

1— ﬂj 2 ~0,146.

Z.SCHNEIDER und B. STANKOVITSCH, Beograd

Some Congruences Involving Binomial Coeflicients

GLAISHER?Y) (p.21) has proved that

(nsz——ll) =1-— ‘13‘ n(n—1)p’B, 4 (mod ¢, (1)

where $ is a prime > 3 und B,, denotes the m-th Bernoulli number in the even suffix
notation. It follows from (1) that

("2 = () =S m -1 B, modp). (@)

p—1
In view of (2) it may be of interest to examine the »-th difference
] ' -1
—1y-s (7> np+sp ) (3)
S ()52

Indeed it is no more difficult to discuss
: s (YN (Mwt+sw—1
a,= 3= () (" ) K
where # is an arbitrary integer and
plo (1), 5)
Put
=1 (x—2) - (x—p+1)=a?"1—A x4 ... + A4, (6)
Then GLAISHER?) has proved that for p>3, 1< 2¢<p—1
1 1

—EA” =— 7By  (modp), (7)
1 2t+1
7 Ay = 2EE1 B, (modp). (8)

1) J. W. L. GLAISHER, Congruences Relating to the Sum of Products of the First n Numbers and to Other
Sums of Products, Quart. J. Math. 31, 1-35 (1900).

2) J. W. L. GLAISHER, On the Residues of the Sums of Products of the First p — 1 Numbers, and Their
Powers, to Modulus p2 or p3, Quart. J. Math. 31, 321-353 (1900).
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